Nouvelle conférence !

Une troisième conférence vient d’apparaître sur mon circuit, à côté de « Volcans et Risques Volcaniques »  et « Glaciers en Péril ». Elle est intitulée « Champs Phlégréens, Vésuve, Herculanum et Pompéi. »

Le voyage débute à Pouzzoles et ses environs. Je conduis ensuite le spectateur dans la Solfatara avec ses fumerolles et ses mares de boue. Nous escaladons les pentes du Vésuve, avant de déambuler dans les rues de Herculanum et Pompéi, détruites par le volcan en l’an 79. Les fresques et mosaïques exposées au Musée Archéologique National de Naples complètent ce tour d’horizon.

Ma présentation se poursuit par un diaporama d’une vingtaine de minutes, en fondu-enchaîné sonorisé, intitulé « La Java des Volcans ». Il fait voyager à travers l’île indonésienne de Java qui héberge plusieurs volcans aussi explosifs que le Vésuve.

Photos: C. Grandpey

Hawaii, le roi des points chauds // Hawaii, the king of hot spots

Sur Terre, la plupart des volcans se forment au-dessus des limites de plaques tectoniques, là où les collisions et les accrétions peuvent créer des zones de fragilité dans la croûte et le manteau supérieur, ce qui permet à la roche en fusion de remonter vers la surface. L’archipel hawaiien se trouve à 3 200 km de la frontière tectonique la plus proche, et son existence a intrigué les géologues pendant des siècles.
En 1963, John Tuzo Wilson, un géophysicien, a émis l’hypothèse que les îles hawaiiennes reposent au-dessus d’un panache magmatique qui se forme lorsque la roche dans le manteau profond « bouillonne et s’accumule sous la croûte. » Ce «point chaud» pousse continuellement vers la surface et perce parfois la plaque tectonique, faisant fondre la roche environnante. La plaque se déplace au cours de millions d’années tandis que le panache magmatique reste relativement immobile. Le phénomène crée de nouveaux volcans à la surface de la plaque tandis que d’autres deviennent inactifs. Au final, on obtient des archipels tels que la chaîne sous-marine Hawaii-Empereur.
La théorie du point chaud a fait l’objet d’un large consensus au cours des décennies suivantes. Certaines observations ont confirmé cette théorie relativement récemment, dans les années 2000, quand les scientifiques ont commencé à placer des sismomètres au fond de l’océan. Les instruments ont fourni une radiographie du panache magmatique sous l’île d’Hawaii. Ils ont montré avec précision la direction et la vitesse du flux magmatique; les résultats confirment clairement la présence d’un point chaud.
Ce point chaud a probablement généré une activité volcanique pendant des dizaines de millions d’années, bien qu’il soit arrivé à sa position actuelle sous le Mauna Loa il y a seulement environ 600 000 ans. Tant qu’il y restera, il produira une activité volcanique. Plus près de la surface, il est encore très difficile de prévoir quand, où et quelle sera l’intensité des éruptions, malgré la profusion de sismomètres et de capteurs satellitaires.
Le panache magmatique qui alimente le Mauna Loa est principalement composé de basalte en fusion qui est moins visqueux que le magma que l’on rencontre sous des stratovolcans tels que le mont St. Helens et le Vésuve. Cela rend les éruptions du Mauna Loa moins explosives et contribue au long profil qui a donné son nom à la montagne et au type bien connu de volcan bouclier. Le Mauna Loa mesure environ 16 km de la base au sommet et couvre 5 180 kilomètres carrés.
Les satellites, bien qu’en constante amélioration, ne sont pas assez sensibles dans des conditions normales pour voir en profondeur à l’intérieur du Mauna Loa. Ils ne peuvent que déceler le réservoir magmatique peu profond à environ 3 kilomètres sous le sommet.
Les choses changent, cependant, lorsque le volcan commence à montrer des signes de réveil. Le magma pousse vers la surface plus rapidement; il fracture la roche et fait gonfler la surface du volcan. De telles déformations peuvent être captées par des sismomètres et les inclinomètres. À partir de ces données, ainsi que de celles sur les gaz et les cristaux émis lors de l’éruption, et de minuscules inflexions de la force gravitationnelle, une image de la situation commence à se faire jour.
Le Mauna Loa était entré en éruption pour la dernière fois en 1984, et dans les années qui ont suivi, il est resté inactif, même si son voisin, le Kilauea, est resté en éruption de manière quasi continue. Les premiers signes annonciateurs d’une éruption ont commencé à augmenter en fréquence et en intensité vers 2013, et les sismomètres ont détecté des essaims sismiques de faible magnitude. Un géophysicien de l’Université de Columbia a expliqué que certains séismes ont été causés par le poids du volcan sur le plancher océanique, mais la plupart résultent de la montée du magma qui fracture les roches et emprunte des chemins de moindre résistance.
La dernière éruption a commencé en décembre 2022 au sommet du Mauna Loa. Le magma a jailli de plusieurs fractures et a rempli la caldeira. Les éruptions précédentes avaient commencé au sommet et se sont déplacées vers une zone de rift, mais les scientifiques ne savaient pas quelle zone de rift choisirait le magma cette fois. Le rift nord-est signifiait la sécurité tandis que le rift sud-ouest pouvait mettre des milliers de personnes en danger.
A partir du début de l’éruption, la coulée de lave a ralenti sa progression, bien que manaçant de traverser la Saddle Road. Les fontaines de lave ont continué de jaillir de la zone de rift nord-est, mais les scientifiques étaient incapables de prévoir la suite des événements. Les volcanologues et les sismologues ont tenté d’analyser la situation en plaçant de nouveaux instruments autour des zones actives et en collectant des images satellites de la surface du volcan.
On ne sait pas quand la prochaine éruption se produira. Certains jeunes volcanologues de la Grande Île n’avaient jamais assisté à une éruption du Mauna Loa. Mais, comme l’a noté un géologue, « à l’échelle des temps géologiques, 38 ans, c’est très court. C’est juste quelque chose qui s’est produit pendant des milliers, voire des millions d’années, et ça ne va pas s’arrêter. »
Source : Big Island Now.

———————————————-

Most volcanoes form above the boundaries of Earth’s tectonic plates, where collisions and separations can create anomalous areas in the crust and the upper mantle through which rock can push through to the surface. But the Hawaiian Islands are 3,200 km from the nearest tectonic boundary, and their existence puzzled geologists for centuries.

In 1963, a geophysicist named John Tuzo Wilson proposed that the islands, which are covered with layers of volcanic stone, sit above a magma plume, which forms when rock from the deep mantle « bubbles up and pools below the crust. » This “hot spot” continually pushes toward the surface, sometimes bursting through the tectonic plate, melting and deforming the surrounding rock as it goes. The plate shifts over millions of years while the magma plume stays relatively still, creating new volcanoes atop the plate and leaving inactive ones in their wake. The results are archipelagoes such as the Hawaiian-Emperor seamount chain.

The hot spot theory gained broad consensus in the subsequent decades. Some confirming observations came relatively recently, in the 2000s, after scientists began placing seismometers on the ocean floor. Tthe seismometers provided an X-ray of the magma plume rising beneath Hawaii. The instruments were able to accurately read the direction and speed of the magma’s flow; the results pointed resoundingly toward the presence of a hot spot.

This hot spot has probably been fomenting volcanic activity for tens of millions of years, although it arrived in its current position under Mauna Loa only about 600,000 years ago. And as long as it remains there, it will reliably produce volcanic activity.

Closer to the surface, predicting when, where and how intense these eruptions will be becomes more difficult, despite the profusion of seismometers and satellite sensors.

The magma plume fueling Mauna Loa is made primarily of molten basalt, which is less viscous than the magma beneath steeper stratovolcanoes such as Mount St. Helens and Mount Vesuvius. This makes the average Mauna Loa eruption less explosive and contributes to the mountain’s long profile: about 16 km from base to summit and covering 5,180 square kilometers.

Satellites, while ever improving, are not sensitive enough under normal conditions to see deeper into Mauna Loa than the shallow magma reservoir about 3 kilometers below the summit.

Things change, though, when the volcano starts showing unrest. Magma pushes upward more quickly, cracking rock below ground and causing the surface of the volcano to swell. Such deformations can be picked up by seismometers. From this, together with data about the gases and crystals emitted during the eruption and tiny inflections in gravitational force, a picture begins to emerge from the chaos.

Mauna Loa last erupted in 1984, and in the years afterward, it stayed mostly silent, even as the smaller neighboring volcano, Kilauea, erupted continuously. Rumblings in the ground beneath the volcano started increasing in frequency and intensity around 2013, and seismometers detected clusters of low-magnitude earthquakes deep underground. A geophysicist at Columbia University, said some earthquakes were caused by the volcano’s weight pushing down on the seafloor, but most result from rising magma, which presses up incessantly, fracturing rocks and forming paths of less resistance.

The last eruption began in December 2022 at the summit of the mountain, when magma spurted through fissures in the rock and filled the bowllike caldera. Previous eruptions had started in the summit and moved to a rift zone, but scientists did not know which of the two it would choose this time. The northeast flank would mean safety; the southwest could put thousands of people in danger.

Then, the lava flow slowed in its progression down the sides of the mountain, although it threatened to cross Saddle Road. Magma continued to erupt from the northeast rift zone, spurting upward in red fountains, and scientists were unsure what might come next.

In the meantime, volcanologists and seismologists tried to decipher the incoming data by placing more monitoring instruments around active zones and collecting more satellite images of the mountain’s surface.

There’s no knowing when the next eruption will occur. For some volcanologists on the Big Island, this is the first Mauna Loa eruption of their lifetimes. But, as one geologist noted, “on geological time scales, 38 years is pretty short. It’s just something that’s happened for thousands to millions of years, and it’s not going to stop doing that. You can’t hold back the magma forever.”

Source: Big Island Now.

Source: Wikipedia