Mesure de la gravité sur le Kilauea (Hawaii) // Gravimetry on Kilauea (Hawaii)

L’un des derniers articles ‘Volcano Watch’ du Hawaiian Volcano Observatory (HVO) était dédié à la mesure de la gravité, un paramètre intéressant sur le Kilauea et sur d’autres volcans actifs sur Terre. En effet, les mesures de gravité peuvent être utilisées pour déterminer comment est répartie la masse sous un volcan.

La gravimétrie, autrement dit la mesure de l’accélération de la pesanteur g en un point donné, est une méthode géophysique qui permet d’imager à différentes échelles la structure interne de la Terre. Elle consiste à étudier, de façon indirecte, les variations spatio-temporelles du champ de pesanteur terrestre liées à la distribution des masses au sein de la Terre, à proximité de la surface, voire en surface.

Sur le Kilauea, le HVO effectue des relevés de microgravité de routine pour surveiller l’activité volcanique et déterminer les variations de gravité. Ces fluctuations peuvent indiquer que le magma est en train de s’accumuler dans le réservoir. Les relevés révèlent de petits changements de gravité au fil du temps au niveau des « points de repère » (benchmarks en anglais) judicieusement répartis dans la zone sommitale du volcan.
Le réseau de surveillance gravimétrique du Kilauea comprend une cinquantaine de ces repères. Les relevés annuels de microgravité sont cruciaux pour savoir si l’inflation ou la déflation du volcan est causée par l’intrusion ou le retrait de magma.
Le HVO effectue ces relevés à l’aide de petits instruments de la taille d’une boîte à chaussures, les gravimètres relatifs. Une prise de mesure de la gravité consiste à mettre de niveau une petite plaque de base (moins de 30 cm de diamètre et 7,5 cm de hauteur) sur le sol, à placer le gravimètre sur ce support et à effectuer une mesure de cinq minutes. En plus de la gravité, des mesures de haute précision sont également effectuées à l’aide du GPS.
Les gravimètres sont extrêmement sensibles aux vibrations, de sorte que des surfaces dures et stables, comme des affleurements rocheux, sont nécessaires pour prendre une mesure.
En plus de suivre les variations de la gravité au fil du temps, les levés gravimétriques peuvent être utilisés pour cartographier la densité du sol sous la surface. Les levés Bouguer, nommés d’après un géophysicien français du 18ème siècle, mesurent la gravité à des centaines, voire des milliers d’emplacements à un moment donné et il n’est pas nécessaire d’effectuer un étalonnage reproductible de l’emplacement ou de la précision des levés de microgravité. Les levés Bouguer utilisent les mêmes gravimètres relatifs que ceux utilisés pour les levés en microgravité, mais les mesures sont liées à une « station de base » de référence, où la valeur réelle de la gravité a été déterminée de manière absolue.*
Alors que les levés en microgravité et ceux de Bouguer sont utilisés tous les deux pour déterminer la répartition de la masse sous un volcan, les levés en microgravité seuls sont utilisés pour modéliser les changements de ces paramètres, tandis que les levés Bouguer peuvent révéler les caractéristiques globales des matériaux en profondeur. Les modèles Bouguer bidimensionnels et tridimensionnels peuvent fournir des informations sur la structure géologique des volcans, y compris identifier des réservoirs magmatiques, des intrusions, des glissements de terrain et des effondrements, ainsi que des failles non exposées. Sur le Kilauea, ils ont également été utilisés pour définir les zones probables de circulation de fluides hydrothermaux. Ensemble, les données de microgravité et de Bouguer peuvent donner un aperçu de la structure du sous-sol et des changements au sein de cette structure.
Les levés Bouguer sont effectués sur le Kilauea depuis plus de 70 ans ; les deux dernières campagnes de mesures au sommet ont été réalisées en 2009 et 2020. Au cours du mois de janvier 2023, une équipe de trois personnes a mesuré la gravité au niveau de plus de 400 sites sur le sommet du Kilauea. Cette étude gravimétrique de Bouguer sera la première à étudier les changements importants liés à l’effondrement de la caldeira en 2018. Les résultats de ce levé gravimétrique seront utilisés pour affiner le modèle développé à partir de l’étude sismique prévue pour l’été 2023 au sommet du volcan.
Source : USGS, HVO.

* Le champ de pesanteur théorique en un point est calculé en première approximation à partir de la distance au centre de la Terre, puis on lui applique des corrections prenant en compte la rotation de la Terre sur elle-même, sa non-sphéricité (ellipsoïde), les écarts de densité du
sous-sol et les effets des marées terrestres.

On appelle anomalie gravimétrique de Bouguer, au point considéré sur l’ellipsoïde de référence, l’écart entre le champ de pesanteur terrestre mesuré et le champ de pesanteur théorique.

——————————————-

One of the latest ‘Volcano Watch’ articles by the Hawaiian Volcano Observatory (HVO) was dedicated to the measurement of gravity, an interesting parameter on Kilauea and on other active volcanoes on Earth. Indeed, measurements of gravity can be used to determine how mass is distributed beneath a volcano.

Gravimetry, or the measurement of the acceleration of gravity g at a given point, is a geophysical method which makes it possible to image the internal structure of the Earth at different scales. It consists in studying, indirectly, the spatio-temporal variations of the Earth’s gravity field linked to the distribution of masses within the Earth, near the surface, or even on the surface.

At Kilauea, HVO performs routine microgravity surveys to monitor volcanic activity and to determine changes in gravity. Those changes can indicate whether magma is accumulating in a volcano’s magma reservoir.The surveys measure small gravity changes over time at “benchmarks” which are precisely controlled locations spread across the volcano’s summit area.

The Kilauea microgravity monitoring network includes about 50 benchmarks. Annual microgravity surveys are crucial in confirming whether ongoing uplift or subsidence is caused by magma intrusion or withdrawal.

HVO conducts these surveys using small, shoebox-sized instruments called relative gravimeters. A single gravity measurement consists of leveling a small baseplate (less than 30 cm in diameter and 7.5 cm tall) on the ground, placing the gravimeter on the baseplate, and making a five-minute measurement. Along with gravity, high-precision positions are also collected using GPS.

Gravimeters are extremely susceptible to vibration, so hard and stable surfaces, like solid rock outcroppings, are required to take a measurement.

In addition to tracking changes over time, gravity surveys can be used to map the density characteristics of the ground beneath the surface. These Bouguer surveys, named after an 18th-century French geophysicist, measure the gravity at hundreds to thousands of locations at a single point in time and do not need the repeatable location benchmarking or precision of microgravity surveys. Bouguer surveys use the same relative gravimeters that are used for microgravity surveys, but measurements are tied to a reference “base station,” where the actual value of gravity has been determined absolutely.*

While both microgravity and Bouguer surveys are used to determine how mass is distributed beneath a volcano , microgravity surveys are used to model changes in these parameters, whereas Bouguer surveys can reveal the overall characteristics of the materials at depth. Two-and three-dimensional Bouguer models can provide insights into the geologic structure of volcanoes including identifying magma reservoirs, intrusions, landslide and collapse piles, and unexposed faults. At Kilauea, they’ve also been used to define likely areas of hydrothermal fluid circulation. Together, microgravity and Bouguer data can see subsurface structure and changes within that structure.

Bouguer surveys have been a routine tool at Kilauea for more than seven decades, with the two most recent summit surveys performed in 2009 and 2000. Over the month of January 2023, a three-person team measured gravity at more than 400 locations around Kilauea’s summit. Their Bouguer gravity survey will be the first to address significant large-scale changes associated with the 2018 caldera collapse. Results from this gravity survey will be used to help refine the model developed from the anticipated summer 2023 Kīlauea summit seismic study.

Source : USGS, HVO.

* The theoretical gravity field at a point is calculated as a first approximation from the distance to the center of the Earth, then corrective terms are applied to it taking into account the rotation of the Earth on itself, its non-sphericity (ellipsoid), the differences in density of the
subsoil and the effects of the earth’s tides.
The Bouguer gravimetric anomaly, at the point considered on the reference ellipsoid, is the difference between the measured terrestrial gravity field and the theoretical gravity field.

Caldeira sommitale du Kilauea après l’effondrement de 2018 (Crédit photo: HVO)