Lorsque le Mauna Loa est entré en éruption en novembre 2022, l’une des principales préoccupations des scientifiques du HVO a été de savoir quelle direction prendrait la lave. Les gaz émis ont été un autre souci pour les scientifiques. Comme cela se passa au cours de toutes les éruptions, des tonnes de gaz ont été émises par les bouches actives pendant l’éruption du Mauna Loa.
En général, les gaz volcaniques émis lors des éruptions comprennent de la vapeur d’eau, du dioxyde de carbone (CO2) et du dioxyde de soufre (SO2). Les quantités de SO2 émis par un volcan sont un paramètre important car elles peuvent donner une idée du débit effusif et de la quantité de vog – brouillard volcanique – susceptible d’affecter les zones sous le vent. Les scientifiques du HVO mesurent les émissions de dioxyde de soufre à l’aide d’un spectromètre ultraviolet monté sur un véhicule qu’ils conduisent jusque sous le panache volcanique.
Sur le Kilauea, les alizés ont tendance à envoyer le panache du sommet dans une seule direction. C’est pourquoi un réseau permanent de spectromètres a été mis en place pour mesurer le SO2 sur le volcan, et il n’est pas nécessaire de beaucoup se déplacer dans un véhicule. Malgré tout, le déplacement avec un véhicule sur la Chain of Craters Road pour l’éruption du Pu’uO’o et sur la route 130 pour l’éruption dans la Lower East Rift Zone en 2018 a permis à l’Observatoire de mesurer le panache émis par les sites éruptifs du Kilauea et poussé par les alizés.
Le Mauna Loa culmine à une altitude beaucoup plus élevée que le Kilauea et connaît des régimes de vent différents. Les vents ont été très variables lors de la dernière éruption. Parfois, les mesures des panaches à haute altitude peuvent être effectuées relativement facilement en dirigeant un avion ou un hélicoptère sous le panache. S’agissant du Mauna Loa, le panache contenait non seulement de fortes concentrations de gaz, mais également des particules, comme les cheveux de Pelé, qui pourraient nuire à un avion volant en dessous.
Au cours de l’éruption de deux semaines du Mauna Loa, les vents ont emporté le panache dans de nombreuses directions, notamment vers la Saddle Road, Ocean View, Pāhala, Puna, Hilo, Kailua-Kona et Captain Cook. Il a donc fallu que l’équipe scientifique parcoure environ 4 800 km ! En fin de compte, tous ces trajets ont porté leurs fruits car les scientifiques ont réussi à obtenir des mesures sur 10 jours. Cela a permis au HVO d’informer le public et aux prévisionnistes d’alerter sur la présence de vog pendant l’éruption.
Le traitement préliminaire des données montre que le Mauna Loa a émis plus de deux millions de tonnes de dioxyde de soufre entre le 28 novembre et le 12 décembre. Cela ne prend pas en compte un important volume de SO2 émis lors l’ouverture de la fissure dans la caldeira sommitale pendant la nuit entre le 27 et le 28 novembre, phénomène montré par les images satellitaires. La lumière ultraviolette est nécessaire pour effectuer ces mesures à partir d’un véhicule, ce qui signifie qu’elles ne peuvent être réalisées que pendant la journée.
On estime que les émissions quotidiennes de SO2 ont varié de 200 000 à 500 000 tonnes par jour au début de l’éruption et ont été légèrement supérieures à 100 000 t/j les jours suivants. Le 8 décembre, les émissions ont chuté de manière significative avec seulement 30 000 t/j. Environ 2 000 t/j étaient émises le 10 décembre et, le 12 décembre les émissions n’étaient pratiquement pas détectables, même au sol, près du cône de la Fissure 3.
Ces valeurs sont semblables à celles enregistrées lors de l’éruption dans la Lower East Rift Zone du Kilauea en 2018, qui a également émis du dioxyde de soufre à raison d’environ 200 000 t/j pendant une partie de l’éruption. Le total de SO2 émis par l’éruption de 2018 était environ cinq fois supérieur à celui émis pendant la dernière éruption du Mauna Loa, en partie à cause de la durée plus longue de l’éruption.
Les émissions de dioxyde de soufre pendant l’éruption du Mauna Loa en 1984 atteignaient environ 100 000 à 200 000 t/j, comme l’ont révélé les données satellitaires. Cependant, la technologie utilisée à l’époque n’était pas aussi performante que les spectromètres modernes et a probablement sous-estimé les émissions. En 1984, elles étaient vraisemblablement semblables à celles de 2022.
Source : USGS / HVO.
——————————————
When Mauna Loa erupted in November 2022, one of the main concerns for HVO scientists was the lava and to know where it would flow. Another concern was the gases. As with all other volcanic eruptions, many tonnes of volcanic gases were emitted from the active vents during the Mauna Loa eruption.
Volcanic gases emitted during eruptions include water vapor, carbon dioxide (CO2) and sulfur dioxide (SO2). SO2 emission rates are a key parameter to measure because they can be used as a proxy for lava effusion rate and they dictate how much vog, or volcanic smog, there is downwind. HVO scientists measure sulfur dioxide emission rates using a vehicle-mounted ultraviolet spectrometer, which they drive beneath the plume.
At Kilauea, the trade winds tend to blow the summit plume in a single direction. This why a permanent array of spectrometers has been set up to measure SO2 on the volcano, and there is no need to drive a lot. Driving on Chain of Craters Road for the Pu’uO’o eruption and on Highway 130 for the 2018 Lower East Rift Zone eruption were the Observatory’s common means of measuring the plume in the trade wind direction for the Kilauea eruptive sites.
Mauna Loa, however, is at a much higher altitude than Kilauea and experiences different wind patterns. Winds were very variable during the eruption. Sometimes measurements of high-altitude plumes can be made relatively easily by flying an airplane or a helicopter beneath the plume instead of driving. But the Mauna Loa plume had not only high concentrations of gases, but also contained particles, like Pele’s hair, which could adversely affect an aircraft flying under it.
Over the course of the two-week eruption, the winds took the plume in many directions, including over Saddle Road, Ocean View, Pāhala, Puna, Hilo, Kailua-Kona and Captain Cook. This meant that the gas team had to drive about 4,800 km ! Ultimately, all the driving paid off and the scientists succeeded in measuring emission rates on 10 days. This allowed HVO to report these emission rates to the public and to vog forecasters during the eruption.
Preliminary data processing suggests that Mauna Loa emitted more than two million tonnes of sulfur dioxide between November 28th and December 12th. This does nott include a large volume of SO2 that satellite images show was emitted with the initial fissure opening between Nov.ember 27th and 28th. Ultraviolet light is needed to make these driving measurements, which means they can only be conducted during daylight hours.
Daily SO2 emission rates are estimated to have ranged from 200,000 to 500,000 tonnes per day early in the eruption and were just over 100,000 t/d lin the following days. By December 8th, emissions dropped significantly to only about 30,000 t/d. Only about 2,000 t/d were emitted on December 10th, and by December 12th emissions were essentially not detectable, even on the ground near the Fissure 3 cone.
These emission rates are very similar to those measured during the 2018 Lower East Rift Zone eruption of Kilauea, which also emitted sulfur dioxide at a rate of nearly 200,000 t/d for a portion of the eruption. The total SO2 emitted by the 2018 eruption was roughly five times more than Mauna Loa’s total, owing in part to the longer eruption duration.
Sulfur dioxide emission rates reported for the 1984 eruption of Mauna Loa were roughly 100,000 to 200,000 t/d, as revealed by satellite data. However, the technology used at the time was not as sophisticated as our modern spectrometers and likely underestimated those emission rates. So Mauna Loa’s 1984 SO2 emissions were probably similar to those in 2022.
Source : USGS / HVO.
Panaches de gaz pendant l’éruption du Mauna Loa en 2022 (Photos: HVO)