Des signaux acoustiques pour détecter le début d’une éruption // Acoustic signals to detect the start of an eruption

La dernière éruption du Mauna Loa sur la Grande Ȋle d’Hawaï a commencé le 27 novembre 2022. Elle a été précédée d’une activité sismique intense environ une demi-heure avant que la lave soit visible sur les caméras de surveillance.

Image des premières heures de l’éruption sur la caméra thermique du HVO

Ces caméras sont essentielles pour contrôler l’activité éruptive mais les vues de l’activité peuvent être entravées par les nuages, le brouillard ou les gaz volcaniques. Il se peut aussi que les caméras ne couvrent pas suffisamment le site de l’éruption. C’est pourquoi l’Observatoire des Volcans d’Hawaii (HVO) et d’autres observatoires dans le monde utilisent d’autres méthodes pour tenter d’identifier l’activité éruptive même si le volcan n’est pas parfaitement visible.
Une de ces méthodes consiste à mesurer les bruits émis par une éruption. Ils s’éloignent progressivement de la source, comme le font les rides sur l’eau quand on y a jeté une pierre.
Les scientifiques installent régulièrement des réseaux de capteurs acoustiques sur les flancs des volcans. Ces capteurs sont capables de mesurer le bruit audible, mais aussi le bruit inaudible dont les fréquences (infrasons) ne sont pas perçues l’oreille humaine. Un traitement informatique de ces données est ensuite mis en oeuvre pour rechercher des signaux provenant d’une direction distincte.
Le HVO surveille les volcans hawaiiens à l’aide de données traitées en temps quasi réel en provenance de réseaux acoustiques qui mesurent les changements de pression autour du Kilauea et du Mauna Loa. Des réseaux de capteurs sont déployés sur le terrain pour permettre aux ordinateurs de rechercher des corrélations dans l’énergie acoustique provenant de centres d’éruption probables.
Le traitement des données permet de comparer toutes les formes d’ondes du réseau et examine la cohérence des ondes dans diverses conditions. Dans les tracés obtenus, les cohérences de forme d’onde sont marquées par des points rouges et orange et les incohérences par des points bleu clair et foncé. Les sons incohérents ressemblent à ceux que l’on peut entendre dans une forêt par une journée de grand vent, tandis qu’un son plus cohérent serait celui émis par une voiture qui klaxonne.
Les signaux acoustiques cohérents ont souvent des caractéristiques qui leur permettent d’être distingués lors du traitement des données. Deux bons indicateurs de cohérence sont la vitesse et la direction des ondes. Par exemple, près de la surface de la Terre, les sons se propagent généralement à des vitesses d’environ 300 à 400 mètres par seconde. Le réseau d’infrasons du HVO se trouve à l’intérieur du Parc national des volcans d’Hawaii et couvre un angle d’environ 300 degrés, tout en étant pointé vers le sommet du Mauna Loa. La détection automatique peut utiliser ces signaux (cohérence, vitesse et direction des ondes) pour permettre aux scientifiques de comprendre rapidement quand une éruption se produit au sommet du Mauna Loa.

La figure D ci-dessus montre qu’une légère activité éruptive a commencé vers 23 h 25. En réalité, l’activité a probablement commencé environ 2 minutes plus tôt, vers 23 h 23, étant donné qu’il faut environ 2 minutes au son pour voyager du sommet du Mauna Loa jusqu’au réseau de capteurs acoustiques.
La figure A montre qu’à 23 h 36, les coulées de lave émises par l’éruption avançaient rapidement à travers la caldeira sommitale du Mauna Loa. L’activité s’est intensifiée fortement vers 23h40.
Cela montre l’intérêt d’utiliser plusieurs lignes d’informations pour évaluer l’activité éruptive.
En plus des méthodes acoustiques, le HVO utilise une panoplie d’instruments, notamment en matière d »imagerie sismique, de déformation, d’analyse des gaz, ainsi qu’un réseau de caméras.
Source : USGS, HVO.

——————————————————

Mauna Loa’s latest eruption on Hawaii Big Island started on Novembre27th, 2022. It was preceded by intense earthquake activity about half an hour before lava could be seen lava seen on the webcams.

Remote cameras are critical to confirm eruptive activity but, in many cases worldwide, views of the activity can be obscured. Clouds, fog or volcanic gas can block views, or cameras might not cover the eruption site. Hence, the Hawaiian Volcano Observatory (HVO) and other observatories around the globe use other methods to attempt to identify eruption activity even if the volcano cannot be clearly seen.

One way to monitor volcanic activity is to measure the sounds of an eruption. They can rapidly travel away from the eruption vent in the same way a rock thrown into calm water can make ripples that move away from the source.

Scientists routinely install arrays of acoustic sensors on the flanks of volcanoes that can measure the audible and the inaudible noise which have frequencies (infrasounds) that human ears can’t sense. Computer processing is then used to look for signals that come from a distinct direction.

HVO monitors local volcanoes using rapidly processed near real-time data from acoustic arrays that measure pressure changes around Kīlauea and Mauna Loa. The grouped sensor arrays are deployed in the field to allow computers to look for correlations in acoustic energy from likely eruption centers.

The processing compares all waveforms of the array and looks at the coherency of the waves under a range of conditions. In the plots, strong waveform coherency are marked by red and orange dots and incoherent waves are marked by light and dark blue. Incoherent sounds are like those one can hear in the middle of a forest on a windy day and more coherent sound would be from a car honking on the road.

Coherent acoustic signals often have characteristics that allow them to be distinguished by the processing of array data, and two good indicators of coherency come from the wave speed and wave direction across the array. For example, near the surface of the Earth sounds usually travel at speeds of about 300 to 400 meters per second. The Hawaiian Volcano Observatory’s infrasound array is located in Hawai‘i Volcanoes National Park and has a compass direction of about 300 degrees, pointing back to Mauna Loa summit. Automated detection can use these characteristics (coherency, wave speed and direction) to improve the scientists’ ability to rapidly understand when an eruption is occurring at the Mauna Loa summit.

Panel D of the figure above shows that the compass back direction becomes very stable at about 11:25 p.m., which indicates that mild eruptive activity had started. Its timing was probably about 2 minutes earlier, at about 11:23 p.m., given that it takes about 2 minutes for sound to travel from the summit of Mauna Loa to the array of acoustic sensors.

Indeed, panel A of the figure above shows that by 11:36 p.m., lava flows being generated by the new eruption were rapidly expanding across the Mauna Loa summit caldera. The progression and expansion of the lava is followed by a strong intensification of that activity around 11:40 p.m.

This shows the value of using multiple lines of information to evaluate eruptive activity.

In addition to acoustic methods, the Hawaiian Volcano Observatory uses a full range of monitoring methods including seismic, deformation, gas and webcam imagery.

Source : USGS, HVO.

Février 2024, le plus chaud de tous les temps // February 2024, the warmest ever

Selon l’agence européenne Copernicus – mais l’information est confirmée par d’autres agences comme la NOAA – le mois de février 2024 a été le mois de février le plus chaud jamais enregistré au niveau mondial. C’est la neuvième fois consécutive qu’un record mensuel est battu.

 

Copernicus alerte aussi sur des températures jamais mesurées à la surface des océans en février 2024. Elles dépassent celles enregistrées en plein été, en août 2023.

 

Selon Copernicus, la température au mois de février 2024 est de 0,81°C au-dessus de la moyenne de la période précédente (1991-2020) et de 1,77°C au-dessus de l’ère pré-industrielle. On est donc loin des objectifs de l’Accord de Paris sur le climat et la limite de 1,5°C de réchauffement climatique par rapport à l’ère pré-industrielle. Copernicus ajoute que la température moyenne au niveau mondial des 12 derniers mois (de mars 2023 à février 2024) est 1,56°C au-dessus de la moyenne de l’ère pré-industrielle, et la plus élevée jamais enregistrée.

Le mois de février 2024 dépasse aussi de 0,12°C le dernier record de température enregistré pour un mois de février, et qui datait de 2016.

Plus globalement, l’hiver 2023/2024, incluant les mois de décembre, janvier et février, a été le plus chaud de l’histoire mondiale avec 0,78°C de plus que la température moyenne de la période précédente (1991-2020). Cet hiver a été marqué par une sécheresse persistante et plus importante que la moyenne notamment dans le sud et l’est de l’Espagne, le sud de la France, en Sicile et au Maghreb, mais aussi dans une grande partie de la Scandinavie, dans le nord-ouest de la Russie et dans les régions situées à l’ouest de la mer Noire.

Ne pas oublier que l’été 2023 avait été le plus chaud jamais mesuré dans le monde.

°°°°°°°°°°

Le mardi 5 mars 2024, je me trouvais à Royan à l’occasion d’une conférence sur les volcans et les risques volcaniques dans cette ville. J’ai profité de ce séjour en Charente-Maritime pour me rendre de long de la côte atlantique au nord de la ville où j’ai pu constater les dégâts occasionnés par les dernières tempêtes hivernales. C’est spectaculaire et inquiétant. Les effets des assauts des vagues sur la dune littorale sont impressionnants. Le trait de côte a carrément reculé d’une dizaine de mètres. C’est dans de tels lieux que l’on se rend parfaitement compte de l’impact du réchauffement climatique sur les océans.

Des arbres ont été déracinés et culbutés au pied de la dune . Des branches jonchent les plages et font le bonheur des enfants qui construisent des cabanes.

Les oyats censés retenir la dune n’ont pas pesé lourd et leurs racines sont souvent à l’air libre.

Dans le secteur, des blockhaus, vestiges de la Seconde Guerre Mondiale, gisent à plusieurs dizaines de mètres de distance du rivage, au milieu de l’océan. Cette situation n’est pas la conséquence des dernières tempêtes, mais elle permet de se rendre compte du travail de sape effectué par l’océan au cours des dernières décennies.

Photos : C. Grandpey

—————————————————–

According to the European Copernicus agency – but the information is confirmed by other agencies such as NOAA – February 2024 was the hottest February ever recorded globally. This is the ninth consecutive time that a monthly record has been broken.
Copernicus also warns of temperatures never before measured on the ocean surface in February 2024. They exceed those recorded in midsummer, in August 2023.

According to Copernicus, the temperature in February 2024 was 0.81°C above the average of the previous period (1991-2020) and 1.77°C above the pre-industrial era. We are therefore far from the objectives of the Paris Agreement on climate and the limit of 1.5°C of global warming compared to the pre-industrial era. Copernicus adds that the global average temperature for the last 12 months (March 2023 to February 2024) was 1.56°C above the pre-industrial average, and the highest on record.
The month of February 2024 also exceeds by 0.12°C the last temperature record recorded for a month of February, which dates back to 2016.
More generally, the winter of 2023/2024, including the months of December, January and February, was the warmest in world history with 0.78°C higher than the average temperature of the previous period (1991-2020). ). This winter was marked by persistent and greater than average drought, particularly in the south and east of Spain, the south of France, Sicily and the Maghreb, but also in a large part of Scandinavia, in the north-west of Russia and in the regions west of the Black Sea.
We should not forget that the summer of 2023 was the hottest ever measured in the world.

°°°°°°°°°°

On Tuesday March 5th, 2024, I was in Royan for a conference on volcanoes and volcanic risks in this city. I took advantage of this stay in Charente-Maritime to travel along the Atlantic coast to the north of the city where I was able to see the damage caused by the latest winter storms. It is spectacular and disturbing. The effects of the assaults of the waves on the coastal dune are impressive. The coastline has actually retreated by around ten meters. One prefectly realises the impact of global warming on the oceans.

Trees were uprooted and overturned at the foot of the dune. Branches litter the beaches and delight children who build cabins. The oyats supposed to hold the dune could not resist and their roots are often in the open air.

In the area, blockhouses, remnants of the Second World War, lie several tens of meters away from the shore, in the middle of the ocean. This situation is not the consequence of the last storms, but it allows us to realize the undermining work carried out by the ocean over the last decades.

L’éruption du Hunga Tonga-Hunga Ha’apai a perturbé l’ionosphère // The Hunga Tonga-Hunga Ha’apai eruption disturbed the ionosphere

L’éruption du Hunga Tonga-Hunga Ha’apai, le volcan sous-marin des Tonga, en janvier 2022, est exceptionnelle et représente un trésor pour les scientifiques qui ne cessent de faire de nouvelles découvertes.Ils ont déjà publié une analyse qui montre que cette éruption a généré le plus haut panache volcanique de tous les temps (57 km), avec pénétration de la stratopause, la limite supérieure de la stratosphère.
Aujourd’hui, une équipe internationale de chercheurs a découvert que l’éruption a perturbé les signaux satellites à grande échelle. Les scientifiques ont utilisé des observations ionosphériques satellitaires et terrestres pour montrer qu’une onde de pression atmosphérique déclenchée par une éruption volcanique est capable de produire une bulle de plasma équatoriale (EPB) dans l’ionosphère, avec de fortes perturbations causées aux communications par satellite. Les résultats de ces travaux ont été publiés dans la revue Scientific Reports.
L’ionosphère s’étend d’une altitude d’environ 80 à 1 000 km. C’est la région de la haute atmosphère terrestre où les molécules et les atomes sont ionisés par le rayonnement solaire, ce qui donne naissance à des ions chargés positivement. La zone avec la plus forte concentration de particules ionisées, la région F – 150 à 800 km de la surface de la Terre – joue un rôle crucial dans les communications radio longue distance car elle réfléchit et réfracte les ondes radio utilisées par les systèmes de suivi par satellite et GPS vers la surface de la Terre. Cependant, des trous peuvent se former dans cette région F, créant une structure en forme de bulle appelée EPB (Equatorial Plasma Bubble) qui peut retarder les ondes radio. et dégrader les performances du GPS.
L’équipe de chercheurs, qui comprenait principalement des scientifiques japonais collaborant avec diverses institutions, a utilisé le satellite Arase pour détecter les survenues d’EPB, le satellite Himawari-8 pour vérifier l’arrivée initiale des ondes de pression atmosphérique, et des observations ionosphériques au sol pour suivre les mouvements de l’ionosphère.
Ces scientifiques ont observé une structure irrégulière de la densité électronique au niveau de l’équateur après l’arrivée des ondes de pression générées par l’éruption volcanique. Ils ont également fait une découverte surprenante. Pour la première fois, ils ont montré que les fluctuations ionosphériques commencent quelques minutes à quelques heures plus tôt que les ondes de pression atmosphérique impliquées dans la génération des bulles de plasma. Cela signifie que le modèle du couplage géosphère-atmosphère-cosmosphère qui existait jusqu’à présent et qui stipulait que les perturbations ionosphériques ne se produisent qu’après l’éruption, doit être révisé.
De plus, les chercheurs ont constaté que l’EPB s’étend beaucoup plus loin que prévu par les modèles classiques. Cette découverte montre qu’il y a intérêt à prêter attention au lien entre l’ionosphère et la cosmosphère lorsque des phénomènes naturels extrêmes, tels que l’éruption du Hunga Tonga-Hunga Ha’apai, se produisent.
Les résultats de ces recherches présentent un intérêt du point de vue scientifique, mais aussi du point de vue de la météo spatiale et de la prévention des catastrophes.
Source : The Watchers, un excellent site qui publie des articles et des informations en relation avec la science et l’environnement.

——————————————-

The eruption of Hunga Tonga-Hunga Ha’apai, the underwater volcano in Tonga, in January 2022 was exceptional and a treasure for scientsists who keep making new discoveries. For instance, they have already an analysis that showed this eruption created the highest volcanic cloud ever recorded. For the first time, a volcanic plume has been seen to penetrate the stratopause, the upper limit of the stratosphere.

This time, an international team found that the eruption disrupted satellite signals. The researchers used both satellite and ground-based ionospheric observations to show that an air pressure wave triggered by the volcanic eruptions could produce an equatorial plasma bubble (EPB) in the ionosphere, severely disrupting satellite-based communications. The findings were published in the journal Scientific Reports.

The ionosphere is the region of the Earth’s upper atmosphere where molecules and atoms are ionized by solar radiation, creating positively charged ions. The area with the highest concentration of ionized particles, the F-region, plays a crucial role in long-distance radio communication, reflecting and refracting radio waves used by satellite and GPS tracking systems back to the Earth’s surface. However, irregularities in the F-region, such as the movement of plasma, electric fields, and neutral winds, can cause the formation of a localized irregularity of enhanced plasma density, creating a bubble-like structure called an EPB that can delay radio waves and degrade the performance of GPS.

The team, that mainly included Japanese scientists in collaboration with various institutions, used the Arase satellite to detect EPB occurrences, the Himawari-8 satellite to check the initial arrival of air pressure waves, and ground-based ionospheric observations to track the motion of the ionosphere.

They observed an irregular structure of the electron density across the equator that occurred after the arrival of pressure waves generated by the volcanic eruption.

The group also made a surprising discovery. For the first time, they showed that ionospheric fluctuations start a few minutes to a few hours earlier than the atmospheric pressure waves involved in the generation of plasma bubbles. This suggests that the long-held model of geosphere-atmosphere-cosmosphere coupling, which states that ionospheric disturbances only happen after the eruption, needs revision.

Furthermore, the researchers found that the EPB extended much further than predicted by the standard models. This discovery suggests that we should pay attention to the connection between the ionosphere and the cosmosphere when extreme natural phenomena, such as the Tonga event, occur.

The results of this research are significant not only from a scientific point of view but also from the point of view of space weather and disaster prevention.

Source : The Watchers, an excellent website that releases articles and information linked to science and the environment.

Hunga Tonga-Hunga Ha’apai, l’éruption de tous les superlatifs (Source: NASA)

Le manque de glace sur les Grands Lacs et ses conséquences // The lack of ice on the Great Lakes and its consequences

La glace a mis du temps à se former cette année sur les Grands Lacs américains. Seulement 3,2 % de la surface des lacs était prise par la glace à la mi-janvier 2023. C’est 18 % de moins que la moyenne pour cette période de l’année. L’absence de glace n’est pas une bonne chose pour l’écosystème des lacs. Cette situation peut provoquer de puissantes vagues dangereuses et des tempêtes de neige à effet de lac.
Les prévisions du National Ice Center des États-Unis au début du mois de décembre étaient différentes selon les secteurs. Selon ces prévisions, les lacs Michigan, Érié et Ontario devaient avoir moins de glace, tandis que le lac Supérieur devait être au-dessus de la normale. On s’attendait à ce que le lac Huron ait une année moyenne. Cependant, ces prévisions sont très incertaines car la croissance de la glace est très dynamique et peut changer en quelques jours, en particulier sur les lacs moins profonds. Par exemple, la couverture de glace a atteint jusqu’à 7 % en moyenne sur tous les lacs après la vague de froid de décembre 2022, mais elle a ensuite rapidement diminué avec l’arrivée de températures plus clémentes. Le changement a été particulièrement prononcé sur le lac Érié où la couverture de glace a d’abord atteint 23 % avant de chuter et se stabiliser à environ 3 %.
Moins de glace signifie aussi plus de neige. En hiver, lorsque des masses d’air froid et sec traversent les lacs, elles absorbent de l’eau par évaporation en cours de route. Lorsque la masse d’air touche la terre, elle laisse tomber toute cette eau à travers un phénomène appelé ‘neige à effet de lac’. La couverture de glace agit comme un bouclier et empêche l’eau du lac de s’évaporer. Lorsqu’il y a moins de glace, la neige tombe en abondance autour des lacs, comme on a pu le voir à Buffalo N.Y., qui se trouve sur les rives du lac Érié. Fin décembre 2022, plus d’1,20 m de neige recouvrait la ville et ses environs. La tempête a fait 44 morts dans les comtés d’Erié et de Niagara.
Une faible couverture de glace peut avoir des conséquences désastreuses. En effet, pendant les mois d’hiver où sévissent les tempêtes, la couverture de glace atténue la force des vagues. Lorsque la couverture de glace est faible, les vagues peuvent devenir très grosses et causer des inondations et une érosion des rives du lac. C’est également ce qui se passe en Alaska lorsqu’il y a un manque de glace de mer. En janvier 2020, le long de la rive sud-ouest du lac Michigan, le niveau très haut du lac s’est ajouté à des vents très forts, ce qui a généré des vagues de 4 mètres de haut qui ont inondé les rives.
Selon les scientifiques, le réchauffement climatique et les températures élevées sont responsables du manque de glace sur les Grands Lacs. La diminution de la couverture de glace aura probablement des effets en cascade sur les écosystèmes des lacs et en particulier sur les poissons. Par exemple, le grand corégone, une pièce maîtresse de la pêche sur les Grands lacs et une importante source de nourriture pour d’autres poissons comme le doré jaune, fait partie des nombreux poissons qui seront affectés par le manque de glace en hiver. Le doré jaune et la perchaude ont, eux aussi, besoin d’hivers prolongés. S’ils ne passent pas assez de temps dans l’eau froide pendant l’hiver, leurs œufs seront beaucoup plus petits, ce qui rendra leur survie plus difficile.
La diminution de la couverture de glace sur les lacs retarde également la migration des oiseaux vers le sud. Le réchauffement des lacs et la perte de la couverture de glace au fil du temps entraîneront également des précipitations plus abondantes, favorables à la prolifération d’algues nocives qui peuvent être toxiques pour les humains et les animaux domestiques.
Les scientifiques se posent beaucoup de questions sur l’ampleur des changements à venir dans l’écosystème et le réseau trophique des Grands lacs si la couverture de glace continue de diminuer. Si nous ne parvenons pas à contrôler le réchauffement climatique, il y aura forcément des changements que nous pourrons anticiper et d’autres que nous ne connaissons pas encore et qui nous échapperont probablement.
Source : USA Today, via Yahoo Actualités.

—————————————–

Ice has been slow to form this year over the American Great Lakes, with only 3.2% of the lakes covered by mid-January 2023. This is roughly 18% below average for this time of year. No ice is not a good thing for the lakes’ ecosystem. It can even stir up dangerous waves and lake-effect snowstorms.

The U.S. National Ice Center Forecast’s outlook at the beginning of December showed a mix of predictions. According to the forecast, Lakes Michigan, Erie and Ontario were predicted to have less ice, while Lake Superior was expected to be above normal. Lake Huron was expected to have an average year. However, this prediction has a great deal of uncertainty because ice growth is very dynamic and can change in a matter of days, especially on the shallower lakes. For example, ice cover jumped up to 7% on average across all the lakes after the December 2022 cold snap, but then quickly fell when milder temperatures arrived. The change was especially pronounced on Lake Erie, where ice cover rose to 23% and later sat at around 3%.

Less ice also means more snow. In the winter, when cold, dry air masses move across the lakes, they pick up water along the way through evaporation. When the air mass hits land, it drops all that water through lake-effect snow. Ice cover acts as a shield, stopping water from evaporating off the lake. So, when there is less ice people around the lakes typically see more snow, as could be seen in Buffalo N.Y., which sits on the shores of Lake Erie. By the end of December 2022, more than 120 centimeters of snow covered the city and surrounding areas. The storm resulted in 44 deaths in Erie and Niagara counties.

Little ice cover can be disastrous. Indeed, during stormy winter months, ice cover tempers waves. When there is low ice cover, waves can be much larger, leading to lakeshore flooding and erosion. This is what happens in Alaska when there is a lack os sea ice. In January 2020 along Lake Michigan’s southwestern shoreline, record high lake levels mixed with winds that whipped up 4-meter-high waves that flooded shorelines.

According to scientists, global warming and the highrt temperatures are responsible for the lack of ice on the Great Lakes. A downturn in ice coverage due to climate change will likely have cascading effects on the lakes’ ecosystems and especially the fish. For instance, Lake whitefish, a mainstay in the lakes’ fishing industry and an important food source for other fish like walleye, are one of the many fish that will be impacted by the lack of ice in winter. Walleye and yellow perch also need extended winters. If they don’t get enough time to overwinter in cold water, their eggs will be a lot smaller, making it harder for them to survive.

Declining ice cover on the lakes is also delaying the southward migration of birds. Warming lakes and a loss of ice cover over time also will be coupled with more extreme rainfall, likely inciting more harmful algae blooms that can be toxic to humans and pets.

There is still a big question mark on the extent of the changes that will happen to the lakes’ ecosystem and food web as ice cover continues to decline. Unless we can keep climate change in check, there will be changes that we anticipate and others that we don’t know about yet.

Source : USA TODAY via Yahoo News.

Vues du Lac Supérieur, une véritable mer intérieure (Photos: C. Grandpey)