La géodésie en volcanologie // Geodesy in volcanology

L’analyse du comportement d’un volcan met en oeuvre plusieurs paramètres, et donc plusieurs types d’instruments. Un article récemment mis en ligne par l’Observatoire des Volcans d’Hawaii (HVO) explique le rôle joué par la géodésie pour mesurer les déformations du sol provoquées par les mouvements du magma dans les profondeurs de la Terre.
Les résultats des levés effectués après le séisme de magnitude M 7,9 à San Francisco en 1906, avec les bouleversements subis par les clôtures et les limites de propriété, ont fait comprendre l’importance de la géodésie pour interpréter les mouvements des failles, et favorisé son entrée dans les sciences de la terre.
Aujourd’hui, un géodésiste s’appuie essentiellement sur le système GPS, sans oublier pour autant les inclinomètres de forage et l’interférométrie radar (InSAR).
La géodésie sur un volcan consiste à effectuer plusieurs levés pour détecter les déplacements éventuels de points de repère. Lors de l’ascension du magma à l’intérieur d’un édifice volcanique, la roche environnante est logiquement poussée vers le haut. Toutefois, lorsque les scientifiques mesurent la position des points de repère, ils se rendent également compte que ces points s’écartent de la source magmatique. Aujourd’hui, les instruments installés en permanence sur un volcan contrôlent en permanence les points de repère afin de pouvoir détecter le moindre  mouvement du sol en quelques minutes.
Le développement et la maintenance du réseau permanent est l’un des travaux les plus importants de l’équipe géodésique du HVO. Ce réseau permanent comprend plus de 60 stations GPS et 16 inclinomètres. Les données fournies sont essentielles pour l’évaluation des risques. En particulier, les inclinomètres, qui sont ides instruments extrêmement sensibles, sont souvent les premiers à indiquer l’inflation de l’édifice volcanique lors de sa mise sous pression par le magma.
L’équipe géodésique du HVO est responsable de l’analyse et de l’interprétation des données fournies par les instruments qui fonctionnent parfaitement grâce à d’autres membres du personnel de l’Observatoire. Les ingénieurs construisent, installent et entretiennent les instruments utilisés sur le terrain. Les informaticiens s’assurent que les ordinateurs communiquent correctement avec les sites éloignés à partir desquels les données sont transmises et que tout fonctionne normalement pour analyser les données.
Outre le réseau géodésique permanent, des campagnes sont organisées chaque année pour collecter des données de référence supplémentaires à l’aide de stations GPS temporaires. Quelque 80 repères sont contrôlés chaque année pendant 2 ou 3 jours pour déterminer leurs variations annuelles de position. Dans certaines zones, ces levés permettent au HVO de déterminer plus précisément les variations de déformation sur plusieurs années.
Pour mieux interpréter les données, les géodésistes utilisent des modèles informatiques qui prévoient de manière simplifiée – avec des sphères ou des ellipsoïdes – le mouvement de la surface de la terre en fonction de l’expansion ou de la contraction des corps magmatiques. On utilise ces formes simples car elles correspondent convenablement aux données et sont moins longues à calculer que les corps de forme irrégulière. Le temps est important car plusieurs milliers de calculs sont utilisés pour tester différents modèles.

Le modèle le mieux adapté montre aux scientifiques la zone la plus probable où se déplace le magma, l’endroit où il s’accumule et donc le lieu où  il est proche de la surface et susceptible de déclencher une éruption. Cependant, les seules données géodésiques ne suffisent pas à donner une image complète d’un volcan. Elles doivent être interprétées conjointement avec des données géologiques, sismiques et gazières. C’est pour cela que les différentes équipes du HVO se réunissent pour élaborer des hypothèses sur l’activité du moment, le niveau de danger et les scénarios futurs.
Source: USGS / HVO.

———————————————

Analysing the behaviour of a volcano involves several parameters, and so several types of instruments. A recent article released by the Hawaiian Volcano Observatory (HVO) explains the part played by geodesy to measure ground movements and deformation caused by magma in the depths on the Earth.

Results from surveys after the 1906 M 7.9 San Francisco earthquake, which offset fence lines and property boundaries, had a profound impact on researchers’ understanding of how faults move and favoured the entrance of geodesy into the earth sciences.

Today, a geodesist relies essentially on Global Positioning System (GPS) instruments, without forgetting borehole tiltmeters and satellite radar (InSAR).

Geodesy on a volcano consists in performing multiple surveys to determine how benchmark positions have changed. As magma moves into a volcano, the surrounding rock is pushed outward. When scienntists measure positions of benchmarks on the surface of the volcano, they also realise that they have also been pushed away from the magma source. Today, permanently installed instruments constantly monitor benchmark positions so that ground motion can be detected within minutes.

Growing and maintaining HVO’s permanent geodetic instrument network is one of the deformation group’s most important jobs. This permanent network consists of over 60 GPS stations and 16 tiltmeters, and data from it are critical for hazard assessment. In particular, tiltmeters, which are incredibly sensitive to changes in ground slope, are often the first indicator of inflation as a volcano pressurizes.

While HVO’s deformation group is responsible for analyzing and interpreting the data, it takes many others to keep the network running. HVO’s field engineers build, install, and maintain the field instruments. Information Technology staff ensure that computers can communicate with remote sites from which data are transmitted and that everything is OK to analyze the data.

Beside the permanent geodetic network, annual campaigns are organised to collect additional benchmark data using temporary GPS stations. Around 80 benchmarks are surveyed each year for 2-3 days to determine yearly changes in position. These surveys provide a higher density of measurements in certain areas, enabling HVO to more precisely determine deformation patterns over many years.

To help interpret the data, geodesists use computer models that calculate the expected motion at the earth’s surface due to expansion or contraction of magma bodies with simplified shapes, such as spheres or ellipsoids. Simple shapes are used because they adequately match the data and are less time-consuming to calculate than irregularly shaped bodies. Time is important because many thousands of calculations are used to test different models.

The best-fitting model shows scientists the most likely place that magma is moving into or out of the volcano, as well as where magma is accumulating and how close it is to the surface. However, no single type of data gives the whole picture of a volcano, so geodetic data needto be interpreted along with geologic, seismic and gas data. HVO’s different teams come together as a whole to develop sound hypotheses for current activity, hazard levels, and future scenarios.

Source : USGS / HVO.

Exemple d’utilisation d’une station GPS temporaire pour mesurer les déformations du Kilauea (Source : USGS / HVO)

Le GPS, de la navigation à la volcanologie // GPS, from navigation to volcanoes

Dans un article récent, des scientifiques du Yellowstone Volcano Observatory ont écrit une chronique expliquant comment un système peut être utilisé à des fins différentes de celles pour lesquelles il a été conçu à l’origine.
C’est le cas du Global Positioning System (GPS), qui est aujourd’hui l’une des techniques les plus efficaces pour suivre les déformations du sol à Yellowstone et sur les volcans en général.
Le système a été lancé en 1978 lorsque le Département américain de la Défense a mis sur orbite une constellation de satellites NAVSTAR pour fournir des informations de navigation à son personnel qui circulait dans des véhicules terrestres, des avions et des navires. Avec le GPS, ces personnes pouvaient savoir où elles se trouvaient et atteindre leur destination. Le service est rapidement devenu accessible aux civils, et la plupart des gens l’utilisent maintenant pour circuler avec leurs véhicules ou se repérer pendant une randonnée.
Aujourd’hui, à côté du NAVSTAR américain, le GLONASS russe et le Galilée de l’Union européenne sont d’autres systèmes de navigation par satellite (GNSS). La précision de ces systèmes varie en fonction des conditions de visibilité du ciel et d’autres facteurs, mais la marge d’erreur est généralement de 5 à 10 mètres pour la position horizontale et de 10 à 30 mètres pour l’altitude.
Cette marge d’erreur ne suffirait pas en volcanologie pour étudier la déformation d’un volcan sous la pression du magma. Les scientifiques effectuant de telles mesures doivent disposer d’une précision très fine, car la déformation d’un édifice volcanique est généralement une affaire de millimètres.
Le récepteur GPS d’une voiture ou d’un téléphone portable utilise les signaux radio des satellites de navigation comme horloge et règle virtuelles. Il mesure le temps nécessaire aux signaux pour parcourir la distance entre plusieurs satellites et le récepteur. Les signaux circulent à la vitesse de la lumière et les orbites des satellites sont connues. Ces informations, associées au temps de parcours des signaux, permettent au récepteur de calculer sa distance par rapport à chaque satellite à un instant donné. En utilisant les principes de la trigonométrie sphérique, le récepteur est capable de « fixer » sa position avec suffisamment de précision pour que les personnes puissent trouver leur chemin.
Pour atteindre une meilleure précision, les géodésistes ont conçu un récepteur qui traite les signaux des satellites de navigation de manière beaucoup plus précise. Au lieu d’utiliser le temps de parcours du signal pour calculer la distance entre les satellites et le récepteur, un récepteur géodésique compte le nombre de longueurs d’onde complètes et fractionnelles entre lui-même et plusieurs satellites à la fois. Les longueurs d’onde sont connues avec précision et les récepteurs géodésiques peuvent compter exactement le nombre de longueurs d’onde complètes. Au final, le récepteur est capable de déterminer instantanément la distance entre plusieurs satellites au millimètre près. Donc, avec un peu de trigonométrie sphérique, les scientifiques ont à leur disposition un moyen de surveiller la déformation du sol en utilisant un système conçu à l’origine pour la navigation avec des véhicules terrestres!
A Yellowstone, un réseau de stations GPS étudie en permanence l’évolution de la déformation du sol. Avec les informations fournies par un réseau de sismomètres et d’autres instruments de surveillance, les données GPS permettent aux scientifiques de mieux comprendre la structure complexe et les processus actifs des phénomènes qui se déroulent sous leurs pieds.
Source: Yellowstone Volcano Observatory.

—————————————————-

In a recent article, Yellowstone Volcano Observatory scientists have written a chronicle explaining how a system can be used for purposes different from those for which it was originally designed.

This was the case for the Global Positioning System (GPS) which is today one of the most effective techniques used to track ground deformation at Yellowstone and on world volcanoes.

The Global Positioning System had its start in 1978 when the U.S. Department of Defense began launching a constellation of NAVSTAR satellites to provide navigation information to its personnel in land vehicles, planes, and ships. With GPS, they could know where they were and how to get where they were going. The service soon became accessible to civilian users, and now most people use it to navigate in their car or to find their way around their favourite trail system.

Today, in addition to the United States’ NAVSTAR GPS, Russia’s GLONASS and the European Union’s Galileo are operational Global Navigation Satellite Systems (GNSS). The accuracy of such systems varies with sky view and other factors, but generally the margin of error is 5–10 metres for horizontal position and 10–30 metres for elevation.

This margin of error would not have been sufficient in volcanology to study the deformation of a volcano under the pressure of magma beneath the edifice. Scientists doing such measurements need to have a very sharp accuracy as the deformation is usually a matter of millimetres.

The GPS receiver in a car or on a cellphone uses radio signals from navigation satellites as a virtual clock and ruler. It measures the time required for signals to travel from several satellites at a time to the receiver. The signals travel at the speed of light and the satellites’ orbits are known. That information, plus the signals’ travel time, allows the receiver to calculate its distance from each satellite at a given instant. Using principles of spherical trigonometry, the receiver is able to « fix » its position well enough for people to find their way around.

To reach a better accuracy, geodesists designed a geodetic-grade receiver that processes signals from navigation satellites in a much more precise way. Instead of using signal travel times to calculate satellite-to-receiver distances, a geodetic receiver counts the number of full and fractional wavelengths between itself and several satellites at a time. The wavelengths are known precisely, and geodetic receivers can count the number of full wavelengths exactly. In the end, the receiver is able to determine its distance from several satellites instantaneously to within a millimetre or so. So, with a little spherical trigonometry you have a means to monitor ground deformation using a system that was originally designed to track jeeps !

At Yellowstone, a network of GPS stations tracks the changing pattern and pace of ground deformation continuously. Combined with information from a network of seismometers and other monitoring instruments, the GPS results help scientists unravel the complex structure and active processes that otherwise remain hidden underfoot.

Source: Yellowstone Volcano Observatory.

Station GPS au bord du Lac de Yellowstone (Crédit photo: USGS)

Contrôle de la déformation du Kilauea pendant la dernière éruption // Monitoring the deformation of Kilauea during the last eruption

L’Observatoire des Volcans d’Hawaii, le célèbre HVO, géré par l’’USGS, dispose d’un vaste réseau d’instruments permettant de surveiller les déformations du sol provoquées par les  mouvements du magma dans le sous-sol. Cependant, ce réseau s’est avéré insuffisant pour mesurer ces déformations pendant la dernière éruption et l’Observatoire a reçu le soutien d’autres organismes scientifiques.
Le GPS (Global Positioning System) est utilisé pour surveiller les variations de surface du sol sur la Grande Ile d’Hawaï depuis la fin des années 1980. Plusieurs dizaines de stations GPS permanentes sont disséminées sur l’île et communiquent leurs données au HVO via des liaisons radio. Chaque jour, la position tridimensionnelle d’une station GPS est calculée à partir de ces données. La précision est généralement supérieure au centimètre.
En plus des stations GPS permanentes, fixées sur un support ancré au sol, le HVO effectue des mesures à partir d’un ensemble de repères en utilisant des installations portables. Lors d’une éruption, ces stations temporaires offrent une couverture supplémentaire dans des zones importantes.
Le problème avec l’éruption dans la Lower East Rift Zone (LERZ), qui a débuté le 3 mai 2018, c’est qu’elle a affecté une grande partie du Kilauea. Dans les jours qui ont suivi l’ouverture de la première fracture, toutes les stations GPS du HVO ont été sollicitées, mais il restait des zones non couvertes dans des endroits où la surveillance de la déformation du sol était essentielle.
Pour compenser ce manque de surveillance, l’University Navstar Consortium, un organisme basé dans le Colorado et spécialisé dans l’utilisation du GPS pour mesurer la déformation de la surface de la Terre, a pu fournir des équipements supplémentaires au HVO. La zone à contrôler comprenait la partie occidentale du flanc sud du Kilauea et le HVO a pu recueillir davantage d’informations sur les conséquences du séisme de magnitude 6,9 ​​survenu le 4 mai 2018.
D’autres stations GPS ont été déployées le long de la Middle East Rift Zone du Kilauea, entre le Pu’uO’o et l’Heiheiahulu, afin de mesurer la déformation des fractures provoquée par l’évacuation du magma de cette zone et sa migration vers les Leilani Estates. D’autres stations temporaires ont été déployées autour de la caldeira du Kilauea pour mieux mesurer la déflation et l’affaissement du sommet.
Les satellites représentent un autre outil majeur utilisé par le HVO pour mesurer la déformation de la surface du sol. L’interférométrie radar à synthèse d’ouverture (InSAR) est une technologie qui utilise deux images radar satellitaires acquises au même point dans l’espace, mais à des moments différents. À partir de ces images, on peut générer une carte montrant les déformations de la surface de la Terre au cours d’une période donnée.
L’Agence Spatiale Européenne (ESA) exploite deux satellites Sentinel-1. Les données InSAR fournies par ces satellites sont généralement disponibles avec un cycle de 12 jours. Cependant, afin de mieux surveiller l’éruption et l’effondrement du sommet du Kilauea, l’ESA a été en mesure de fournir les données InSAR tous les six jours.
Le système de satellites Cosmo-SkyMed est exploité par l’Agence Spatiale Italienne (ASI) et comprend quatre satellites. L’ASI a veillé à ce que les quatre satellites acquièrent des images haute résolution du sommet de Kilauea tout au long des événements d’effondrement, avec des données InSAR pour chaque journée!
Les nombreux passages des satellites SAR au-dessus du Kilauea furent particulièrement utiles pour les mises à jour régulières et les vues à grande échelle. Cela a permis au HVO de contrôler d’infimes déformations de la surface qui auraient pu autrement passer inaperçues. Les données satellitaires ont également été utilisées pour produire des animations de l’effondrement du sommet.
Source: USGS / HVO.

+++++++++++++++

Dans sa mise à jour du 10 septembre, HVO indique qu’un petit effondrement s’est produit au fond de la Fracture n° 8 ; il a laissé apparaître de l’incandescence. Toutefois, aucune coulée de lave n’a été observée.
De petits effondrements continuent de se produire dans le cratère du Pu’uO’o en générant des panaches de poussière de couleur marron. Les tiltmètres positionnés sur le Pu’uO’o et le long de l’East Rift Zone montrent une légère déflation.

La sismicité et la déformation du sol restent faibles au sommet du Kilauea.
Les émissions de SO2 sont globalement très faibles sur le volcan.
Même si le HVO continue de dire que l’éruption pourrait recommencer à tout moment, tous les paramètres tendent à confirmer qu’elle est terminée. L’autorisation donnée aux habitants des Leilani Estates de regagner leurs habitations va dans ce sens. L’incandescence observée au fond de la Fracture n° 8 est probablement provoquée par une certaine quantité de lave résiduelle encore présente dans le réseau de tunnels.

———————————————–

The USGS Hawaiian Volcano Observatory (HVO) has an extensive network of instruments that allows to monitor how the ground deforms due to magma moving underground. However, this network was too limited to monitor ground deformation during the last eruption and the Observatory received the support of scientific colleagues.

The Global Positioning System (GPS) has been used to monitor surface motion on the Island of Hawaii since the late 1980s. Several dozen permanent GPS stations are scattered across the island, and all communicate data to HVO via radio links. Each day, an independent solution for the 3-dimensional position of a GPS station is calculated from these data. The accuracy of the GPS station positions is typically better than a centimetre.

In addition to permanent GPS stations, which are affixed to a monument anchored to the ground, HVO also regularly measures the positions of a set of benchmarks using portable installations. During an eruption, these temporary stations provide extra coverage in important areas.

The problem with the Lower East Rift Zone ( LERZ) eruption, which began on May 3rd, 2018, was that it involved a large portion of Kilauea volcano. Within days of the first fissure opening, all HVO GPS equipment was deployed, but gaps remained in places where ground deformation monitoring was critical.

Fortunately, the University Navstar Consortium, a Colorado-based organization that specializes in using GPS to measure deformation of Earth’s surface, was able to provide additional equipment to expand the area that HVO could monitor. This expanded area included the western side of Kilauea’s south flank, which enabled HVO to gather more insights on the after-effects of the M 6.9 earthquake that occurred on May 4th, 2018.

Additional GPS stations were deployed along Kilauea’s Middle East Rift Zone, from Pu’uO’o to Heiheiahulu, to measure rift deformation caused by magma draining from the area and migrating to Leilani Estates. Other temporary stations were deployed around the Kilauea caldera to give better measurements on summit deflation and collapse.

Satellites were another major tool used by HVO to measure surface deformation. Interferometric Synthetic Aperture Radar (InSAR) is a technique that uses two satellite radar images acquired from about the same point in space at different times. From these images, a map can be produced to show how the Earth’s surface has deformed during the time spanned.

The European Space Agency (ESA) operates a two-satellite constellation called Sentinel-1. InSAR data from Sentinel-1 are typically available with a 12-day repeat cycle. However, in response to Kilauea’s eruption and summit collapse events, ESA provided InSAR results every six days.

The Cosmo-SkyMed satellite system is operated by the Italian Space Agency (ASI) and consists of four satellites. ASI made sure that all four satellites acquired high-resolution views of Kilauea’s summit throughout the collapse events, with individual InSAR results spanning as little as one day!

The increased frequency of SAR satellite passes was especially valuable for regular updates and broad-scale views of Kilauea’s summit, allowing HVO to monitor subtle surface deformation that might otherwise have gone undetected. The data were also used to produce animations of the summit collapse.

Source: USGS / HVO.

++++++++++++++++

In its update of September 10th, HVO indicates that “a small collapse pit formed within the Fissure 8 cone over the past day, exposing hot material underneath and producing an increase in incandescence. No surface flow was associated with this event.”

Small collapses continue to occur at Pu’uO’o, producing visible brown plumes. Tiltmeters on the vent and along the East Rift Zone are showing a slight decrease in inflationary tilt.  Seismicity and ground deformation remain low at the summit of Kilauea.

SO2 emission rates are globally very low on the volcano.

Even though HVO keeps saying that the eruption might start again at any moment, all parameters tend to confirm it is over. This is confirmed by the authorisation given to Leilani Estates residents to go back to their homes. The incandescence in Fissure 8 is probably caused by some residual lava still present in the tunnel network.

 

Profil de déformation du sommet du Kilauea et du Pu’uO’o avant et après le début de la dernière éruption (Source: USGS / HVO)

Le Glacier d’Argentière (Alpes françaises) sous surveillance // Monitoring of the Glacier d’Argentière (French Alps)

Le Glacier d’Argentière est l’un des plus connus et des plus visités des Alpes, juste au-dessus du village qui porte son nom. Autrefois, la langue terminale du glacier descendait jusque dans la vallée. Sous l’effet du réchauffement climatique il recule et s’amincit chaque année davantage. On a constaté qu’il perdait en moyenne un mètre d’épaisseur chaque année depuis trente ans. C’est pour étudier son comportement qu’une équipe scientifique s’est récemment rendue à son chevet.

Pendant plus d’un mois (du 26 Avril au 6 Juin 2018), des chercheurs de l’Institut des Sciences de l’Environnement (IGE) en collaboration avec des chercheurs du laboratoire ISTerre ont, dans le cadre du projet RESOLVE (financé par l’Université de Grenoble), mis en place un dispositif unique au monde permettant d’instrumenter les vibrations du glacier sous toutes ses facettes. 120 capteurs sismiques ont été installés en surface, à l’intérieur et sous le glacier. Pour ce faire, guidés par Luc Moreau (que je salue ici), ils ont avancé à l’intérieur de galeries souterraines rendues accessibles par la société de production hydroélectrique EMOSSON).

Les observations sismiques haute résolution ont été complétées par des mesures de positionnement GPS, d’exploration et d’interférométrie radar, ainsi que des mesures hydrologiques.

L’objectif de ce projet est de permettre la caractérisation fine des propriétés du champ d’ondes sismiques généré par la dynamique du glacier, en particulier par son glissement sur le substrat rocheux et par l’hydrologie sous-glaciaire. Cette campagne d’instrumentation devrait permettre aux chercheurs d’obtenir de nouvelles informations sur ces processus qui restent encore aujourd’hui mal connus bien qu’ils contrôlent une part importante de la dynamique glaciaire et donc du devenir des glaciers en réponse au changement climatique.

La vidéo de la mission est accessible avec ce lien :

https://lejournal.cnrs.fr/videos/le-glacier-dargentiere-mis-sur-ecoute

Source : IGE.

A titre tout à fait personnel, je me suis rendu auprès du Glacier d’Argentière au début du mois de juillet 2017. Si les conditions météo le permettent, je compte renouveler l’expérience début septembre 2018. La comparaison de photos permettra de voir les changements morphologiques subis par le glacier – son front en particulier – au cours de 14 mois.

————————————————-

The Glacier d’Argentière Glacier is one of the best known and the most visited of the Alps, just above the village that bears its name. In the past, the front of the glacier descended into the valley. As a result of global warming, it is retreating and thinning a bit more each year. Glaciologists have found that it has been losing on average one metre of thickness every year for thirty years. It is to study his behaviour that a scientific team recently visited the glacier.
For over a month (from April 26th to June 6th, 2018), researchers from the Institute of Environmental Sciences (IGE) in collaboration with researchers from the laboratory ISTerre have, as part of the RESOLVE project (funded by the University of Grenoble), set up a unique system to tap the vibrations of the glacier in all its facets. 120 seismic sensors were installed on the surface, inside and under the glacier. To do this, guided by Luc Moreau, they advanced inside underground tunnels made accessible by the hydroelectric generating company EMOSSON).
High resolution seismic observations were supplemented by GPS positioning, radar exploration and interferometry measurements, and hydrological measurements.
The purpose of this project is to allow the fine characterization of the properties of the seismic wave field generated by the glacier dynamics, in particular by its sliding on the bedrock and subglacial hydrology. This instrumentation campaign should allow researchers to obtain new information on these processes which are still poorly known today, although they control a large part of the glacial dynamics and hence the fate of glaciers in response to climate change.
The video of the mission is accessible with this link:
https://lejournal.cnrs.fr/videos/le-glacier-dargentiere-mis-sur-ecoute

Source: IGE.

As far as I am concerned, I visited the Glacier d’Argentière at the beginning of July 2017. Weather permitting, I intend to repeat the experience in early September 2018. The comparison of photos will show the morphological changes undergone by the glacier – its front in particular – over 14 months.

Vue du glacier depuis le village d’Argentière

Le front du glacier vu depuis la vallée

Vue du glacier lors d’un survol effectué en septembre 2015

Approche du front du glacier. On aperçoit sur la droite du sentier l’entrée de la galerie souterraine.

Front du glacier

Le glacier sur son substrat  rocheux

Avec le réchauffement climatique, le glacier recule

Il est bien loin le temps où il descendait jusque dans la vallée!

(Photos: C. Grandpey

L’affaissement du sommet du Kilauea (Hawaii) // The slumping of Kilauea’s summit (Hawaii)

Depuis le début de l’éruption le 3 mai 2018, toutes les mises à jour du HVO concernant le sommet du Kilauea sont identiques: « L’affaissement de la lèvre et des parois de l’Halema’uma’u se poursuit en parallèle avec la déflation continue du sommet. » Cet affaissement est confirmé par les informations fournies par les inclinomètres et les stations GPS. Il faut noter que le cratère du Pu’uo’o s’affaisse de la même manière.

En raison de l’effondrement de la zone sommitale, l’USGS a perdu la station GPS North Pit (NPIT) qui était située en bordure du cratère de l’Halema’uma’u. Le 17 juin, l’USGS a indiqué que la station NPIT avait chuté de 90 mètres depuis la mi-mai. Elle n’est plus en mesure de transmettre des données, mais deux autres stations GPS ont été installées pour que les données continuent à être enregistrées. La station GPS a commencé à chuter à la mi-mai, avec une accélération le 8 juin. Elle se trouvait sur le plancher de la caldeira, et quand celle-ci s’est affaissée, la station est tombée dans le cratère tout en continuant à enregistrer des données. La fonction principale de cet équipement est d’enregistrer des données et il est probable qu’il continue à les enregistrer, même s’il ne peut pas les transmettre.
Source: USGS.

—————————————

Since the beginning of the eruption on May 3rd, 2018, all the HVO’s updates about the summit area of Kilauea Volcano are the same: “Inward slumping of the rim and walls of Halema’uma’u continues in response to ongoing subsidence at the summit.” This is confirmed by the information provided by the tiltmeters and the GPS stations. It should be noticed that the Pu’uo’o crater has been subsiding in the same way.

Due to the collapse of the summit area, USGS has lost the North Pit (NPT) GPS station which was situated along the rim of Halema’uma’u Crater. On June 17th, USGS indicated that NPIT had dropped 90 metres since mid-May. It is now no longer able to transmit data, but two other GPS units were put in place so that data would not go unrecorded. Although the device had been moving downward for more than a month, it really picked up speed on June 8th. It had been on the floor of the caldera, and when that dropped, the NPIT fell into the crater while recording data. The device’s goal is to record data about crater collapse and it is likely still recording that data even if it can’t transmit it.

Source: USGS.

Source: USGS / HVO

Emplacement de la station GPS perdue par l’USGS (Source: USGS)

Chroniques de la caldeira de Yellowstone // The Yellowstone Caldera Chronicles

Le 1er janvier 2018, une nouvelle rubrique hebdomadaire, à l’image du «Volcano Watch» du HVO à Hawaii, a été lancée par des scientifiques du Yellowstone Volcano Observatory (YVO). Cette nouvelle rubrique, intitulée « Yellowstone Caldera Chronicles », est publiée chaque lundi sur la page d’accueil du site web du YVO (https://volcanoes.usgs.gov/observatories/yvo/)

Le dernier article, publié le 12 février 2018, s’intitule « Un récent » hoquet « de déformation du Norris Geyser Basin« .
Le « hoquet » en question concerne un récent mouvement du sol autour du Norris Geyser Basin, l’une des zones des plus chaudes du Parc. Cette déformation est un bon indicateur de l’activité à l’intérieur des systèmes magmatiques et hydrothermaux de Yellowstone. En décembre 2017, les données de déformation ont indiqué que le Norris Geyser Basin avait connu un «hoquet» – autrement dit une brusque variation de déformation – probablement en raison de modifications des fluides hydrothermaux dans le sous-sol.
La déformation en surface est contrôlée par de nombreux types d’instruments, avec des extensomètres, des inclinomètres et des stations GPS. À Yellowstone, une quinzaine de stations GPS ont été disposées dans le Parc, et beaucoup d’autres sont situées dans la région environnante. Ces instruments suivent les variations de niveau de la région dans les moindres détails. Depuis 2015, les stations GPS dans la caldeira indiquaient une subsidence, tandis que les stations implantées à proximité du Norris Geyser Basin montraient un soulèvement de cette zone. Cette subsidence et ce soulèvement étaient toutefois faibles, d’environ 2,5 centimètres par an.
Au début du mois de décembre 2017, cependant, le profil du Norris Geyser Basin a changé lorsque la station GPS (NRWY) située le plus près du site a soudainement commencé à enregistrer une subsidence. Au cours des deux ou trois semaines suivantes, cette station s’est abaissée d’environ 2 cm. À la fin du mois de décembre, la subsidence était terminée et le soulèvement avait repris.
Ce n’est pas la première fois qu’une variation soudaine de déformation se produit dans le Norris Geyser Basin. Déjà fin 2013, la région avait commencé à se soulever rapidement, avec une élévation de 5 cm de la station NRWY en seulement quelques mois. Le soulèvement s’est brusquement transformé en affaissement vers le 30 mars 2014, le jour même où un séisme de magnitude M 4,8 secouait la région, l’événement le plus significatif enregistré à Yellowstone depuis 1980. À la fin de l’année 2014, l’affaissement à Norris avait retrouvé un niveau normal. Les scientifiques pensent que l’épisode soudain de soulèvement a été causé par l’accumulation de fluides hydrothermaux sous la région, et que le séisme a représenté la rupture d’un blocage. Après cette rupture, les fluides ont pu s’évacuer du système et la surface s’est affaissée.
Il est possible que l’affaissement observé en décembre 2017 soit dû un processus similaire. Le soulèvement a pu être causé par une accumulation de fluides hydrothermaux derrière un point de blocage dans le sous-sol. Ce blocage s’est rompu et a permis à certains fluides de s’écouler, ce qui a entraîné la subsidence, mais la situation s’est ensuite rétablie à la fin du mois et le soulèvement a repris. Contrairement à l’épisode de 2014, cependant, il n’y a pas eu de séisme significatif dans la région de Norris au moment de l’inversion de déformation.
Malgré le récent «hoquet» observé dans le Norris Geyser Basin, la déformation globale de la caldeira n’a pas changé. Les données GPS montrent que la subsidence se poursuit à la même vitesse depuis 2015. L’événement observé à Norris n’est pas le signe annonciateur d’une possible éruption ; il reflète la nature dynamique et en constante évolution du système hydrothermal de Yellowstone.
Source: Yellowstone.Volcano Observatory.

————————————–

On January 1st, 2018, a new weekly column inspired by HVO’s “Volcano Watch” was launched by scientists of the Yellowstone Volcano Observatory (YVO). This new column, entitled the “Yellowstone Caldera Chronicles,” is posted each Monday on the homepage of YVO’s website (https://volcanoes.usgs.gov/observatories/yvo/).

The latest article, released on February 12th 2018, is entitled “A recent « hiccup » in deformation of the Norris Geyser Basin.
The “hiccup” concerns a recent change in ground movement around the Norris Geyser Basin. This deformation is one of the primary indicators of activity within Yellowstone’s magmatic and hydrothermal systems. In December, deformation data indicate that the Norris Geyser Basin experienced a « hiccup, » probably due to changes in hydrothermal fluids in the subsurface.

Surface deformation can be monitored by many types of instruments, including borehole strainmeters, borehole tiltmeters and GPS stations. At Yellowstone, about 15 GPS stations are operating within the National Park, and many more are located in the surrounding region. These instruments track the ups and downs of the region in great detail. Since 2015, GPS stations in the caldera have indicated a subsidence, while stations near the Norris Geyser Basin have shown an uplift of that area. Rates of subsidence and uplift have been small, about 2.5 centimetres per year.

In early December, however, the pattern at Norris changed as the GPS station (NRWY) located closest to the geyser basin suddenly began to record subsidence. Over the next 2-3 weeks, that station subsided by about 2 cm. By the end of December, the subsidence had stopped, and uplift resumed.

This is not the first time a sudden change in deformation has occurred at Norris. In late 2013, the area began uplifting rapidly, accumulating 5 cm at the NRWY GPS station after just a few months. The uplift abruptly switched to subsidence on about March 30th, 2014, the same day of a M 4.8 earthquake in the area, the largest earthquake to have occurred in Yellowstone since 1980. By the end of 2014, the subsidence had returned Norris to its previous levels. Scientists believe that the sudden episode of uplift was caused by accumulation of hydrothermal fluids beneath the region, and that the earthquake represented the rupturing of a blockage. After the rupture, the fluids were able to drain from the system, and the surface subsided.

It is possible that the December 2017 subsidence represents a similar process. The uplift could be caused by hydrothermal fluids accumulating behind a blockage in the subsurface. This blockage was breached and allowed some fluids to drain, resulting in the subsidence, but then reestablished itself by the end of the month, and uplift resumed. Unlike the 2014 episode, however, there were no significant earthquakes in the Norris area at the time of the change in deformation.

Despite the recent « hiccup » at Norris, overall deformation of the caldera did not change. GPS data show that subsidence there continued at the same rates as have been measured since 2015. And the activity is not a signal of a potential eruption, but rather reflects the dynamic and ever-changing nature of Yellowstone’s hydrothermal system.

Source : Yellowstone Volcano Observatory.

Plan de visite du Norris Geyser Basin (Source: National Park Service)

Photos: C. Grandpey

Dernières nouvelles du Mt Agung (Bali / Indonésie) // Mt Agung (Bali / Indonesia) : Latest news

Le dernier bulletin diffusé par le VSI le 1er décembre donne des informations intéressantes sur l’activité de l’Agung mais il ne ressort rien de vraiment alarmant. Il faut toutefois se montrer très prudent car sur un volcan de ce type, la situation peut évoluer très rapidement.

S’agissant des émissions au niveau du cratère, le VSI confirme les observations faites via la webcam. A noter que depuis le 30 septembre, les émissions de cendre semblent avoir été remplacées par un panache essentiellement composé de vapeur.

Suite aux intempéries récentes, des lahars sont apparus sur les pentes sud et nord de l’Agung. Il n’y a pas de victimes, mais des maisons des routes et des rizières ont subi des dégâts

Les mesures GPS ne montrent pas d’inflation significative de l’édifice volcanique, contrairement à ce qui avait été observé avant le début de l’éruption.

L’analyse des matériaux émis confirme que la première phase de l’éruption (21 novembre 2017) était d’origine phréatique. Présence de magma juvénile.

Les données satellitaires montraient régulièrement une anomalie thermique les 27, 28 et 29 novembre 2017 avec des températures comprises entre 286,6 et 298,8 +/- 6 degrés Celsius et une puissance maximale de 97 mégawatts. Les données satellitaires indiquent également que des éruptions effusives se produisent encore dans le cratère. Cela explique donc la lueur qui vient se refléter sur le panache la nuit.
Cette éruption effusive a des implications sur le volume de lave dans le cratère. Il est estimé à environ 20 millions de mètres cubes, soit un tiers du volume total du cratère. [NDLR : Il semble donc qu’en l’état actuel des choses on soit encore loin de la formation d’un dôme volumineux susceptible de déborder du cratère et de s’effondrer en déclenchant des coulées pyroclastiques. Toutefois, comme je l’indiquais précédemment, il faut rester prudent car une ascension rapide de magma peut toujours intervenir. Les sismos devraient toutefois avertir d’une telle éventualité]

Le VSI conclut son rapport en rappelant que l’activité de l’Agung reste élevée, ce qui justifie le maintien du niveau d’alerte maximum (4 – AWAS) et l’expansion de la zone de sécurité au nord-est et au sud-est-sud-sud-ouest jusqu’à 10 km du cratère du Mont Agung.

Source : VSI.

————————————-

The last report released by VSI on 1 December gives interesting information on the activity of Mt Agung but there is nothing really alarming. However, it is necessary to be very careful because the situation can evolve very quickly on a volcano of this type.
Regarding the crater emissions, VSI confirms observations made via the webcam. It can be noted that since September 30th, ash emissions seem to have been replaced by a plume mainly composed of water vapour.
Following recent storms, lahars have appeared on the south and north slopes of Mt Agung. There are no casualties, but road houses and rice fields have been damaged
GPS measurements do not show any significant inflation of the volcanic edifice, contrary to what was observed before the start of the eruption.
The analysis of the materials emitted confirms that the first phase of the eruption (21 November 2017) was phreatic. Presence of juvenile magma.
Satellite data regularly showed a thermal anomaly on November 27th, 28th and 29th, 2017 with temperatures between 286.6 and 298.8 +/- 6 degrees Celsius and a maximum power of 97 megawatts. Satellite data also indicate that effusive eruptions still occur in the crater. This explains the glow that reflects on the plume at night.
This effusive eruption has implications for the volume of lava in the crater. It is estimated at about 20 million cubic meters, a third of the total volume of the crater. [Editor’s note: It seems that in the current situation we are still far from the formation of a large dome likely to overflow the crater and collapse, triggering pyroclastic flows. However, as I indicated previously, one must remain cautious because a rapid ascent of magma is always possible. Seismos should however warn of such an eventuality]
VSI concludes its report reminding its readers that Mt Agung’s activity remains high, which justifies the maintenance of the maximum alert level (4 – AWAS) and the expansion of the security zone to the north-east and south East-South-South-West up to 10 km from Mount Agung’s crater.
Source: VSI.

Webcam VSI