Le Veniaminof, l’un des volcans qui se dressent sur la péninsule d’Alaska, présente une longue histoire d’éruptions qui se produisent avec peu ou pas de signes précurseurs détectables. Malgré la présence de huit stations sismiques permanentes et d’une surveillance satellite par radar à synthèse d’ouverture interférométrique (InSAR), la plupart des éruptions depuis 1993 se sont produites sans véritables signes précurseurs. Sur les 13 dernières éruptions, seules deux ont été précédées de signes avant-coureurs détectables. Ce schéma éruptif a incité les chercheurs à examiner le système magmatique sous-jacent du Veniaminof et à étudier le comportement des volcans avant leur éruption.

Vue du Veniaminof (Crédit photo : USGS)
Des chercheurs de deux universités de l’Illinois ont cherché à déterminer si un système magmatique fermé pouvait entrer en éruption sans déclencher d’activité sismique ni de mouvements de terrain notables.
Dans les systèmes volcaniques ouverts, comme le Mauna Loa, le magma et les gaz se déplacent librement vers la surface, ce qui génère parfois peu de signaux avant-coureurs clairs. En revanche, les systèmes fermés, comme les Champs Phlégréens, accumulent généralement de la pression, ce qui peut provoquer un soulèvement du sol et une hausse de la sismicité avant une éruption. Pour comprendre comment des éruptions peuvent se produire sans ces signaux, les chercheurs ont construit des modèles thermomécaniques avec lesquels ils ont testé l’interaction des changements de forme, de taille, de profondeur et de débit de la chambre magmatique avec les propriétés physiques de la roche environnante.
L’équipe scientifique a créé des modèles intégrant le comportement de la roche, dépendant et indépendant de la température. Ils ont simulé le déplacement du magma depuis des sources profondes, à plus de 13 km de profondeur, vers des chambres magmatiques moins profondes, avec diverses géométries.
Pour tester le réalisme de ces modèles, ils ont comparé les résultats aux données InSAR et sismiques de l’éruption de Veniaminof de 2018. L’éruption de 2018 est intéressante car elle n’a montré aucun mouvement de terrain significatif ni aucune activité sismique préalable, ce qui en fait un bon exemple d’éruption ‘silencieuse’, autrement dit sans signes précurseurs.
La principale conclusion est que certains systèmes magmatiques peuvent entrer en éruption sans produire de signaux d’alerte détectables. Plus précisément, les systèmes disposant de petites chambres magmatiques profondes, avec de faibles apports de magma et une roche environnante ramollie par la chaleur peuvent produire des éruptions avec une déformation minimale du sol (moins de 10 mm) et une sismicité faible, voire nulle. Cette dernière est en général liée à la rupture de la roche par cisaillement.
Cependant, les scientifiques ont remarqué que certaines roches continuent à se fracturer suite à des contraintes trop intenses, ce qui est suffisant pour permettre au magma de remonter vers la surface et provoquer une éruption. Dans les modèles où le comportement de la roche évolue avec la température, un flux de magma plus important est nécessaire pour déclencher cette rupture, mais même dans ce cas, les signaux de surface restent faibles.
L’analyse InSAR de 2015 à 2018 n’a révélé aucun schéma cohérent de soulèvement ou d’affaissement du sol autour du Veniaminof, ce qui corrobore les résultats de la modélisation. Même lors de l’éruption de 2018, les signaux de déplacement étaient difficilement détectables et probablement masqués par des interférences atmosphériques ou par le glacier qui recouvre le sommet. Ces facteurs compliquent la détection de signes subtils d’inflation volcanique et étayent la conclusion selon laquelle le Veniaminof peut produire des éruptions avec peu ou pas de signes précurseurs en surface.
References:
Stealthy magma system behavior at Veniaminof Volcano, Alaska – Yuyu Li, Patricia M. Gregg, et al. – Frontiers in Earth Science – June 10, 2025 – DOI https://doi.org/10.3389/feart.2025.1535083 – OPEN ACCESS
———————————————–
Veniaminof volcano on the Alaska Peninsula has a long record of eruptions that occur with little or no detectable warning. Despite the presence of eight permanent seismic stations and satellite monitoring using Interferometric Synthetic Aperture Radar (InSAR), most eruptions since 1993 have taken place without clear precursory signals. Of the last 13 eruptions, only two were preceded by detectable warning signs. This pattern prompted researchers to examine the underlying magma system at Veniaminof and investigate how volcanoes behave prior to eruption.
Researchers from two Illinois universities set out to test whether a sealed magma system could erupt without triggering any noticeable seismic activity or ground movement.
In open volcanic systems, such as Mauna Loa, magma and gases move more freely toward the surface, sometimes resulting in fewer clear warning signals. In contrast, closed systems, such as Campi Flegrei, typically accumulate pressure, which can cause ground uplift and increased seismicity before an eruption.
To figure out how eruptions might happen without these signals, the researchers built detailed thermomechanical models. They tested how changes in magma chamber shape, size, depth, and magma supply rate interact with the surrounding rock’s physical properties.
The scientific team created models incorporating both temperature-dependent and temperature-independent rock behavior. They simulated magma transport from deep sources, more than 13 km below the surface, into shallower magma chambers with varying geometries.
To test how realistic these models were, they compared the results with InSAR and seismic data from Veniaminof’s 2018 eruption. The 2018 eruption is valuable because it showed no obvious ground movement or any preceding seismic activity, making it a good example of a quiet eruption.
The main finding is that certain magma systems can erupt without producing detectable warning signals. Specifically, systems characterized by small, deep magma chambers, low magma supply rates, and heat-softened surrounding rock can produce eruptions with minimal ground deformation (less than 10 mm and little to no seismicity related to shear failure, which typically causes earthquakes.
However, some rock still fractured through tensile failure, which was enough to allow magma to rise and cause an eruption. In models where the rock’s behavior changed with temperature, a higher magma flux was needed to trigger this failure, but even then the surface signals remained weak.
InSAR analysis from 2015 to 2018 revealed no consistent uplift or subsidence patterns around the volcano, supporting the modeling results. Even during the 2018 eruption, displacement signals were ambiguous and likely masked by atmospheric interference or the glacier covering the summit. These factors complicate the detection of subtle signs of volcanic inflation and support the conclusion that Veniaminof can produce eruptions with little or no surface warning.
References:
Stealthy magma system behavior at Veniaminof Volcano, Alaska – Yuyu Li, Patricia M. Gregg, et al. – Frontiers in Earth Science – June 10, 2025 – DOI https://doi.org/10.3389/feart.2025.1535083 – OPEN ACCESS





