Etna (Sicile) : 60 millions de mètres cubes de lave émis en 4 mois ! // Mt Etna (Sicily) : 60 million cubic metres of lava emitted in 4 months !

Un article publié dans le journal La Sicilia nous apprend qu’en quatre mois, l’Etna a vomi 60 millions de mètres cubes de lave. C’est ce que l’on peut lire dans une étude de l’Institut National de Géophysique et de Volcanologie (INGV) couvrant la période entre décembre 2020 et mars 2021. L’étude, intitulée Magma Migration at Shallower Levels and Lava Fountains Sequence as Revealed by Borehole Dilatometers on Etna Volcano a été publiée dans la revue ‘Frontiers in Earth Sciences’.
Le très important volume de lave a essentiellement été émis par de puissantes fontaines. Si l’on observe le volume de matériaux volcaniques accumulé au fil du temps et celui émis au cours des quatre mois, on se rend compte que les fontaines de lave représentent pour le volcan un moyen très efficace d’émission de lave qui est susceptible de se substituer aux traditionnelles coulées de lave, souvent plus dangereuses sur ses flancs.
Selon les scientifiques de l’Institut, la détection de micro déformations de l’édifice volcanique a permis d’identifier des signaux précurseurs annonçant le déclenchement d’une séquence éruptive. On peut lire dans l’étude que « dans les volcans à conduits ouverts tels que l’Etna, un défi important est de détecter et d’interpréter les moindres variations d’énergie associées à des événements mineurs mais critiques tels que les fontaines de lave. Cet objectif peut être atteint grâce à des enregistrements extrêmement précis de déformations induites à l’intérieur de l’édifice volcanique. Ces déformations peuvent être également détectées à des distances de plusieurs kilomètres de la zone du cratère par des dilatomètres installés dans des forages de plusieurs centaines de mètres de profondeur. Au cours des quatre mois pris en compte, le réseau de dilatomètres INGV installé sur l’Etna a été en mesure d’enregistrer des variations précises. En particulier, des micro variations observées en relation avec les essaims sismiques survenus en décembre 2020 ont permis de mettre en évidence la migration du magma vers la surface juste avant le début de la séquence éruptive »

———————————————-

An article published in the newspaper La Sicilia informs us that in four months, Mt Etna has vomited 60 million cubic meters of lava. This can be read in a study by the National Institute of Geophysics and Volcanology (INGV) covering the period between December 2020 and March 2021. The study, entitled Magma Migration at Shallower Levels and Lava Fountains Sequence as Revealed by Borehole Dilatometers on Etna Volcano has been published in the journal ‘Frontiers in Earth Sciences’.
The very large volume of lava was mainly emitted through powerful fountains. If we observe the volume of volcanic material accumulated over time and the one emitted during the four months, we realize that the lava fountains represent for the volcano a very efficient means of lava emission which may replace the traditional lava flows, often more dangerous on its flanks
According to scientists at the Institute, the detection of micro deformations of the volcanic edifice made it possible to identify precursor signals announcing the triggering of an eruptive sequence. One can read in the study that « in open duct volcanoes such as Mt Etna, an important challenge is to detect and interpret the slightest variations in energy associated with minor but critical events such as lava fountains. This objective can be achieved thanks to extremely precise recordings of deformations induced inside the volcanic edifice. These deformations can also be detected at distances of several kilometers from the crater area by dilatometers installed in boreholes several hundred meters deep. During the four months taken into account, the network of INGV dilatometers installed on Mt Etna was able to record precise variations. In particular, micro variations observed in relation to the seismic swarms that occurred in December 2020 made it possible to highlight the migration of magma towards the surface just before the start of the eruptive sequence « 

 

Fontaine de lave vue par la caméra thermique de l’INGV

Volcans : on sait observer, constater, mais on ne sait pas prévoir !

Les derniers événements à Hawaii, en Islande, à La Palma et sur l’île de Vulcano confirment notre incapacité à prévoir les éruptions volcaniques. Certes, les nombreux instruments installés sur les volcans signalent des anomalies dans les profondeurs de la Terre, mais la suite est beaucoup plus difficile à prévoir. Lorsque la situation semble devenir une menace pour les populations, on applique le principe de précautions et on évacue les zones potentiellement exposées aux coulées de lave, comme cela vient de se produire à La Palma.

A Hawaii, le Kilauea est truffé d’instruments. Pourtant, la dernière éruption a surpris le personnel de l’observatoire, le HVO. Il suffit de lire le rapport de la veille du réveil du volcan. On peut lire le 28 septembre 2021 que « le volcan Kilauea n’est pas en éruption. Suite à la récente intrusion de magma sous la surface dans la zone au sud de la caldeira de Kilauea, qui a considérablement ralenti le 30 août, les niveaux de sismicité et de déformation du sol dans cette zone sont restés proches de ceux qui ont précédé l’intrusion. D’autres données de surveillance, comme les émissions de dioxyde de soufre et les images des webcams, ne montrent aucun changement significatif. […] Ces observations suggèrent que l’apport de nouveau magma à l’intrusion s’est arrêté. » Le 29 septembre 2021, les géologues du HVO ont aperçu « une lueur dans les images de la webcam du sommet du Kilauea indiquant qu’une éruption avait commencé dans le cratère de l’Halema’uma’u. » Les images de la webcam montraient des fissures à la base du cratère, avec des coulées de lave à la surface du lac de lave qui était actif jusqu’en mai 2021. C’est un peu comme s’ils avaient découvert l’éruption en ouvrant la fenêtre de l’observatoire!
C’est ce qu’on appelle une prévision ratée.

Crédit photo: HVO

°°°°°°°°°°

En Islande, cela fait plus de trois semaines que la lave a cessé de s »écouler du Fagradalsfjall et personne n’est capable de dire si l’éruption est réellement terminée. Lorsque la lave a cessé de s’échapper du cratère principal, les sismomètres ont détecté l’apparition d;’événements dans la région de la montagne Keilir, à quelques kilomètres du Fagradalsfjall. S’agissait-il d’une migration du magma? D’une intrusion magmatique? Une nouvelle sortie de lava allait-elle avoir lieu? Impossible de le dire. Les images satellitaires n’ont détecté aucune inflation ou déformation du sol dans la région du Keilir susceptibles d’indiquer une remontée du magma vers la surface. On est donc dans l’attente. Wait and see, comme disent les Anglo-Saxons. Ces derniers jours on observe un déclin de la sismicité, mais là encore; la prévision volcanique est en berne. Par bonheur, aucune zone habitée ne serait vraiment menacée par la lave. C’est bien cela le but de la prévision volcanique: protéger les populations et éviter que des personnes se fassent tuer.

Calme plat sur le Fagradalsfjall (capture écran webcam)

°°°°°°°°°°°

S’agissant du Cumbre Vieja sur lîle canarienne de La Palma, les signes annonciateurs d’une éruption sont apparus en octobre 2017, soit quatre ans avant son déclenchement. Un essaim sismique avec des événements entre M 1,5 et M 2,7 avait débuté le 7 octobre de cette année-là sous le Cumbre Vieja, avec 68 événements enregistrés sous le volcan. Les autorités ont décidé d’intensifier la surveillance du volcan.

Nouvelle alerte sismique le 10 février 2018, avec des événements plus significatifs que ceux de l’essaim d’octobre 2017. Leur magnitude allait de M 1,6 à M 2,6. Diminution de la profondeur des séismes au cours de l’essaim, ce qui semblait indiquer une ascension du magma vers la surface.

L’éruption a finalement eu lieu le 19 septembre 2021, donc longtemps après la première alerte sismique. Elle a été précédée d’un un essaim sismique qui avait mis les autorités en alerte pour une éventuelle éruption volcanique.

Il s’agit d’une éruption strombolienne, semblables à celles que l’on observe sur l’Etna. Ce sont les coulées de lave qui représentent le principal danger car elles détruisent tout sur leur passage. le risque humain est très faible et la prévision volcanique a donc moins d’importance que sur des volcans comme le Mayon (Philippines) ou le Merapi (Indonésie).

Personne ne sait combien de temps durera l’éruption du Cumbre Vieja (capture écran webcam)

°°°°°°°°°°

On observe des signes d’agitation sur l’île éolienne de Vulcano (Sicile). Ces dernières semaines, les panaches fumerolliens dans le cratère de La Fossa se sont intensifiés. les instruments de mesure ont détecté des modifications des paramètres géophysiques et géochimiques et la température des gaz s’est accrue. Aux dernières nouvelles, elle atteignait 340°C. La dernière éruption de ce volcan remonte aux années 1890, donc très récemment d’un point de vue géologique.

Une alerte du même type que celle de 2021 a été observée dans les années 1990. On avait alors observé une forte hausse de la température des gaz, beaucoup plus importante que le pic actuel. L’alerte s’était produite au printemps, à la veille de la saison touristique. Il ne fallait donc pas se rater dans la prévision. A l’époque, certains paramètres comme la sismicité et la déformation du volcan n’avaient rien d’inquiétant. Aucune mesure particulière n’a été conseillé par l’équipe scientifique qui travaillait sur le volcan a cette époque. Par la suite, la température des gaz a baissé et La Fossa di Vulcano a retrouvé son aspect habituel. Un géochimiste de l’Institut des Fluides de Palerme m’avait expliqué qu’un diapir avait probablement provoqué la hausse des températures.

En 2021, la hausse d’activité a lieu en octobre. Il y aura donc peu de touristes à Vulcano dans les prochains mois. Si une crise éruptive devait se produire, l’évacuation de l’île serait relativement aisée.

Comme l’a fort bien dit le géologue Nieves Sánchez, chercheur à l’Institut géologique et minier d’Espagne, « la volcanologie n’est pas une science exacte. Il y a beaucoup de variables que nous ne contrôlons pas et d’autres que nous ne connaissons même pas. Nous en savons de plus en plus et avons de meilleurs instruments, mais même ainsi, il est souvent impossible de connaître le résultat. Nous faisons de la géologie d’urgence. »

Fumerolles à Vulcano (Photo: C. Grandpey)

Coulées de lave et zones de risques à Hawaii // Lava flows and threatened areas in Hawaii

Dans un article récent, les géologues de l’Observatoire des Volcans d’Hawaï (HVO) expliquent comment évaluer la menace posée par les coulées de lave. Selon eux, cette approche repose sur notre connaissance du passé. La probabilité à long terme qu’une zone soit envahie par la lave est évaluée de deux manières différentes en fonction de l’activité passée des coulées.
Une première approche utilise une carte géologique pour calculer quelle surface terrestre a été recouverte par la lave au cours de différentes périodes du passé.
Une autre approche calcule la fréquence à laquelle des coulées de lave se sont produites dans des zones spécifiques au fil du temps.
Ces deux approches sont utilisées par la plupart des observatoires volcanologiques dans le monde. Les cartes montrant les coulées de lave avec des couleurs différentes selon les années sont souvent très belles.
En ce qui concerne les volcans hawaïens, la carte de 1992 – Lava-Flow Hazard Zone (LFHZ) – utilise l’approche basée la couverture par la lave sur le long terme. On ne mesure pas la vitesse à laquelle une coulée de lave avance, mais la vitesse à laquelle une zone est recouverte par la lave de plusieurs éruptions au cours des siècles.
Les nouvelles éruptions n’affectent pas de manière significative cette couverture car leurs coulées recouvrent certaines coulées de lave récentes ainsi que d’autres plus anciennes. Par exemple, la lave de 2018 a coulé entre et sur des portions des coulées de lave de 1790, 1955 et 1960. Par conséquent, la surface de lave émise depuis 1790 n’a pas été forcément augmentée par l’ensemble des coulées de 2018, mais uniquement par la partie qui est allée au-delà des coulées antérieures.
La carte LFHZ de 1992 montre que les plus forts risques de couverture par la lave se trouvent dans les zones de rift et au sommet du Kilauea et du Mauna Loa. Près de la moitié de la LFHZ 1 (la zone la plus exposée) sur les deux volcans a été recouverte par la lave depuis l’année 1790.
L’autre approche pour estimer les risques des coulées de lave sur le long terme consiste à calculer la fréquence à laquelle une zone particulière est affectée. La Lower East Rift Zone (LERZ) du Kilauea a été envahie par la lave à cinq reprises depuis 1790 – en 1790, 1840, 1955, 1960 et 2018. Ces éruptions se sont produites sur une période de plus de 200 ans avec des intervalles d’une soixantaines d’années entre elles.
La méthode de l’intervalle de récurrence des coulées est la plus largement utilisée pour calculer les risques. Elle fait reposer en général les cartes à risques sur un intervalle de récurrence moyen de 100 ans entre les coulées les plus destructrices. En utilisant la formule de probabilité la plus simple, cet intervalle de récurrence se traduit par une probabilité de 1% de coulées destructrices sur une année et de 39 % sur une période de 50 ans. La probabilité qu’une coulée majeure se produise au cours d’un siècle n’est pas de 100% mais seulement de 63%, car l’intervalle de récurrence est une moyenne d’intervalles réels qui peuvent être très différents.
Dans l’application de cette méthode par le HVO aux coulées de lave du Kilauea, un intervalle de récurrence moyen d’environ 60 ans dans la LERZ signifie qu’il y a 63 % de chances que le prochain intervalle de récurrence sans lave soit de 60 ans ; c’est aussi la probabilité qu’une autre coulée de lave affecte une partie de la LERZ d’ici 60 ans. La probabilité d’une coulée de lave dans cette zone au cours d’une période de 30 ans serait de 40% et la probabilité d’envahissement de la zone par la lave serait de 26%. Heureusement, les zones les plus exposées dans la LERZ se limitent aux régions côtières.
Les calculs et les cartes des risques de coulée de lave produits par l’U.S. Geological Survey (USGS) sont destinés à informer les propriétaires fonciers, les services de sécurité et les planificateurs gouvernementaux des risques à long terme posés par les coulées de lave.
Source : USGS/HVO.

——————————————

In a recent article, geologists at the Hawaiian Volcano Observatory (HVO) explain how one can evaluate the threat posed by future lava flows. They say that this approach relies on our knowledge of the past. The long-term likelihood of an area being invaded by lava in the future, is estimated in two different ways based on the history of lava flow activity.

One approach uses a geologic map to calculate how much land surface was covered by lava during different periods going back into the past.

Another approach calculates how frequently lava flows have occurred within specific areas over time.

Both approaches are used by most volcanological observatoriess in the world. The maps showing the lava flows with diffrenet colours according to the years are often very beautiful.

As far as Hawaiian volcanoes are concerned, The 1992 Lava-Flow Hazard Zone (LFHZ) Map represents use of the approach based on long-term coverage rates. This is not a measure of how fast an individual lava flow advances but how fast an area is covered by lava from multiple eruptions over centuries.

New eruptions don’t affect coverage rates significantly because new flows cover some of the most recent lava as well as older flows. For example, 2018 lava flowed between and over parts of the 1790, 1955, and 1960 lava flows. Therefore the “coverage” or resurfacing since 1790 did not increase by the full area of the 2018 flow, just by the portion that was beyond those earlier flows.

The 1992 LFHZ map shows that the highest coverage rates (and therefore hazards) are within the rift zones and summits of Kīlauea and Mauna Loa volcanoes. Almost half of LFHZ 1 (the most hazardous zone) on both volcanoes was covered since the year 1790.

The other approach to estimating long-term lava flow hazards is to calculate how often a particular area is impacted by lava. The lower East Rift Zone (LERZ) of Kīlauea has been overrun by lava five times since 1790—in 1790, 1840, 1955, 1960, and 2018. Those eruptions occur over a span of more than 200 years with an average of about 60 years between them.

The recurrence interval method is most widely used for calculating flood hazards, traditionally basing hazard maps on an average recurrence interval of 100 years between damaging floods. By using the simplest formula for probability, that recurrence interval translates to a 1 percent chance of damaging floods happening in any one year and a 39 percent chance in any 50-year period. The probability of such a flood happening in any century is, surprisingly, not 100 percent but 63 percent because the recurrence interval is an average of actual intervals that may be quite different.

In the HVO application to lava flows, an average recurrence interval of about 60 years in the LERZ means that there is a 63 percent chance that the next lava-free recurrence interval will be 60 years; it is also the odds that another lava flow will affect some part of the LERZ within 60 years. The probability of a lava flow in this region during the period of 30 years would be 40 percent and the probability of flooding would be a 26 percent chance. Fortunately, the region of combined significant lava and flood hazards in the LERZ is limited to coastal flooding zones.

Lava flow hazard calculations and maps produced by the U.S. Geological Survey (USGS) are intended to inform property owners, emergency managers, and government planners of the long-term hazards posed by lava flows.

Source: USGS / HVO.

Carte de 1992 des zones de risques à Hawaii. Vous trouverez la carte avec une meilleure résolution en cliquant sur ce lien: https://pubs.usgs.gov/mf/1992/2193/mf2193.pdf

Des super éruptions sur la planète Mars? // Super eruptions on Mars?

Les « super éruptions » sont un phénomène bien connu en volcanologie. Certains volcans sur Terre comme le Toba (Indonésie) ou le Taupo (Nouvelle Zélande) se sont manifestés de cette manière très violente. Ces volcans peuvent produire des éruptions si puissantes qu’elles libèrent d’énormes nuages de poussière et de gaz toxiques dans l’atmosphère. Ils bloquent la lumière du soleil et modifient le climat d’une planète pendant des décennies. Les volcanologues parlent de « super éruption » lorsque les émissions de cendres et autres matériaux volcaniques atteignent au moins 1000 km3. C’est l’équivalent d’un indice 8 sur le VEI (Volcano Explosivity Index).

En étudiant la topographie et la composition minérale d’une partie de la région Arabia Terra dans le nord de la planète Mars, les scientifiques ont récemment trouvé des preuves de milliers de super éruptions.
En vomissant de la vapeur d’eau, du dioxyde de carbone et du dioxyde de soufre, ces explosions ont secoué la surface martienne sur une période de 500 millions d’années il y a environ 4 milliards d’années. Les scientifiques ont fait état de cette estimation dans un article publié dans la revue Geophysical Research Letters en juillet 2021.
Selon un géologue du Goddard Space Flight Center de la NASA, « chacune de ces éruptions a eu un impact climatique important. Le gaz ainsi libéré a peut-être épaissi l’atmosphère ou bloqué le Soleil, rendant l’atmosphère plus froide. »
Après avoir projeté de la roche en fusion et du gaz à la surface de Mars et répandu une épaisse couche de cendre jusqu’à des milliers de kilomètres du site de l’éruption, le volcan qui fut le siège d’une super éruption s’est effondré et a formé une caldeira géante. Sept caldeiras identifiées surArabia Terra ont été les premières indications que la région a pu accueilli des volcans capables de super éruptions.
Autrefois considérés comme des dépressions laissées par les impacts d’astéroïdes sur la surface martienne il y a des milliards d’années, les scientifiques ont suggéré en 2013 que ces bassins pouvaient être des caldeiras volcaniques. Ils ont remarqué qu’ils n’étaient pas parfaitement ronds comme des cratères et qu’ils présentaient des signes d’effondrement.
L’analyse des scientifiques faisait suite aux travaux d’autres chercheurs qui avaient suggéré que les minéraux à la surface d’Arabia Terra étaient d’origine volcanique. Un autre groupe de recherche, après avoir appris que les bassins d’Arabia Terra pourraient être des caldeiras, avait calculé dans quels secteurs les cendres provenant d’éventuelles super éruptions se seraient déposées. En se déplaçant sous le vent, vers l’est, leur couche allait forcément s’amoindrir loin du centre éruptif, ou ce qu’il en reste, autrement dit la caldeira.
L’équipe scientifique a utilisé des images du spectromètre imageur compact du Mars Reconnaissance Orbiter (MRO) pour identifier les minéraux à la surface de la planète. En observant les parois des canyons et des cratères à des centaines voire des milliers de kilomètres des caldeiras, là où les cendres auraient été transportées par le vent, les chercheurs ont identifié des minéraux volcaniques transformés en argile par l’eau, notamment la montmorillonite, l’imogolite et l’allophane. Ensuite, à l’aide d’images fournies par les caméras du MRO, l’équipe scientifique a réalisé des cartes topographiques en trois dimensions d’Arabia Terra. En superposant les données minérales sur les cartes topographiques des canyons et des cratères analysés, les chercheurs ont pu constater dans les gisements riches en minéraux que les couches de cendres étaient très bien conservées.

Les scientifiques qui avaient identifié les caldeiras en 2013 ont également calculé la quantité de matière qui aurait été émise par les volcans, en fonction du volume de chaque caldeira. Ces informations ont permis de calculer le nombre d’éruptions nécessaires pour produire l’épaisseur de cendres découvertes. Il s’est avéré qu’il y a eu des milliers d’éruptions.
Une question reste sans réponse: Comment une planète peut-elle avoir un seul type de volcan dans une région. Sur Terre, des volcans capables de super éruptions sont dispersés dans le monde entier et cohabitent avec d’autres types de volcans. Mars possède également de nombreux autres types de volcans, dont Olympus Mons, le plus grand volcan du système solaire. Olympus Mons est 100 fois plus grand en volume que le plus grand volcan sur Terre, le Mauna Loa à Hawaï. Arabia Terra est, jusqu’à présent, la seule région de Mars possédant des volcans explosifs.
Il est possible que les volcans super-éruptifs aient été concentrés dans certaines régions de la Terre mais aient été érodés physiquement et chimiquement ou se soient déplacés sur le globe à mesure que les continents se sont déplacés avec la tectonique des plaques. Il se peut que ces types de volcans explosifs existent également dans les régions de la lune Io de Jupiter ou ont pu avoir été regroupés sur Vénus. Quoi qu’il en soit, les chercheurs espèrent qu’Arabia Terra enseignera aux scientifiques quelque chose de nouveau sur les processus géologiques qui aident à façonner les planètes et les lunes.
Source : NASA.

——————————————

Some volcanoes can produce eruptions so powerful they release oceans of dust and toxic gases into the air, blocking out sunlight and changing a planet’s climate for decades. By studying the topography and mineral composition of a portion of the Arabia Terra region in northern Mars, scientists recently found evidence for thousands of super eruptions which are the most violent volcanic explosions known.

Spewing water vapour, carbon dioxide, and sulfur dioxide into the air, these explosions tore through the Martian surface over a 500-million-year period about 4 billion years ago. Scientists reported this estimate in a paper published in the journal Geophysical Research Letters in July 2021.

According to a geologist at NASA’s Goddard Space Flight Center, “each one of these eruptions had a significant climate impact. Maybe the released gas made the atmosphere thicker or blocked the Sun and made the atmosphere colder.”

After blasting molten rock and gas through the surface and spreading a thick blanket of ash up to thousands of kilometres from the eruption site, a volcano of this magnitude collapses into a giant caldera. Seven calderas in Arabia Terra were the first indications that the region may once have hosted volcanoes capable of super eruptions.

Once thought to be depressions left by asteroid impacts to the Martian surface billions of years ago, scientists first proposed in a 2013 study that these basins were volcanic calderas. They noticed that they were not perfectly round like craters, and they had some signs of collapse.

The scientists’ analysis followed up on the work of other scientists who earlier suggested that the minerals on the surface of Arabia Terra were volcanic in origin. Another research group, upon learning that the Arabia Terra basins could be calderas, had calculated where ash from possible super eruptions in that region would have settled: travelling downwind, to the East, it would thin out away from the center of the volcanoes, or what is left of them: the calderas.

The scientific team used images from the Mars Reconnaissance Orbiter (MRO)’s Compact Imaging Spectrometer to identify the minerals in the surface. Looking in the walls of canyons and craters from hundreds to thousands of kilometres from the calderas, where the ash would have been carried by wind, they identified volcanic minerals turned to clay by water, including montmorillonite, imogolite, and allophane. Then, using images from MRO cameras, the team made three-dimensional topographic maps of Arabia Terra. By laying the mineral data over the topographic maps of the canyons and craters analyzed, the researchers could see in the mineral-rich deposits that the layers of ash were very well preserved.

The same scientists who originally identified the calderas in 2013 also calculated how much material would have exploded from the volcanoes, based on the volume of each caldera. This information allowed to calculate the number of eruptions needed to produce the thickness of ash they found. It turned out there were thousands of eruptions.

One remaining question is how a planet can have only one type of volcano littering a region. On Earth volcanoes capable of super eruptions are dispersed around the globe and exist in the same areas as other volcano types. Mars, too, has many other types of volcanoes, including Olympus Mons, the biggest volcano in the solar system. Olympus Mons is 100 times larger by volume than Earth’s largest volcano of Mauna Loa in Hawaii.. Arabia Terra so far has the only evidence of explosive volcanoes on Mars.

It is possible that super-eruptive volcanoes were concentrated in regions on Earth but have been eroded physically and chemically or moved around the globe as continents shifted due to plate tectonics. These types of explosive volcanoes also could exist in regions of Jupiter’s moon Io or could have been clustered on Venus. Whatever the case may be, the researchers hope Arabia Terra will teach scientists something new about geological processes that help shape planets and moons.

Source: NASA.

Olympus Mons (Source: NASA)