Des été plus longs ? Pas forcément une bonne nouvelle ! // Longer summers? Not necessarily good news!

La plupart des gens apprécient l’été pour ses journées chaudes et ensoleillées. Ils seront ravis de lire une étude publiée par une équipe internationale de chercheurs en novembre 2025 dans la revue Nature Communications. Ses auteurs nous informent que le réchauffement climatique, principalement dû aux activités humaines telles que la combustion des énergies fossiles, pourrait allonger les étés en Europe de 42 jours d’ici 2100. La raison ? Le gradient de température latitudinal (GTL), ou différence de température entre le pôle Nord et l’équateur, est actuellement en baisse. Un GTL élevé influence les régimes de vents à travers l’océan Atlantique, ce qui entraîne des variations de température saisonnières en Europe. Avec un GTL plus faible, les conditions météorologiques estivales et les vagues de chaleur dureront plus longtemps sur le vieux continent. Les chercheurs expliquent que ce phénomène n’est pas nouveau ; il fait partie du système climatique terrestre. Cependant, ce qui change aujourd’hui, c’est la vitesse et l’intensité de ce changement.
Pour étudier l’histoire climatique de la Terre en Europe, les chercheurs ont analysé les couches de sédiments au fond des lacs. Déposés de façon saisonnière, ces sédiments dressent un tableau précis des hivers et des étés jusqu’à il y a 10 000 ans. Il y a environ 6 000 ans, les étés en Europe duraient environ huit mois en raison des fluctuations naturelles du gradient thermique intertropical (GTI). Mais aujourd’hui, l’Arctique se réchauffe jusqu’à quatre fois plus vite que la moyenne mondiale, notamment à cause des émissions de gaz à effet de serre. L’étude montre, en prenant en compte des simulations climatiques du passé, qu’une baisse de 1 °C du gradient thermique entre l’équateur et le pôle Nord pourrait allonger l’été d’environ six jours. En extrapolant avec les projections climatiques actuelles, on s’aperçoit que l’Europe bénéficiera de 42 jours d’été supplémentaires d’ici 2100.
Un tel contexte climatique pourrait remodeler le rythme saisonnier en Europe, ce qui pourrait avoir de profondes conséquences sur les écosystèmes, les ressources en eau, l’agriculture et la santé publique. Un tel bouleversement pourrait transformer une grande partie de l’environnement et de l’économie européens. L’allongement des saisons pourrait profiter à certaines cultures et aux régions septentrionales, mais les vagues de chaleur extrêmes et les pénuries d’eau pourraient rapidement annuler ces avantages. Les écosystèmes adaptés à des conditions plus fraîches et plus humides pourraient être fragilisés, et les risques d’incendies de forêt, de sécheresses et de crises sanitaires liées à la chaleur augmenteraient inévitablement.
Pour les scientifiques à l’origine de cette étude, les archives lacustres anciennes représentent bien plus qu’une simple fenêtre sur le passé. Elles montrent que le climat terrestre a toujours réagi aux variations atmosphériques, mais qu’aujourd’hui, nous repoussons ces limites vers des extrêmes et nous nous dirigeons vers un avenir imprévisible et incertain.
Les conclusions de cette nouvelle étude soulignent à quel point le climat européen est étroitement lié à la dynamique climatique mondiale et comment la compréhension du passé peut nous aider à relever les défis d’une planète en pleine mutation.
Source : Université de Turku (Finlande).

Le réchauffement rapide de l’Arctique, avec le dégel du permafrost, aura de profondes répercussions sur le climat de la Terre (Photo : C. Grandpey)

———————————————

Most people summer with its hot and sunny days. They swill be all the happier if they read a study published by an international team of researchers in November 2025 in the journal Nature Communications. Its authors inform us that global warming, primarily driven by human activities like the burning of fossil fuels, could lengthen summers in Europe by 42 days by the year 2100.

The reason is that the « latitudinal temperature gradient » (LTG), or the temperature difference between the North Pole and the equator, is currently decreasing. A higher LTG drives wind patterns across the Atlantic Ocean, bringing about seasonal temperature changes in Europe. With a lower LTG, summer weather patterns and heat waves will last longer across the continent. The researchers explain that the phenomenon is not new; it is a recurring feature of Earth’s climate system. However, what is different today is the speed, cause and intensity of the change.

To study Earth’s climate history in Europe, researchers analyzed layers of mud at the bottom of lakes. Deposited seasonally, these sediments paint a clear timeline of winters and summers as far back as 10,000 years ago. Around 6,000 years ago, European summers were about eight months long due to natural fluctuations in the LTG. But now, the Arctic is warming up to four times faster than the global average, in part due to greenhouse gas emissions. The study shows, through comparison with climate simulations of the past, that a 1°C decrease in the temperature gradient between the equator and the North Pole could lengthen summer by about six days. Thus, according to current climate projections, Europe will have 42 extra days of summer by 2100.

On top of that, changes in industrial aerosol emissions and internal feedback loops of the Earth’s climate system could also contribute to reshaping Europe’s seasonal rhythm in ways that scientists say could have profound consequences for ecosystems, water resources, agriculture, and public health.

Such a shift could transform much of Europe’s environment and economy. Longer growing seasons might initially benefit some crops and northern regions, but extreme heat and water shortages could quickly outweigh those gains. Ecosystems adapted to cooler, wetter conditions may struggle, and the risks of wildfires, droughts, and heat-related health crises are expected to rise.

For the scientists behind the study, the ancient lake record is more than just a window into the past. It shows that Earth’s climate has always responded to shifts in the atmosphere, but today, we are pushing those boundaries faster toward a more unpredictable future.

The findings of the news research underscore how deeply connected Europe’s weather is to global climate dynamics and how understanding the past can help us navigate the challenges of a rapidly changing planet.

Source :  University of Turku (Finland).

Poussière cosmique et réchauffement climatique dans l’Arctique // Cosmic dust and global warming in the Arctic

Selon la définition, la poussière cosmique – également appelée poussière extraterrestre ou interplanétaire, poussière spatiale ou poussière d’étoiles – est une poussière présente dans l’espace ou qui s’est déposée sur Terre. La plupart des particules de poussière cosmique mesurent entre quelques molécules et 0,1 mm (100 µm), comme les micrométéorites (< 30 µm) et les météoroïdes (> 30 µm). Des particules de poussière interstellaire ont été collectées par la sonde Stardust et des échantillons ont été rapportés sur Terre en 2006.
La poussière interplanétaire enrichie en hélium-3 qui s’est déposée sur les fonds marins a fourni aux climatologues un témoignage historique indispensable de l’évolution de la banquise. Grâce à cette poussière, les scientifiques espèrent pouvoir comprendre comment l’Arctique réagira à l’aggravation de la crise climatique.
La superficie de la banquise (aussi appelée glace de mer) de l’océan Arctique a diminué de plus de 42 % en raison de la hausse des températures depuis le début des observations satellitaires en 1979, et l’Arctique continue de se réchauffer plus rapidement qu’ailleurs sur Terre. D’ici quelques décennies, il se pourrait que l’océan Arctique soit libre de glace tout l’été. Outre la montée du niveau de la mer qui en résulterait, les scientifiques veulent mieux comprendre comment cette évolution de la banquise affecte l’habitabilité de l’Arctique et du reste du monde.

Photo: C. Grandpey

Les résultats de leurs travaux ont été publiés le 8 novembre 2025 dans la revue Science. On peut y lire : « Si nous parvenons à prévoir le calendrier et la répartition spatiale du recul de la banquise, cela nous aidera à comprendre le réchauffement climatique, à anticiper les changements des chaînes alimentaires et de la pêche, et à nous préparer aux bouleversements géopolitiques.»
Jusqu’à présent, il était difficile d’établir des prévisions précises concernant la banquise arctique, notamment en raison de l’absence de données historiques. La poussière cosmique pourrait combler ce vide. Lorsque l’océan Arctique est recouvert de glace, cette poussière ne peut atteindre le fond marin. Par contre, lorsque l’océan est dépourvu de glace, une plus grande quantité de poussière cosmique peut se déposer sous forme de sédiments. Les auteurs de l’étude ont recherché cette poussière dans des carottes sédimentaires prélevées à trois endroits de l’océan Arctique : près du pôle Nord où la glace est présente toute l’année ; près de la limite de la banquise en septembre, lorsque la couverture de glace est à son minimum annuel ; et sur un site qui était recouvert de glace en 1980, mais qui ne l’est plus.

Photo: C. Grandpey

Les scientifiques recherchaient en particulier des couches sédimentaires contenant les isotopes hélium-3 et thorium-230. Chacun a une origine différente. L’hélium-3 est présent dans la poussière cosmique, ayant été capturé par les grains de poussière du vent solaire, tandis que le thorium est un produit de désintégration de l’uranium naturel dissous dans l’océan. Lorsque la glace recouvre l’océan en grande quantité, le rapport thorium-230/hélium-3 devrait être plus élevé que lorsque la glace est moins épaisse et que davantage de poussière cosmique peut atteindre le fond marin.

Les carottes sédimentaires ont fourni un enregistrement historique retraçant les périodes où des quantités plus ou moins importantes de poussières cosmiques ont atteint le fond de l’océan, ce qui correspond à des variations de la couverture de glace de mer. Cette dernière a connu des fluctuations au fil des millénaires, et les carottes indiquent qu’au début de la dernière période glaciaire, il y a environ 20 000 ans, la quantité de poussières cosmiques sur les fonds marins a diminué car la glace recouvrait alors la totalité de l’Arctique durant toute l’année.

Lorsque la glace a commencé à fondre et à se retirer, marquant la fin de la dernière période glaciaire il y a 15 000 ans, les carottes sédimentaires révèlent une augmentation de la quantité de poussières cosmiques dans les sédiments du fond marin.
Le plus intéressant réside dans les informations que ces carottes nous fournissent sur les facteurs qui déterminent l’étendue de la banquise et sur la manière dont sa présence, ou son absence, influence l’équilibre des nutriments et, par conséquent, la biosphère océanique.

Photo: C. Grandpey

On pensait jusqu’alors que la fonte des glaces de l’océan Arctique était liée à la température de l’océan, mais les résultats de cette étude indiquent qu’elle est davantage influencée par les températures atmosphériques. Cette information est cruciale car l’océan réagit plus lentement aux changements climatiques que l’atmosphère. Si cela se confirme, la fonte des glaces de l’océan Arctique pourrait s’accélérer plus rapidement que prévu.
Les chercheurs ont également constaté une corrélation entre la couverture de glace et la vitesse à laquelle les nutriments océaniques sont consommés par les processus biologiques. Des coquilles minuscules, autrefois usées par des micro-organismes – les foraminifères – ont été retrouvées dans les carottes de sédiments. Une analyse chimique a révélé la part des nutriments disponibles consommée par ces micro-organismes à différentes périodes de leur vie. Les scientifiques ont établi une corrélation entre l’augmentation de la consommation de nutriments et la diminution de la banquise.
L’étude laisse encore certaines questions en suspens, notamment celle de savoir pourquoi la disponibilité des nutriments varie en fonction de la quantité de glace de mer. Une explication possible est que la diminution de la glace libère de l’espace à la surface de l’océan, favorisant ainsi le développement d’algues photosynthétiques qui produisent davantage de nutriments.
Source : space.com.

———————————————–

As the definition goes, cosmic dust – also called extraterrestrial or interplanetary dust, space dust, or star dust – is dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and 0.1 mm (100 μm), such as micrometeoroids (<30 μm) and meteoroids (>30 μm). Interstellar dust particles were collected by the Stardust spacecraft and samples were returned to Earth in 2006.

Interplanetary dust laced with helium-3 that has settled on the sea floor has provided climate scientists with an urgently needed historical record of sea ice. These scientists are battling with understanding how the Arctic will respond to the worsening climate crisis.

The amount of ice on the Arctic Ocean has depleted by more than 42% in response to rising temperatures since regular satellite monitoring began in 1979, and the Arctic continues to warm faster than anywhere else on Earth. In a few decades time we could see the Arctic Ocean free of ice all summer long. Besides the resultant rising sea levels, scientists want to learn more about how this change in sea ice affects the habitability of the Arctic and the wider world.

The results of their work were published on November 8 2025 in the journal Science. One can read : « If we can project the timing and spatial patterns of ice coverage decline in the future, it will help understand warming, predict changes to food webs and fishing, and prepare for geopolitical shifts. »

Until now, it has been difficult to make accurate predictions about the Arctic sea ice in part because there have been no historical records to base predictions on. I

The cosmic dust can fill this void. When the Arctic Ocean is covered in ice, the dust is prevented from reaching the sea floor. So when the ocean is largely absent of ice, more of the cosmic dust is able to settle as sediment.

The authors of the study went searching for this dust in sedimentary cores taken from three locations in the Arctic Ocean: one near the North Pole where there is ice present all year, one near the edge of the ice in September when ice coverage is at its annual lowest, and another at a site that was covered in ice in 1980, but no longer is. In particular, the researchers were looking for sedimentary layers of the isotopes helium-3 and thorium-230. Each has a different origin. Helium-3 is present in cosmic dust, having been captured by dust grains from the sun’s solar wind, whereas thorium is a decay product of naturally occurring uranium that has become dissolved in the ocean. At times of high ice abundance on the ocean, the ratio of thorium-230 to helium-3 should be higher than at times when there is less ice and more cosmic dust can reach the seabed.

The cores provided a historical record chronicling periods when greater and smaller amounts of cosmic dust have reached the bottom of the ocean, corresponding to differing amounts of sea ice. The ice has waxed and waned over millennia, and the cores indicate that the dawn of the most recent ice age, beginning about 20,000 years ago, saw a decrease in the amount of cosmic dust on the seabed as ice covered the entirety of the Arctic all year round.

When the ice began to melt and retreat as the ice age started to come to an end 15,000 years ago, the cores show that the amount of cosmic dust in the sediment on the sea floor began to increase.

What is most interesting is what the cores tell us about what governs the amount of sea ice and how its presence, or lack thereof, can influence the balance of nutrients and hence the biosphere of the ocean.

The assumption had been that the loss of ice from the Arctic Ocean was governed by the temperature of the ocean, but the results of the study indicate that it has more to do with atmospheric temperatures instead. This is a crucial piece of information because the ocean takes longer to respond to climate change than the atmosphere. If true, then we may lose sea ice in the Arctic Ocean more quickly than we expected.

The researchers also found that sea-ice coverage is correlated with how quickly nutrients in the ocean are consumed by biological processes. Tiny shells that were once worn by microbes called foraminifera were present in the cores, and a chemical analysis revealed how much of the total available nutrients they consumed when the microbes were alive at different points in the historical record. The scientists found a correlation between increased consumption of nutrients and a lack of sea ice.

The study still leaves some questions unanswered for now, such as why nutrient availability changes with the amount of sea ice present. One possible explanation is that with less ice, there is more room on the surface of the ocean for photosynthesizing algae that produce more nutrients.

Source : space.com.

COP30 : des données à prendre absolument en compte !

La COP30 de Belém au Brésil touche à sa fin. Elle avait débuté par une journée dédiée à l’information sur l’état du climat, baptisée Earth Information Day. Cette entrée en matière marque l’importance cruciale des données scientifiques dans un contexte où les signaux de basculement climatique se multiplient.

S’agissant des températures, entre janvier et août 2025, la température globale de la planète s’est élevée à 1,42°C au-dessus des niveaux préindustriels. Ce chiffre place l’année 2025 dans le trio des plus chaudes jamais enregistrées. Ces trois dernières années confirment une trajectoire inquiétante vers un réchauffement global incontrôlé.

Source : Copernicus

Le réchauffement climatique auquel nous assistons induit des bouleversements systémiques : fonte accélérée des glaciers, réchauffement sans précédent des océans, disparition massive des banquises. Voici quelques constatations alarmantes sur ces différents secteurs :.

Entre 2023 et 2024, les glaciers ont perdu en moyenne 1,3 mètre équivalent-eau. Ce recul généralisé affecte pour la troisième année consécutive l’ensemble des 19 régions glaciaires surveillées à l’échelle mondiale. Deux pays – le Venezuela et la Slovénie – ont vu la disparition complète de leurs glaciers.

Perte de glace des glaciers entre 1976 et2024 (Source : Copernicus)

Les océans atteignent des températures record. En 2024, le contenu thermique des océans – qui absorbent plus de 90 % de l’excès de chaleur dû aux gaz à effet de serre – a atteint son niveau le plus élevé. Cette accumulation de chaleur accentue l’intensité des tempêtes et cyclones comme on vient de le voir avec Mélissa, fragilise les écosystèmes marins, et modifie profondément les dynamiques climatiques à l’échelle planétaire.

Source : Copernicus

Au niveau des pôles on assiste à une disparition ultra-rapide de la banquise, aussi appelée glace de mer. L’Arctique et l’Antarctique enregistrent une extension annuelle de la banquise historiquement basse. Il ne s’agit plus de simples variations saisonnières, mais d’un effondrement structurel. La perte de ces surfaces glacées compromet les équilibres thermiques et atmosphériques des hautes latitudes. Moins de banquise signifie moins d’albedo pour renvoyer la lumière du soleil et plus de surfaces sombres pour l’absorber.

Source : Copernicus

Les phénomènes extrêmes deviennent la norme. Canicules, incendies, sécheresses, inondations et tempêtes ne sont plus des anomalies : ils deviennent le quotidien. Au Brésil, leur fréquence a bondi de 250 % en seulement quatre ans. En 2024, la sécheresse a dépassé tous les scénarios envisagés, même les plus pessimistes. L’ouragan Melissa a montré que les vents ont été amplifiés de 7 %, les précipitations horaires de 16 %, et les cumuls sur cinq jours ont augmenté de 20 à 50 %. C’est la preuve irréfutable que le réchauffement climatique exacerbe la violence des tempêtes.

 La situation climatique s’aggrave, mais les moyens de la contrôler sont sous pression. En tête, l’administration Trump fait tout son possible pour que le réchauffement climatique ne fasse pas partie de ses priorités. Des fonds et du personnel ont été retirés des principales agences climatiques comme la NOAA.

Face à ces transformations rapides, le Système mondial d’observation du climat (GCOS), coordonné par l’Organisation météorologique mondiale (OMM), tire la sonnette d’alarme. Depuis 33 ans, ce programme constitue le socle de la surveillance climatique globale, en lien avec les réseaux atmosphériques, océaniques, terrestres et cryosphériques. Mais le GCOS est aujourd’hui fragilisé par l’absence de financements pérennes. Or, ce système joue un rôle essentiel. En effet, il propose des indicateurs fiables, et fournit des données indispensables pour comprendre les évolutions en cours, anticiper les risques et lancer les alertes.

Ces données sont indispensables. En 2023, les nuages de basse altitude se sont réduits, ce qui a entraîné un réchauffement de 0.5°C supplémentaire cette année-là.

La détection des changements climatiques devient absolument vitale. Or le GCOS épuisera ses fonds en 2027 et a besoin de financements urgents. Par ailleurs, l’OMM tente de fournir des alertes précoces à toute la planète.

Dans ce contexte, renoncer à une surveillance rigoureuse, à des données indépendantes et à une capacité d’alerte fiable reviendrait à naviguer à l’aveugle dans une tempête !

Glaciers en péril (1ère partie)// Glaciers at risk (part 1)

Les glaciers du monde entier fondent à un rythme très inquiétant, et les conséquences ne se limitent pas à la montée du niveau des océans ; cela modifie aussi en temps réel les cartes et les paysages. Les glaciers ne sont pas de simples blocs de glace immobiles ; la réalité est tout autre : ce sont des rivières de glace extrêmement sensibles aux variations de température. Dans mon livre Glaciers en Péril (2018), j’avais déjà alerté sur la situation des glaciers et du pergélisol à travers le monde. Un article publié sur le site Bolde a sélectionné 14 glaciers en voie de disparition. Voici quelques observations personnelles à propos de certains d’entre eux que j’ai survolés ou visités

Glacier Jakobshavn, Groenland
Le glacier Jakobshavn recule extrêmement vite et contribue de manière significative à la montée du niveau de la mer. Selon une étude du National Snow and Ice Data Center (NSIDC), le Jakobshavn perd environ 35 milliards de tonnes de glace chaque année. Cette perte d’eau contribue largement à l’élévation du niveau des océans. Le recul du glacier est si important qu’il modifie les cartes. En survolant le Groenland en 2017, j’ai rapidement compris les conséquences d’une fonte massive de la calotte glaciaire et des glaciers de l’île. Ce serait une catastrophe de grande ampleur.
L’une des causes de la fonte du glacier est l’infiltration d’eau océanique plus chaude sous la langue de glace, ce qui érode sa base, déstabilise la calotte glaciaire et accélère le processus de fonte. Ce phénomène est également observé en Antarctique, comme le montre le schéma ci-dessous.

Photo: C. Grandpey

Source: BAS

++++++++++

Glacier Columbia, Alaska
En Alaska, j’ai visité le glacier Columbia à trois reprises et j’ai été impressionné à chaque fois par la rapidité de sa fonte. Elle est plus rapide que prévu. Situé dans la baie du Prince-William, ce glacier recule depuis les années 1980 et a perdu plus de la moitié de son épaisseur. Son recul modifie profondément le paysage et crée même de nouveaux chenaux dans le fjord, comme on peut le voir sur les images satellite de la NASA ci-dessous.
Ce qui rend le glacier Columbia particulièrement intéressant, c’est l’accélération de sa fonte durant les mois d’été. La hausse des températures entraîne une augmentation de la quantité d’eau de fonte, ce qui lubrifie la base du glacier et accélère son recul. Le glacier Columbia montre parfaitement que le réchauffement climatique n’est pas un problème futur ; c’est déjà une réalité.

Source: NASA

++++++++++

Mer de Glace, France
J’ai écrit plusieurs articles sur la Mer de Glace, le plus grand glacier de France, car il rétrécit à un rythme alarmant, comme le confirment les indicateurs de niveau le long de l’escalier qui descend vers la grotte creusée chaque année dans la glace. La Mer de Glace a perdu plus de 120 mètres d’épaisseur au cours du siècle dernier.
Le réchauffement climatique et la diminution des chutes de neige expliquent le recul du glacier. La zone d’accumulation n’est plus suffisamment alimentée. De plus, la fonte du glacier expose davantage de roche, qui absorbe la chaleur et accélère le processus de fonte.

Photos C & G Grandpey

La Mer de Glace vue par la webcam

++++++++++

Glacier Pasterze, Autriche
La route du Grossglockner menant au glacier Pasterze est l’une des plus belles d’Autriche. Le Pasterze est le plus grand glacier du pays. Je l’ai visité à deux reprises, dans les années 1980 et en 2020. Le changement du paysage y est à la fois spectaculaire et impressionnant. Le glacier a connu un recul considérable au cours des dernières décennies. Situé au pied du Grossglockner, le plus haut sommet d’Autriche, le Pasterze est une attraction touristique populaire. De ce fait, il permet de sensibiliser les visiteurs à l’accélération du réchauffement climatique. Des panneaux pédagogiques ont été installés sur la plateforme d’observation. Ils montrent où se trouvait le glacier par le passé.
Comme à la Mer de Glace, la hausse des températures et la diminution des chutes de neige expliquent le recul de Pasterze, la zone d’accumulation n’étant plus alimentée.

Photos: C. Grandpey

++++++++++

Glacier Athabasca, Canada
Dans les Rocheuses canadiennes, le glacier Athabasca est – ou plutôt était – l’un des glaciers les plus accessibles d’Amérique du Nord. C’est aussi l’un de ceux qui reculent le plus rapidement, perdant plus de 5 mètres de glace chaque année. L’Athabasca a perdu plus de la moitié de son volume au cours du siècle dernier. Les repères le long de la route d’accès témoignent de la rapidité de son recul ces dernières années. Lors de ma première visite en 2006, j’ai pu marcher directement sur la glace. En 2014, cela n’était plus possible, une rivière de fonte empêchant d’aller plus loin.

Photos: C. Grandpey

——————————————–

Glaciers around the globe are melting at an alarming rate, and it is not just causing sea levels to rise, it is actually changing the maps in real time and the landscapes too. Glaciers are not just massive, unmovable ice blocks ; the reality isdifferent : they are incredibly sensitive to temperature changes. In my book Glaciers en Péril (2018), I have already alerted to the situation of glaciers and the permafrost around the world. An article published on the website Bolde has chosen 14 glaciers that are disappearing. I have visited them and I am able to make some comments.

Jakobshavn Glacier, Greenland

Jakobshavn Glacier has been receding at an alarming pace, contributing significantly to global sea-level rise. According to a study by the National Snow and Ice Data Center (NSIDC), Jakobshavn has been losing around 35 billion tons of ice each year. This water has largely contributed to rising sea levels. The glacier’s retreat is so significant that it is altering maps. When I flew above Greenland in 2017, I quickly realised what would happen if the icecap and the glaciers on the island happened to melt. It would be a large-scale disaster.

One cause of the glacier’s melting is the warmer ocean water that is creeping underneath the glacier, eating away at its base. This makes the ice sheet unstable and speeds up the melting process.

++++++++++

Columbia Glacier, Alaska

In Alaska, I have visited the Columbia Glacier three times and each time I was impressed at the rapidity of its melting. It is faster than anyone anticipated. Located in Prince William Sound, this glacier has been retreating since the 1980s and has lost over half its thickness. As the glacier recedes, it leaves behind a drastically altered landscape and even opens up new channels in the fjord. This not only affects the local ecosystem but also has broader implications for sea-level rise.

What makes Columbia Glacier particularly interesting is how its melting accelerates during the summer months. Warmer temperatures lead to more meltwater, which in turn lubricates the glacier’s base and speeds up its retreat. The Columbia Glacier is a vivid indicator that global warming is not a future problem; it is happening now.

++++++++++

Mer de Glace, France

I have written several posts about Mer de Glace, France’s largest glacier because it is is shrinking at an alarming rate, as shown by the level indicators posted along the staircase that goes down to the ice cave. Mer de Glace has lost over 120 meters in thickness in the last century.

Warmer temperatures and reduced snowfall account for the glacier’s retreat. Moreover, as the glacier melts, it exposes more rock, which absorbs heat and accelerates the melting process.

++++++++++

Pasterze Glacier, Austria

The Grossglockner Road road leading to Pasterze Glacier is one of the most beautiful in Austria. Pasterze is the largest glacier of the country. I visited twice, in the 1980s and in 2020. The change in the landscape was both spectacular and impressive. The glacier has been retreating dramatically over the past several decades. Situated at the foot of the Grossglockner, Austria’s highest mountain, Pasterze is a popular tourist attraction. As such, it can alert visitors to the racceleration of global warming. The glacier’s retreat is so significant that it’s altering the maps of the area. Educational panels have been set up on the viewing platform that allows to see where the glacier was in the past.

Like at Mer de Glace, rising temperatures and less snowfall account for Pasterze’s retreat as the accumulation zone is no longer fed.

++++++++++

Athabasca Glacier, Canada

In the Canadian Rockies, Athabasca Glacier is one of the most accessible glaciers in North America. Iy is also one of the fastest-receding, losing more than 5 meters of ice each year. Athabasca has lost over half its volume in the last century. The landmarks along the access road show how fast the glacier has been retreating in the past years. When I fist visited it in 2006, one could walk directly on the ice. In 2014, this was no longer possible as a melt river prevented me from going any further.

Source : Bolde via Yahoo News.