Le risque volcanique en Alaska : les avions en première ligne // Volcanic risk in Alaska : planes on the front line

Chaque fois qu’une éruption se produit dans les îles Aléoutiennes (Alaska), l’Observatoire Volcanologique d’Alaska (AVO) adapte le niveau d’alerte volcanique et la couleur de l’alerte aérienne en fonction de l’activité volcanique. Les volcans des Aléoutiennes sont souvent situés sur des îles inhabitées ou peu peuplées, mais ils se trouvent sur la trajectoire des avions entre les États-Unis et l’Asie. L’émission d’un panache de cendres par l’un de ces volcans pourrait mettre les pilotes en difficulté, car les cendres peuvent endommager les moteurs des aéronefs et provoquer des catastrophes. Plusieurs d’entre elles ont été évitées de justesse par le passé. C’est pourquoi la surveillance des volcans est essentielle dans cette région du monde.
L’Alaska compte plus de 100 volcans, dont 54 sont considérés comme historiquement actifs. De plus, de nombreux volcans ne sont pas considérés historiquement actifs, mais sont susceptibles d’entrer en éruption à l’avenir. Pour surveiller tous ces volcans, l’AVO dispose de 212 stations sismiques réparties dans 34 réseaux couvrant 2,736 km :

Source: AVO

Les nuages ​​de cendres constituent le principal danger pour le trafic aérien. Ils se forment lorsqu’une éruption explosive fragmente le magma, et projette de petites particules dans l’atmosphère, parfois jusqu’à 10 à 20 km de hauteur, voire plus, en moins d’une heure. Les cendres sont très abrasives et les particules peuvent gravement endommager les avions, éroder et adhérer aux moteurs et aux composants électriques, et endommager les hublots, les ailes et le train d’atterrissage. Les perturbations électriques et les gaz présents dans un nuage de cendres peuvent altérer la capacité de l’avion à transmettre des messages et provoquer des problèmes respiratoires chez les personnes à bord. De nombreux avions en Alaska assurent des liaisons locales et volent généralement à des altitudes où les cendres volcaniques sont les plus susceptibles d’être présentes (3 à 6 km au-dessus du niveau de la mer).

Nuage de cendres émis par le Pavlof (Aléoutiennes) en 2016 (Crédit photo : AVO)

De nombreuses éruptions volcaniques historiques ont produit des nuages ​​de cendres et entraîné des retombées qui ont affecté, et continuent parfois d’affecter, de vastes zones au-delà de leurs limites. Les cendres de l’éruption du Novarupta-Katmai de 1912, la plus volumineuse du 20ème siècle, constituent périodiquement un danger lorsqu’elles sont remobilisées par des vents très violents et pendant des conditions sèches.

L’éruption du volcan Aniakchak en 1931 a provoqué des retombées de cendres de plusieurs millimètres jusqu’à l’île Kodiak.

Lors de l’éruption du Redoubt en 1989-1990, plusieurs avions de ligne ont rencontré le panache de cendres, dont un qui a atteint le Texas. Un Boeing 747-400 a traversé par inadvertance le nuage de cendres du Redoubt près d’Anchorage, ce qui a occasionné temporairement la perte de puissance de ses quatre moteurs. Bien que l’avion ait atterri sans encombre, il a subi des dégâts s’élevant à 80 millions de dollars. Cet événement a conduit à l’expansion de l’AVO et montre la nécessité d’une surveillance volcanique rigoureuse et d’une communication sur les risques.

 Panache de cendres du Mt Redoubt le 21 avril 1990 (Crédit photo : USGS)

Les risques volcaniques proches de la zone éruptive sont moins susceptibles de perturber le trafic aérien. Ils comprennent les projections de blocs, les lahars, les coulées pyroclastiques, les coulées et dômes de lave, les glissements de terrain, les avalanches de débris et les gaz volcaniques. Il convient toutefois de noter que les retombées de cendres sur les pistes d’un aéroport peuvent entraîner des retards, voire des annulations de vols.

Les dernières nouvelles à propos des volcans actifs en Alaska concernent le volcan Atka et le mont Spurr.
Une petite explosion de courte durée a été détectée sur le complexe volcanique de l’Atka le 25 avril 2025 grâce aux données infrasonores et sismiques locales qui ont montré que l’explosion provenait du cratère sommital Korovin, l’un des nombreux cônes actifs du complexe volcanique. En conséquence, la couleur de l’alerte aérienne a été relevée au Jaune et le niveau d’alerte volcanique est passé à Advisory (surveillance conseillée).

L’activité sismique sur le Mont Spurr reste élevée, bien qu’elle ait légèrement diminué au cours du mois dernier. La déformation du sol a également ralenti au cours des trois dernières semaines. Les satellites n’ont pas détecté d’émissions de SO2 en provenance du mont Spurr depuis le 3 avril 2025, probablement en raison d’un temps trop nuageux. Compte tenu du peu d’évolution constaté ces derniers temps dans les données de surveillance et de l’impossibilité de mesurer les émissions de gaz au cours du dernier mois, il est difficile d’établir des prévisions sur l’activité volcanique à venir. Globalement, la probabilité d’une éruption a diminué depuis mars, mais le volcan reste à un niveau d’activité élevé et une éruption explosive comme celles de 1953 et 1992 est toujours possible.
Source : Alaska Volcano Observatory, National Park Service.

————————————————-

Each time an eruption occurs in the Aleutians (Alaska), the Alaska Volcano Observatory (aVO) is careful to shift the volcano alert level and the aviation color code according to the volcanic activity. Volcanoes in the Aleutians are often located on uninhabited or poorly inhabited islands, but they stand in the path of airlies metween the U.S. and Asia. Should an ash plume be emeitted by one of these volcanoes, it could put the pilots in trouble as ash can disrupt plane engines and cause a disasters. Several of thme were shortly avoided in the past. This is why volcano monitoring is very important in that part of the world. There are over 100 volcanoes in Alaska, 54 of which are considered historically active. In addition, there are numerous volcanoes that are not considered historically active, but which could erupt at some point in the future.

Ash clouds are the main hazard to air trafic. They are formed when an explosive eruption fragments magma, rapidly injecting small particles into the atmosphere, sometimes up to 10–20 km or more above the volcano within less than an hour. Ash is highly abrasive and the particles can severely damage aircraft, eroding and adhering to engine and electrical parts and abrading windows, wings, and landing gear. Electrical disturbances and gases within an ash cloud may impair the aircraft’s ability to transmit messages and cause respiratory problems for those on board. Many visitors to Alaska arrive via small aircraft that typically travel at altitudes where volcanic ash is most likely to be present (3–6 km above sea level).
Multiple historical eruptions of volcanoes have produced ash clouds and resulted in ashfall that affected and sometimes continue to affect large areas beyond their boundaries. Ash from the 1912 eruption of Novarupta-Katmai, which was the most voluminous of the twentieth century, poses an ongoing seasonal hazard due to resuspension during very high winds and dry conditions.

The 1931 eruption of Aniakchak volcano resulted in millimeters of ashfall as far as Kodiak Island.

During the 1989-1990 eruption of Redoubt, multiple jetliners encountered the ash cloud, in one case as far away as Texas. A 747-400 jet aircraft inadvertently flew through the 1989-1990 Redoubt ash cloud near Anchorage and temporarily lost power in all four engines. Although the plane landed safely, it incurred 80 million dollars in damages. This event led to the expansion of AVO and remains an important example of the need for vigorous volcano monitoring and hazard communication.

Proximal volcanic hazards are less likeky to disturb air trafic. They include ballistics, lahars, pyroclastic flows, lava flows and domes, rockfalls, landslides, debris avalanches, and volcanic gases. However, it should be noted that ashfall on the runw ays in an airport may lead to dealys or even cancellations of the flights.

The latest news about active volcanoes in Alaska concern Atka Volcano and Mount Spurr.

A small, short-lived explosion was detected at the Atka volcanic complex on April 25 2025 in local infrasound and seismic data which indicates the explosion originated from the summit crater of Korovin, one of several volcanoes within the Atka volcanic complex. As a consequence, the Aviation Color Code was raised to YELLOW and the Volcano Alert Level to ADVISORY.

Shallow seismic activity underneath Mount Spurr remains elevated, though it has declined slightly over the past month. Ground deformation has also slowed over the past three weeks. Satellites have not detected SO2 from Mount Spurr since April 3 2025, most likely due to cloudy weather.

Based on the recent modest changes in monitoring data and the inability to measure gas for the last month, the outcome of the current unrest is less certain. Overall, the likelihood of an eruption has decreased from March, but the volcano remains at an elevated level of unrest and an explosive eruption like those that occurred in 1953 and 1992 is still possible.

Source : Alaska Volcano Observatory, National park Service.

Coraux en péril (suite)

Dans plusieurs notes publiées en 2023 et 2024, j’alertais sur les effets du réchauffement climatique sur les coraux dans le monde. En 2025, on ne peut que constater que la situation n’a fait qu’empirer. Un nouvel épisode mondial de blanchissement s’étend depuis deux ans à travers les océans Atlantique, Pacifique et Indien. La NOAA explique qu' »entre le 1er janvier 2023 et le 20 avril 2025, un stress thermique synonyme de blanchissement a touché 83,7% des récifs de la planète. »  Cet épisode est le quatrième observé depuis 1998. Il est aussi le plus important.

Crédit photo: NOAA

La cause du désastre est facile à comprendre. Depuis 2023, la température des océans du globe se maintient à des niveaux inédits car ils ont absorbé depuis 1970 plus de 90% de l’excès de chaleur du système climatique provoqué par les gaz à effet de serre d’origine anthropique.

Quand la température de l’eau devient trop élevée, le corail expulse ses zooxanthelles, des algues qui vivent en symbiose avec lui et lui donnent ses nutriments et sa couleur vive. C’est pourquoi les canicules marines peuvent rapidement provoquer le blanchissement de coraux, En Australie, la Grande Barrière de corail a connu cinq épisodes de blanchissement à grande échelle ces dernières années.

Vue de la Grande Barrière (Crédit photo: Wikipedia)

Selon le GIEC, 70 à 90% des coraux pourraient disparaître sur une planète 1,5°C plus chaude qu’à l’ère préindustrielle. 99% d’entre eux sont menacés par un réchauffement climatique de 2°C.

Les coraux sont un élément essentiel de la biodiversité. Ils abritent une faune immense, font vivre des millions de pêcheurs, attirent une forte activité touristique, mais protègent aussi les littoraux des dégâts des tempêtes en servant de brise-lames.

Photo: C. Grandpey

En Polynésie française, sur l’atoll de Tatako, les coraux semblent bien résister aux variations de chaleur extrêmes, alors qu’il ne parviennent pas à survivre à de telles conditions dans d’autres régions de la planète. Cette résilience exceptionnelle a attiré l’attention du laboratoire Criobe, du CNRS. Le tout est de savoir s’il s’agit d’une acclimatation temporelle ou d’une adaptation génétique. Pour le savoir, des boutures de coraux ont été implantées à Moorea, près de Tahiti. Si l’expérience démontre la transmission de leur patrimoine thermorésistant, les scientifiques espèrent pouvoir les transplanter sur les territoires marins confrontés aux vagues de chaleur pour réduire la mortalité corallienne. Quand on connaît la surface occupée par les récifs coralliens dans le monde, la tâche semble incommensurable.

De telles expériences de transplantations de coraux ont eu lieu en Floride, mais se sont soldées par des échecs. Dans une note publiée le 3 mars 2024, j’écrivais que de nombreux biologistes marins se demandent s’il est vraiment utile de repeupler les récifs coralliens dans une eau qui devient tout simplement trop chaude. Ils affirment que la restauration des coraux est presque inévitablement vouée à l’échec en raison du réchauffement climatique actuel. « Tenter de restaurer les coraux dans les océans chauds d’aujourd’hui, c’est comme essayer de remettre en état une maison alors qu’elle est encore en feu. »

Source : Presse internationale et France Info.

Éruption phréatique du Bulusan (Philippines) // Phreatic eruption at Bulusan volcano (Philippines)

Le PHIVOLCS indique qu’une éruption phréatique d’environ 24 minutes a débuté sur le Bulusan à 4 h 36, heure locale, le 28 avril 2025. L’événement a généré un panache de cendres atteignant 4,5 km d’altitude. Des retombées de cendres ont été signalées dans plusieurs localités voisines. Outre ces retombées, une coulée pyroclastique a parcouru environ 3 km le long du versant sud-ouest du volcan.
Le PHIVOLCS a relevé le niveau d’alerte de 0 à 1, ce qui indique le risque de nouvelles éruptions phréatiques.
Source : PHIVOLCS.

Cendre du Bulusan (Source: Réseaux sociaux)

————————————–

PHIVOLCS indicates that a phreatic eruption lasting approximately 24 minutes started at Bulusan volcano at 04:36 local time on April 28 2025. The event generated a voluminous ash plume reaching an altitude of 4.5 km. Ashfall was reported in several nearby municipalities. In addition to ashfall, a pyroclastic flow traveled approximately 3 km down the southwestern slope of the volcano.

In response, PHIVOLCS raised the alert level from 0 to 1, which indicates the potential for additional phreatic eruptions.

Source : PHIVOLCS.

Un ‘couvercle’ de magma à Yellowstone // A magma ‘cap’ at Yellowstone

Après la découverte d’une double chambre magmatique sous Yellowstone il y a quelques années, des scientifiques nous informent, dans une étude récemment publiée dans la revue Nature, qu’un ‘couvercle’ de magma joue probablement un rôle essentiel pour empêcher une puissante éruption dans l’un des plus grands systèmes volcaniques actifs au monde.
Ce ‘couvercle’ de magma se trouve à environ 3,8 km sous la surface de la Terre où il retient la pression et la chaleur. Il a été découvert quand les scientifiques ont utilisé un camion vibrosismique – ou vibrateur sismique – qui génère de minuscules séismes en envoyant des ondes sismiques dans le sol. Les ondes sont renvoyées par les couches souterraines et ont révélé la profondeur où se trouve le ‘couvercle’ de magma.

Crédit photo : USGS

L’étude indique que la stabilité des systèmes volcaniques actifs est « fortement influencée » par la profondeur de stockage du magma le plus proche de la surface. Le réservoir magmatique de la croûte supérieure sous la caldeira de Yellowstone n’a pas été bien défini. On sait qu’il y a du magma sous Yellowstone, mais la profondeur et la structure exactes de sa limite supérieure restent à déterminer. Les auteurs de l’étude ont constaté que ce réservoir est toujours actif.
Comme je l’ai indiqué plus haut, en 2022, des chercheurs ont découvert que le super volcan de Yellowstone possède un double réservoir magmatique sous la caldeira, bien plus important qu’on ne le pensait. La lave est présente à de faibles profondeurs et a alimenté la dernière éruption.

 Source : USGS

Les chercheurs ont modélisé diverses conditions de roche, de fusion et de volatilité afin de déterminer les matériaux composant le ‘couvercle’ de magma ; les modélisations ont révélé un mélange de silicates fondus et de bulles d’eau supercritique au sein de la roche poreuse. Les bulles se forment lorsque le magma monte et se décompresse, ce qui provoque la séparation d’éléments comme l’eau et le dioxyde de carbone de la masse en fusion. Des éruptions peuvent se produire lorsque les bulles s’accumulent et augmentent leur flottabilité, provoquant une explosion. Cependant, contrairement à ce qu’affirment certains médias, les chercheurs pensent qu’une éruption à Yellowstone n’est probablement pas imminente.
Les données d’imagerie sismique et de modélisation informatique indiquent que le réservoir magmatique sous Yellowstone libère des gaz, mais reste stable ; les bulles s’élèvent et passent à travers la roche poreuse du ‘couvercle’ magmatique. Cependant, le contenu des bulles et de la masse en fusion est inférieur à ce qui précède généralement une éruption imminente. Il semble plutôt que le système volcanique sous Yellowstone évacue le gaz par des fissures et des canaux entre les cristaux des minéraux.
La géologie complexe de Yellowstone est un environnement difficile à analyser et les chercheurs ont eu beaucoup de mal à obtenir ces données. La diffusion des ondes sismiques a produit des images bruitées, difficiles à interpréter. Cependant, les scientifiques ont réussi à obtenir l’une des premières images « ultra nettes » de la partie sommitale du réservoir magmatique sous la caldeira de Yellowstone grâce à la technique d’imagerie sismique structurelle. Cette découverte pourrait donner des indications sur l’activité future du vaste système volcanique de Yellowstone.
Source : ABC News et autres médias américains.

Émissions gazeuses à Yellowstone (Photo: C. Grandpey)

———————————————–

After the discovery of a dual magma chamber beneath Yellowstone a few years ago, geoscientists are informing us, through a study recently published in the journal Nature, that a magma cap at Yellowstone National Park is likely playing a critical role in preventing a massive eruption in one of the largest active volcanic systems in the world.

The cap made of magma is about 3.8 km below the Earth’s surface and essentially acts as a lid that traps pressure and heat below it.It was found after scientists used a vibroseis truck to generate tiny earthquakes that send seismic waves into the ground. The waves measured reflected off subsurface layers, revealing a sharp boundary at the depth where the magma cap lies.

One can read in the study that the stability of hazardous volcanic systems is « strongly influenced » by the uppermost magma storage depth. In addition, the magma reservoir at the upper crust beneath Yellowstone’s caldera has not been well constrained. We know that there is magma beneath Yellowstone, but the exact depth and structure of its upper boundary is a big question. The authors of the study have found that this reservoir has not shut down and is still dynamic.

As I put it above, in 2022, researchers discovered that Yellowstone’s supervolcano has substantially more magma reservoir under the caldera than previously thought. The lava is also flowing at shallow depths that fueled prior eruption.

The researchers modeled various rock, melt and volatile conditions to determine what materials the magma cap consists of ; it revealed a mixture of silicate melt and supercritical water bubbles within porous rock. The bubbles are formed as the magma rises and decompresses, causing gases like water and carbon dioxide to separate from the melt. Volcanic eruptions can occur as the bubbles accumulate and increase in buoyancy, driving an explosion. However, the researchers say that an eruption at Yellowstone is likely not imminent.

Data from seismic imaging and computer modeling indicates that the magma reservoir is actively releasing gas but remains in a stable state, with the bubbles rising and releasing through the porous rock of the magma cap. However, the bubble and melt contents are below the levels typically associated with imminent eruption. Instead, it seems the system is venting gas through cracks and channels between mineral crystals.

Yellowstone’s complex geology was a challenging environment for the researchers to obtain the data. The scattering seismic waves produced noisy data that was hard to interpret. However, the geoscientists were able to capture one of the first « super clear » images of the top of the magma reservoir beneath the Yellowstone caldera using the structural seismic imaging technique. The discovery could offer clues to future activity amid Yellowstone’s extensive volcanic system.

Source : ABC News and other U.S. News media.