Le magma du super volcan de Yellowstone // Magma of the Yellowstone super volcano

J’ai écrit plusieurs articles sur ce blog concernant la source magmatique de Yellowstone et la présence d’un double réservoir sous le super volcan.
À l’aide d’une modélisation par superordinateur, des scientifiques de l’Université de l’Oregon ont pu fournir de nouvelles hypothèses concernant ce double réservoir qui se cache sous le Parc National de Yellowstone. L’étude a été publiée dans Geophysical Research Letters.
À des profondeurs de 5 à 10 kilomètres, des forces opposées donnent naissance à une zone de transition où les roches froides et rigides de la croûte supérieure cèdent la place à des roches chaudes et partiellement fondues qui se trouvent en dessous. Cette zone de transition piège les magmas ascendants et les pousse à s’accumuler et à se solidifier dans un filon horizontal appelé sill qui, selon la modélisation informatique réalisée par les chercheurs, peut atteindre 15 kilomètres. Les résultats de la modélisation confirment les observations effectuées précédemment en envoyant des ondes sismiques à travers cette zone.
Le sill se compose essentiellement de gabbro solidifié. Au-dessus et au-dessous se trouvent des corps magmatiques distincts. Celui du dessus contient un magma rhyolitique qui peut produire de temps en temps des explosions très puissantes. Des structures similaires existent probablement sous des super volcans ailleurs dans le monde. La morphologie du sill peut aussi expliquer des signatures chimiques différentes que l’on observe dans les matériaux éruptifs.
En 2014, un article publié dans Geophysical Research Letters par une équipe scientifique de l’Université de l’Utah a révélé, grâce à l’analyse d’ondes sismiques, la présence d’un grand volume de magma dans la croûte supérieure. Les scientifiques avaient toutefois remarqué que d’énormes quantités de dioxyde de carbone et d’hélium s’échappaient du sol, ce qui laissait supposer la présence d’une autre poche de magma sous la précédente. Ce mystère a été résolu en mai 2015, lorsqu’une étude réalisée par l’Université de l’Utah, publiée dans la revue Science, a identifié, au moyen d’ondes sismiques, la présence d’un deuxième volume de magma, encore plus important, à une profondeur de 20 à 45 kilomètres.
Cependant, les études des données sismiques n’ont pas permis de déterminer la composition, ou la quantité de magma dans ces deux réservoirs, ni comment et pourquoi ils se sont formés. Pour comprendre les deux structures, les chercheurs de l’Université de l’Oregon ont créé de nouveaux codes de modélisation pour les superordinateurs afin de savoir à quel niveau le magma est susceptible de s’accumuler dans la croûte. Le travail a été réalisé en collaboration avec des chercheurs de l’Institut fédéral suisse de technologie de Zurich.
Les résultats de la modélisation ont révélé qu’une importante couche de magma refroidi, avec un point de fusion élevé, existait au niveau du sill séparant deux corps magmatiques avec un magma à un point de fusion inférieur ; une grande partie de cette couche de magma refroidi proviendrait de la fusion de la croûte. Les auteurs de l’étude pensent que cette structure est à l’origine du volcanisme rhyolite-basalte que l’on trouve dans l’ensemble du point chaud de Yellowstone, y compris les matériaux produits par les super éruptions. En particulier, la modélisation a permis d’identifier la structure géologique du secteur où se trouve le matériau rhyolitique.
Pour le moment, la dernière étude ne permet pas de savoir quand se produiront les prochaines éruptions du super volcan de Yellowstone, mais elle permet d’expliquer la structure du système d’alimentation magmatique. Elle montre l’endroit où le magma prend sa source et là où il s’accumule.
Étudier l’interaction de l’ascension du magma avec la zone de transition dans la croûte terrestre, et comment ce processus influence les propriétés des poches magmatiques qui se forment au-dessus et au-dessous, devrait permettre de mieux comprendre le rôle joué par les panaches mantelliques dans l’évolution et dans la structure de la croûte continentale.
Source: Université de l’Oregon.

———————————————-

I have written several posts on this blog about the magma source of Yellowstone and the presence of two magma bodies beneath the volcano.

Using supercomputer modelling, University of Oregon scientists have unveiled a new explanation for the geology underlying magma bodies below Yellowstone National Park. The study was published in Geophysical Research Letters.

At depths of 5-10 kilometres, opposing forces counter each other, forming a transition zone where cold and rigid rocks of the upper crust give way to hot, partially molten rock below. This transition traps rising magmas and causes them to accumulate and solidify in a large horizontal body called a sill, which can be up to 15 kilometres, according to the team’s computer modelling. The results of the modelling matches observations done by sending seismic waves through the area.

The sill is comprised of mostly solidified gabbro. Above and below lay separate magma bodies. The upper one contains rhyolitic magma that occasionally erupts in very powerful explosions. Similar structures may exist under super volcanoes around the world. The geometry of the sill also may explain differing chemical signatures in eruptive materials.

In 2014, a paper in Geophysical Research Letters by a University of Utah-led team revealed evidence from seismic waves of a large magma body in the upper crust. Scientists had suspected, however, that huge amounts of carbon dioxide and helium escaping from the ground indicated that more magma is located farther down. That mystery was solved in May 2015, when a second University of Utah-led study, published in the journal Science, identified by way of seismic waves a second, larger body of magma at depths of 20 to 45 kilometres.

However, the seismic-imaging studies could not identify the composition, state and amount of magma in these magma bodies, or how and why they formed there. To understand the two structures, University of Oregon researchers wrote new codes for supercomputer modelling to understand where magma is likely to accumulate in the crust. The work was done in collaboration with researchers at the Swiss Federal Institute of Technology, also known as ETH Zurich.

The researchers repeatedly got results indicating a large layer of cooled magma with a high melting point forms at the mid-crustal sill, separating two magma bodies with magma at a lower melting point, much of which is derived from melting of the crust. The authors of the study think that this structure is what causes the rhyolite-basalt volcanism throughout the Yellowstone hotspot, including supervolcanic eruptions. More particularly, the modelling helps to identify the geologic structure of where the rhyolitic material is located.

The new research, for now, does not help to predict the timing of future eruptions. Instead, it helps explain the structure of the magmatic plumbing system that fuels these eruptions. It shows where the eruptible magma originates and accumulates.

Studying the interaction of rising magmas with the crustal transition zone, and how this influences the properties of the magma bodies that form both above and below it should boost scientific understanding of how mantle plumes influence the evolution and structure of continental crust.

Source: University of Oregon.

Source: University of Oregon

Modélisation de Olympus Mons (Mars) // A model of Olympus Mons (Mars)

drapeau-francaisOlympus Mons est le plus grand volcan de la planète Mars, peut-être même le plus grand volcan du système solaire. Il présente un diamètre de plus de 600 km et dresse ses 27 km au-dessus de la surface de la planète.
Les scientifiques de la Division des Sciences Planétaires et de la Télédétection à l’Institut des Sciences de la Terre de l’Université Libre de Berlin ont réussi à créer un modèle simulant la formation de structures jusque là mystérieuses à la surface de Olympus Mons. L’étude a été menée en collaboration avec le Centre de Recherche des Sciences de la Terre de Potsdam et l’Arizona State University. Les résultats ont été publiés dans le dernier numéro du Journal of Geophysical Research.
Le projet s’appuie sur des données d’images fournies par une caméra stéréographique haute résolution (HRSC)* installée sur la sonde européenne Mars Express qui est en orbite autour de la planète rouge depuis décembre 2003. En utilisant les images de la caméra, les scientifiques ont élaboré une mosaïque et un modèle de la surface du volcan Olympus Mons. La base de données d’images montre que la morphologie en bouclier du volcan apparaît sous la forme de terrasses voûtées et que le pied du volcan, relativement plat par ailleurs, se termine en pente raide. Cette étude indique que les déformations observées sur le volcan sont dues d’une part à la gravité (qui, sur Mars, est d’environ 40 pour cent de celle de la Terre), et d’autre part à une faible résistance de frottement dans le sous-sol du volcan.
Les derniers travaux sur les interactions entre Olympus Mons et le sous-sol martien ont été réalisés grâce à une coopération entre les institutions allemandes et américaines. La simulation par ordinateur démontre pour la première fois la formation de terrasses pendant la phase de croissance du volcan.
Selon les chercheurs, les dernières découvertes sur ce supervolcan permettront une meilleure compréhension du volcanisme sur Terre.
Sources: Freie Universität Berlin. « Simulating the evolution of Mars volcano Olympus Mons. »
Science Daily, 9 mai 2016 (www.sciencedaily.com/releases/2016/05/160509085751.htm).

*High Resolution Stereo Camera (HRSC) : il s’agit d’une caméra installée sur la sonde spatiale Mars Express ; elle produit des images couleur en 3D et en haute résolution (de 10 mètres par pixel, pouvant aller jusqu’à 2 mètres par pixel). Elle est fabriquée par l’Université Libre de Berlin et est destinée à cartographier la surface de Mars. Par stéréographie, la caméra est également capable de fournir des données topographiques et ainsi permettre la réalisation de Modèles Numériques de Terrain (MNT) avec une très grande précision.

————————————

drapeau-anglaisOlympus Mons is the largest volcano on Mars, possibly the largest in the Solar System. It is more than 600 km across and towers 27 km above the surface of the planet.

Scientists from the Division of Planetary Sciences and Remote Sensing in the Institute of Geological Sciences at Freie Universität Berlin have succeeded in creating a model simulating the formation of mysterious structures on the surface of Olympus Mons. The study was conducted in collaboration with the German Research Centre for Geosciences in Potsdam and Arizona State University. The findings were published in the latest issue of the Journal of Geophysical Research.

The research project is based on image data of the High Resolution Stereo Camera (HRSC)* that is installed on the European Mars Express spacecraft, which has been orbiting the red planet since December 2003. Using the camera images, scientists generated a mosaic and a terrain model of the Olympus Mons volcano. The image data show that the volcano shield is shaped in the form of arched terraces and the foot of the otherwise very flat volcano drops steeply. This study indicates that the observed deformations of the volcano are due to gravity, which on Mars is about 40 percent of the Earth’s gravity, and to low frictional resistance in the volcano subsurface.

The new investigations of the interactions between the Martian volcano and the ground underneath it were done in cooperation with German and American institutions. The computer simulation demonstrates for the first time the formation of terraces during the volcanic growth phase.

According to the researchers, the latest findings about this supervolcano will also help to give them a better understanding of volcanoes on Earth.

Sources:  Freie Universitaet Berlin. « Simulating the evolution of Mars volcano Olympus Mons. »

ScienceDaily, 9 May 2016 (www.sciencedaily.com/releases/2016/05/160509085751.htm).

*High Resolution Stereo Camera (HRSC): it is a camera on board the Mars Express spacecraft; it produces colour images in 3D and high resolution (10 metres per pixel, up to 2 metres per pixel). It was manufactured by the Free University of Berlin and is designed to map the surface of Mars. By stereography, the camera is also capable of providing topographic data and can achieve Digital Elevation Models (DEM) with a very high accuracy.

Olympus Mons

Crédit: Freie Universität Berlin

La modélisation informatique au secours de la surveillance volcanique // Computer models help with volcano monitoring

drapeau francais   Les scientifiques utilisent plusieurs techniques pour étudier les processus qui se déroulent sous les volcans actifs, là où l’on ne peut pas voir directement ce qui se passe. Au HVO, ils utilisent les séismes, les déformations de terrain, les émissions de gaz, et les observations géologiques afin de comprendre ce qui se passe sous le Kilauea.

Grâce à ces informations, les scientifiques élaborent des «modèles» informatiques pour expliquer ce qui se passe à l’intérieur du volcan. Ils commencent aujourd’hui à utiliser des super ordinateurs pour modéliser les interactions entre les différentes parties d’un volcan. Ces nouveaux modèles divisent un volcan schématique en milliers de petits morceaux, ou «éléments». Il est possible de demander à chacun de ces éléments d’agir dans certaines conditions. Par exemple, s’il est chauffé, l’élément sait à quelle température il va fondre. Chaque élément interagit également avec ses voisins. De cette façon, les scientifiques peuvent simuler un événement tel que la déflation et l’inflation au sommet du Kilauea.
Les modèles informatiques sont élaborés en utilisant des informations fournies par les appareils de surveillance du HVO, tels que les volumes de lave émis, les lieux des séismes et les déformations de surface, afin de donner une représentation des événements aussi précise que possible. Les scientifiques peuvent ensuite utiliser ces modèles pour étudier les facteurs que nous ne connaissons pas, comme le volume et la pression du magma dans le réservoir magmatique sommital ou la vitesse d’alimentation en magma. L’objectif est de trouver des combinaisons de paramètres «inconnus» qui permettent de les faire correspondre à des paramètres « connus ».

Les modèles informatiques du Kilauea sont utilisés de deux manières au HVO. La première consiste à évaluer ce qui est susceptible de se produire dans des endroits que nous ne pouvons directement observer. Par exemple, la déformation du sol au sommet du Kilauea suggère qu’il y a une chambre magmatique qui se gonfle et se dégonfle sous la lèvre E du Cratère de l’ Halema’uma’u. Le modèle informatique peut être utilisé pour évaluer la profondeur de cette chambre magmatique ; elle a été estimée à environ 1,5 km.
La deuxième utilisation est de prévoir ce qui pourrait arriver à plus ou moins long terme. Par exemple, si plus de magma est injecté dans la chambre magmatique, quel type d’activité volcanique pourrait se produire? Y aurait-il une éruption au sommet? Y aurait-il une modification de l’éruption sur l’East Rift Zone ?
Force est de constater que la plupart des modèles informatiques sont faux parce qu’ils sont fondés sur des hypothèses et des simplifications. Aucun modèle ne sera jamais juste, mais les scientifiques peuvent apprendre des choses à partir de ces modèles.
Les modèles informatiques ne sauront jamais reproduire les systèmes naturels parfaitement ou complètement, mais ils fournissent un moyen d’enquêter sur ces systèmes afin que les scientifiques puissent comprendre leur fonctionnement.
Bien que les modèles scientifiques existent depuis le début des observations, les nouveaux «super modèles » informatiques représentent une avancée significative dans la façon de comprendre et interpréter les données.

Source : HVO.

drapeau anglais   Scientists use many techniques to infer the processes occurring beneath active volcanoes, where we can’t directly see what is happening. At HVO, they use earthquakes, ground deformation, gas emissions, and geologic observations to understand what’s going on beneath Kilauea.

Using this monitoring information, scientists develop « models » to explain what is happening within the volcano. They are starting to use super computers to model interactions between different parts of a volcano. These new models split a schematic volcano into thousands of small pieces, or « elements. » Each of these elements can be told how to act under certain conditions. For example, if it is heated, the element knows what temperature to melt at. Each element also interacts with its neighbours. In this way, scientists can simulate an event—like the deflation and inflation at Kīlauea’s summit.
The models are built using information from HVO’s monitoring efforts, such as erupted volumes, earthquake locations, and surface deformation, so that they are as accurate a depiction of real events as possible. Scientists can then use these models to investigate factors that we don’t know, like the volume and pressure of magma within the summit magma reservoir or the rate of magma supply. The goal is to find combinations of « unknown » parameters that allow to match those parameters that are known.

Computer models of Kīlauea are being used in two ways at HVO. The first is to assess what might be happening in places that we can’t directly observe. For example, the ground deformation at Kīlauea’s summit suggests that there is a magma chamber that is inflating and deflating beneath the east margin of Halema’uma’u Crater. The computer model can be used to assess the depth of that magma chamber, which has been estimated at about 1.5 km.
The second use is to forecast what might happen in the future. For example, if more magma was pushed into the magma chamber, what volcanic activity might result? Would there be an eruption at the summit? Would there be a change in the eruption on the East Rift Zone?

One has to admit that most models are wrong because they are based on assumptions and simplifications. No model will ever be right, but scientists can learn things from these models.
Computer models will never reproduce the natural systems perfectly or completely, but they provide a means of investigating these systems so scientists can learn more about how they work.

 

Although scientific models have been in use for as long as there have been scientific observations, the new « supermodels » represent a significant advance in the way scientists understand and interpret the data.

Source: HVO.

Computer-model

Avec l’aimable autorisation du HVO.