Des lahars sur l’Ubinas (Pérou) // Lahars on Ubinas Volcano (Peru)

Dans une note rédigée le 25 janviers 2019, j’indiquais que l’Institut de Géophysique du Pérou (IGP) avait émis la veille un bulletin spécial dans lequel il recommandait le passage à la couleur Jaune du niveau d’alerte du volcan Ubinas car il existait un réel risque de lahars suite à l’accumulation de neige et aux pluies abondantes qui s’abattaient sur la région. Toute cette eau était susceptible de remobiliser les dépôts de cendre sur les pentes du volcan et de déclencher de dangereuses coulées de boue. Le 23 janvier, le réseau de stations sismiques avait déjà enregistré un tel événement d’une durée de 53 minutes. .

Ce bulletin d’alerte était justifié car un puissant lahar a dévalé les pentes de l’Ubinas dans l’après-midi du 6 février dans la région de Monquegua. C’est la troisième coulée de boue de ce type en 2019 et la plus importante depuis 2014. L’événement a duré plus d’une heure. Il n’y a pas eu de blessés, mais les dégâts matériels sont importants, en particulier sur les terres agricoles. En bloquant des routes, le lahar a isolé des villages et entraîné des coupures d’électricité.

Source : IGP, INGEMMET.

——————————————————–

In a post written on 25 January 2019, I indicated that the Institute of Geophysics of Peru (IGP) had issued the day before a special bulletin in which it recommended to raise the alert level to Yellow l the alert level for Ubinas volcano because there was a real risk of lahars after the accumulation of snow and heavy rains in the area. All this water was likely to remobilize ash deposits on the slopes of the volcano and trigger dangerous mudslides. On January 23rd, the network of seismic stations had already recorded a 53-minute event. .
IGP’s bulletin was justified because a powerful lahar travelled down the slopes of Ubinas in the afternoon of February 6th, in the region of Monquegua. This was the third mudslide of this type in 2019 and the largest since 2014. The event lasted more than an hour. There were no casualties, but the material damage is significant, especially on farmland. By blocking roads, the lahar isolated villages and caused power cuts.
Source: IGP, INGEMMET

Voici une photo du dernier lahar mise en ligne par l’INGEMMET.

Etna (Sicile): A nouveau des panaches de cendre // Ash plumes again

De nouvelles abondantes émissions de cendre sont de nouveau observées sur l’Etna. La cendre provient du Cratère NE où l’on observe également une activité strombolienne. Pour le moment, la cendre est emportée vers le SE par le vent. L’aéroport de Catane est en pré-alerte pour le cas où la situation évoluerait.

Source : La Sicilia.

———————————————–

Voluminous ash plumes are again observed on Mount Etna. The ash is coming from the NE Crater where one can also observe strombolian activity. For the moment, the ash is blown towards the SE by the wind. Catania Airport is on a pre-alert in case the situation should change.

Source: La Sicilia.

Capture d’image de la webcam ce matin à 9 heures

A la découverte de Hunga Tonga-Hunga Ha’apai // Discovery of Hunga Tonga-Hunga Ha’apai

En 2015, une nouvelle terre a fait surface dans le Pacifique Sud. L’éruption très spectaculaire d’un volcan sous-marin a fait jaillir de la cendre et de la lave pendant plus d’un mois. Lorsque les matériaux émis se sont mélangés à l’eau de mer, ils se sont solidifiés pour former, en l’espace d’un mois, une nouvelle île qui s’est nichée entre deux masses de terre existantes: Hunga Tonga et Hunga Ha’apai, d’où son nom: Hunga Tonga-Hunga Ha’apai (HTHH). [voir les notes dans ce blog à ce sujet]
Les éruptions volcaniques sous-marines forment souvent de nouvelles petites îles, mais leur durée de vie est généralement très courte. Les vagues les érodent rapidement et elles disparaissent dans la mer. A l’image de Surtsey (Islande) en 1963, HTHH, n’a pas disparu. Au lieu de cela, elle est devenue une île de plus d’un kilomètre de large et long, et près de 120 mètres de hauteur. En 2017, les scientifiques de la NASA ont estimé qu’elle durerait entre six et trente ans, ce qui fournirait aux chercheurs un aperçu unique du début de la vie et de l’évolution d’une nouvelle terre.
A partir des processus observés sur HTHH, les chercheurs pensent qu’ils seront en mesure d’obtenir un aperçu des caractéristiques d’autres planètes comme Mars. En effet, beaucoup de phénomènes observés sur Mars l’ont été grâce à l’expérience d’interprétation des phénomènes terrestres. Les scientifiques de la NASA pensent qu’il y a eu des éruptions sur Mars à une époque où il y avait de l’eau à la surface de la planète. Ils espèrent pouvoir utiliser la nouvelle île des Tonga et son évolution pour comprendre un environnement océanique ou un environnement lacustre éphémère.
Des scientifiques du Goddard Space Flight Center de la NASA et de l’Université de Columbia se sont rendus sur l’île en octobre 2018 et l’ont explorée pour la première fois. Avant cela, leur seule approche du paysage était à partir d’images satellitaires. Après avoir passé les trois dernières années à créer un modèle 3D de HTHH, ils ont pu naviguer le long de la côte nord de l’île en prenant des mesures GPS et ont enfin mis le pied sur cette nouvelle terre.
Les chercheurs ont découvert que la majeure partie du sol était composée de graviers noirs. En outre, l’île n’était pas aussi plate qu’elle paraissait l’être sur les images satellites. Elle est certes assez plate, mais il y a des reliefs et les graviers ont formé de jolis motifs sous l’effet de l’action des vagues. Il y a aussi de l’argile qui descend du cône principal. On distingue ce matériau de couleur claire sur les images satellites. C’est en fait une boue très collante, et pas de la cendre comme le pensaient les visiteurs.
L’équipe scientifique a découvert de la végétation sur l’île, apparemment ensemencée par des fientes d’oiseaux. Les chercheurs ont d’ailleurs vu certains d’entre eux comme une chouette effraie et des centaines de sternes fuligineuses
Ils ont également fait des relevés topographiques très précis afin de produire une carte 3D à haute résolution. Cela leur permettra de surveiller l’érosion de l’île au cours des prochaines années. L’île s’érode beaucoup plus rapidement que prévu. Les chercheurs se sont concentrés sur l’érosion sur la côte sud où les vagues viennent s’abattre, mais c’est toute l’île qui est en train de s’effondrer, avec d’énormes ravines d’érosion qui deviennent de plus en plus profondes avec le temps.
L’équipe scientifique a maintenant l’intention de déterminer le volume de l’île et la quantité de cendre émise au moment de l’éruption. L’intérêt est de calculer l’évolution du paysage 3D dans le temps, en particulier son volume qui n’a été mesuré que quelques fois sur d’autres îles de même type. C’est une première étape pour comprendre la vitesse et les processus d’érosion et pourquoi HTHH résiste plus longtemps que prévu aux assauts de l’océan.
Source: Newsweek.

————————————————————

In 2015, a new land emerged in the South Pacific. The dramatic eruption of an underwater volcano sent ash and lava spewing into the sea for over a month. As the ash mixed with the warm water, it solidified into a rock and, over the course of a month, this rock built up enough to create a new island. The island was nestled in between two landmasses—Hunga Tonga and Hunga Ha’apai, hence its name: Hunga Tonga-Hunga Ha’apai (HTHH).

Underwater volcanic eruptions often form small new islands but they are normally very short-lived. The ocean waves quickly erode the rock and they disappear back into the sea. Imitating Surtsey (Iceland) in 1963, HTHH, did not vanish. Instead, it grew to be more than one kilometre wide and long, and almost 120 metres in height. In 2017, NASA scientists studying the island estimated it would last between six and 30 years, which would provide researchers with an unprecedented insight into the early life and evolution of a new land.

By understanding the processes taking place on HTHH, researchers believe they will be able to get an insight into the features on places like Mars. Indeed, many things observed on Mars are based on the experience of interpreting Earth phenomena. NASA scientists think there were eruptions on Mars at a time when there were areas of persistent surface water. As a consequence, they may be able to use the new Tongan island and its evolution as a way of understanding an oceanic environment or ephemeral lake environment.

NASA scientists from the Goddard Space Flight Center and from Columbia University travelled to the island in October 2018 and explored it for the first time. Before this, their only experience of the landscape was from satellite images. They had spent the last three years making a 3D model of HTHH. They were now able to sail around the northern coast of the island taking GPS measurements, before finally setting foot on HTHH.

The scientists discovered that most of the ground was black gravel. Besides, the island was not quite as flat as it seemed from satellite. It is pretty flat, but there are some gradients and the gravels have formed some nice patterns from the wave action. There is also clay washing out of the cone. In the satellite images, one can see this light-coloured material. It is actually a very sticky mud, and not the ash the visitors expected.

The team discovered vegetation growing on the island, apparently having been seeded by bird droppings. They also saw a barn owl and hundreds of nesting sooty terns living on HTHH.

They also took high-precision measurements of the land in order to produce a higher-resolution 3D map. This will allow them to monitor the erosion of the island over the coming years. The island is eroding by rainfall much more quickly than they imagined. The researchers were focused on the erosion on the south coast where the waves are crashing down, but the whole island is going down, with huge erosion gullies which are getting deeper and deeper with the time.

The scientific team now plans to work out the volume of the island and how much ash erupted from the volcano’s vent. The interest is to calculate how much the 3D landscape changes over time, particularly its volume, which has only been measured a few times at other similar islands. It is the first step to understand erosion rates and processes and to decipher why HTHH has persisted longer than most people expected.

Source: Newsweek.

Hunga Tonga-Hunga Ha’apai en 2019 (Crédit photo : Woods Hole Oceanographic Institution)

Vue de Hunga Tonga-Hunga Ha’apai en juin 2017 (Crédit photo: NASA)

Cette photo prise au cours de la dernière mission sur l’île montre parfaitement les nombreuses ravines d’érosion, ainsi que les déchets qui ont envahi le littoral de cette île vierge (Crédit photo: NASA)

La naissance de l’île avait été très spectaculaire, avec de superbes cypressoïdes typiques des éruptions phréato-magmatiques.

Nouvelles des volcans du monde // News of volcanoes around the world

Avec la fin du ‘shutdown’ aux États-Unis, la Smithsonian Institution est à nouveau en mesure de publier ses rapports hebdomadaires sur l’activité volcanique dans le monde. Parmi les volcans les plus actifs, on remarque le Karangetang, le Merapi, le Planchon-Peteroa et le Fuego.

La lave en provenance du sommet du Karangetang (Sulawesi / Indonésie) a finalement atteint la mer le 6 février 2019. Plus de 110 habitants de cinq villages ont été évacués vers des endroits plus sûrs de l’île. Batubulan a été le premier village à être évacué, car une coulée de lave s’était approchée de la rivière et menaçait de couper la route reliant le village au reste de l’île. Aucun dégât important n’a été signalé dans le village.
Les autorités locales se disent « prêtes à procéder immédiatement à d’autres évacuations à l’aide de navires, et à évacuer les villages côtiers en cas d’urgence ».
Comme je l’ai déjà écrit, il est demandé à la population et aux touristes de ne pas s’approcher du volcan à moins de 2,5 km du cratère principal et du cratère nord et à moins de 3 km dans les secteurs S, SE, O et SO. Les gens doivent également préparer des masques en cas de retombées de cendre et être vigilants, en particulier le long des berges de la rivière Batuawang, jusqu’à la plage.
Le niveau d’alerte du Karangetang reste à 3.
Voici la courte vidéo d’un bulletin d’informations télévisé montrant la lave en train d’entrer dans la mer.
https://youtu.be/tGpqJsEemcQ

Le volume du dôme de lave au sommet du Merapi est actuellement estimé à 461 000 mètres cubes et est relativement stable. Plusieurs avalanches de blocs incandescents ont été enregistrées au cours des derniers jours. Ces matériaux ont dévalé la pente sur une distance de 200 à 700 mètres au sud-est dans la ravine de la rivière Gendol. Plusieurs écoulements pyroclastiques ont également été observés, avec de petites retombées de cendre dans la partie Est du volcan. Le niveau d’alerte reste à 2 (sur une échelle de 1 à 4) et il est demandé à la population de rester en dehors de la zone d’exclusion de 3 km.

Le SERNAGEOMIN a signalé une augmentation des émissions de cendre sur le Planchón-Peteroa à compter du 1er février 2019. Les panaches de cendre s’élèvent jusqu’à 2 km au-dessus du volcan. Cette activité s’est accompagnée d’événements sismiques discrets et de très basse fréquence le 1er février. Le 3 février, les webcams ont montré des panaches de gaz et de cendre atteignant des hauteurs inférieures à 2 km. Le niveau d’alerte reste à la couleur Jaune.

Des explosions avec une moyenne de 15 événements par heure sont toujours détectées sur le Fuego. Elles génèrent des panaches de cendre s’élevant jusqu’à 1,1 km au-dessus du cratère. Des retombées de cendre ont été signalées dans les zones sous le vent. Des matériaux incandescents sont éjectés à une hauteur de 300 mètres et provoquent des avalanches dans les ravines Seca, Ceniza, Trinidad et Las Lajas. Les ondes de choc font vibrer les fenêtres dans les localités proches du volcan.

———————————————–

With the end of the shutdown in the United States, the Smithsonian Institution is again able to release its weekly reports about volcanic activity around the world. Among the most active volcanoes, one notices Karangetang, Merapi, Planchon-Peteroa and Fuego.

Lava travelling from the summit of Karangetang (Sulawesi / Indonesia) finally reached the sea on February 6th, 2019. Over 110 residents from five villages have been evacuated to safer locations across the island. The first village to be evacuated was Batubulan because a lava flow had approached the nearby river and threatened to cut the road connecting the village with the rest of the island. No significant damage was reported from the village.

Local authorities say they are “ready to immediately move in with ships and evacuate coastal villages if the danger level is declared as an emergency. »

As I put it before, people are asked not to approach the volcano within a 2.5 km radius of the main and northern crater and within 3 km in the S, SE, W and SW sectors. They should also prepare masks in the event of ashfall and be aware of all potential threats, especially along the banks of Batuawang river to the beach.

The alert level for Karangetang remains at 3.

Here is a short video of a TV news bulletin showing lava entering the sea.

https://youtu.be/tGpqJsEemcQ

The volume of the lava dome at Merapi’s summit crater is currently estimated at 461,000 cubic metres and is relatively stable. Several incandescent rockfall events have been recorded in the past days, with material travelling 200-700 m SE in the Gendol River drainage. Several pyroclastic flows have also been observed, producing produced minor ashfall in areas E of the volcano. The alert level remains at 2 (on a scale of 1-4), and residents are urged to remain outside of the 3-km exclusion zone.

SERNAGEOMIN has reported an increase in ash emissions at Planchón-Peteroa beginning on February 1st, 2019. Ash plumes are rising as high as 2 km above the volcano. This activity was accompanied by discrete, very-low-frequency seismic events which were only recorded on that day. On February 3rd, webcams showed gas-and-ash plumes rising to heights less than 2 km. The Alert Level remains at Yellow.

Explosions with a n average of 15 events per hour are still detected at Fuego, with ash plumes rising as high as 1.1 km above the crater. Ashfall has been reported in downwind areas. Incandescent material is ejected 300 metres high and causes avalanches that travel down the Seca, Ceniza, Trinidad and Las Lajas ravines. Shock wave cause the windows to vibrate in the communities near the volcano.

Vue de la lave du Karangetang arrivant dans la mer (Kompas TV)