L’Islande continue d’enterrer le gaz carbonique ! // Iceland keeps burying carbon dioxide !

Dans des notes publiées le 16 juin 2016 et le 15 novembre 2017, j’ai expliqué que l’Islande était probablement un bon endroit pour stocker dans le sol l’excès de dioxyde de carbone (CO2) contenu dans l’atmosphère.
https://claudegrandpeyvolcansetglaciers.com/2016/06/17/islande-de-la-geothermie-au-stockage-du-co2-iceland-from-geothermal-energy-to-the-storage-of-co2/

À l’époque, l’objectif du projet CarbFix était de capter le gaz et de le réinjecter dans le sous-sol. Le processus était réalisé avec un puits d’injection foré dans le soubassement basaltique. Si elle était opérationnelle, cette technologie aurait l’avantage de débarrasser l’atmosphère d’une partie de son CO2, l’un des principaux gaz à effet de serre qui contribuent au réchauffement de la planète.
La technologie imite, dans un format accéléré, un processus naturel qui peut prendre des milliers d’années, et qui consiste à injecter du dioxyde de carbone dans les pores du basalte où il se minéralise et reste stocké pour l’éternité.
En Islande, le projet CarbFix inclut des chercheurs et des ingénieurs du distributeur d’électricité Reykjavik Energy, de l’Université d’Islande, du CNRS et de la Columbia University aux États-Unis.
En Islande, au moins la moitié de l’énergie qui est produite provient de sources géothermiques. C’est une aubaine pour les chercheurs de CarbFix, qui ont transformé en laboratoire la centrale géothermique de Hellisheidi, l’une des plus grandes au monde.
La centrale, située sur le volcan Hengill dans le sud-ouest de l’Islande, repose sur une couche de roche basaltique et dispose de quantités d’eau pratiquement illimitées. L’usine pompe l’eau qui se trouve sous le volcan pour faire fonctionner six turbines qui fournissent de l’électricité et de la chaleur à la capitale, Reykjavik, située à une trentaine de kilomètres.

Le dioxyde de carbone de l’usine est capté par la vapeur, liquéfié par condensation, puis dissous dans de grandes quantités d’eau. Cette eau gazeuse est canalisée sur plusieurs kilomètres jusqu’à une zone où trônent des dômes gris en forme d’igloo. C’est ici que l’eau gazeuse est injectée sous haute pression dans la roche à 1 000 mètres de profondeur. La solution remplit les cavités de la roche basaltique et c’est alors que commence le processus de solidification. On a affaire à une réaction chimique qui se produit lorsque le gaz entre en contact avec le calcium, le magnésium et le fer dans le basalte.
Presque tout le dioxyde de carbone injecté s’est retrouvé minéralisé en deux ans au cours de l’opération pilote il y a trois ans; c’était beaucoup plus rapide que lors des expériences effectuées en laboratoire. Une fois que le CO2 est transformé en roche, il reste définitivement dans cet état.
Le projet CarbFix réduit d’un tiers les émissions de dioxyde de carbone de la centrale de Hellisheidi, ce qui représente le stockage et l’entreposage de 12 000 tonnes de dioxyde de carbone à un coût d’environ 25 dollars la tonne. En comparaison, les volcans islandais rejettent chaque année entre un et deux millions de tonnes de dioxyde de carbone.
Le principal inconvénient de cette méthode est qu’elle nécessite de gros volumes d’eau dessalée qui est abondante en Islande mais rare dans de nombreuses autres parties de la planète. Il faut 25 tonnes d’eau pour injecter chaque tonne de dioxyde de carbone. Des expériences sont en cours pour adapter la méthode à l’eau salée.
Dans le cadre de l’accord de Paris sur le climat, l’Islande a accepté de réduire ses émissions de gaz à effet de serre de 40% d’ici 2030, mais ses émissions ont augmenté de 2,2% entre 2016 et 2017 ; elles ont augmenté de 85% depuis 1990, selon un rapport de l’Agence islandaise de l’environnement. Un tiers de ces émissions provient du transport aérien qui est essentiel pour le tourisme de l’île. Les usines d’aluminium et de silicium représentent un autre tiers. Le ministère islandais de l’Environnement et des Ressources naturelles a encouragé ces usines à développer elles aussi des mécanismes de captage et de stockage du carbone.
Source: Philippine Daily Inquirer.

—————————————————-

In posts released on 16 June 2016 and 15 November 2017, I explained that Iceland could also be the right place to store in its ground the excess of carbon dioxide (CO2) in the atmosphere.

https://claudegrandpeyvolcansetglaciers.com/2016/06/17/islande-de-la-geothermie-au-stockage-du-co2-iceland-from-geothermal-energy-to-the-storage-of-co2/

By that time, the goal of the CarbFix project was to capture that gas and stick it back underground. This was done with an injection well drilled down into basalt bedrock. If it worked, the technology would have the advantage of getting the atmosphere rid of some of its CO2, one of the main greenhouse gases that contribute to global warming.

The technology mimics, in an accelerated format, a natural process that can take thousands of years, injecting carbon dioxide into porous basalt rock where it mineralizes, capturing it forever.

Iceland’s CarbFix project includes researchers and engineers from utility company Reykjavik Energy, the University of Iceland, France’s National Centre for Scientific Research (CNRS) and Columbia University in the United States.

In Iceland, at least half of the energy produced comes from geothermal sources. That is a bonanza for CarbFix researchers, who have turned the Hellisheidi geothermal power plant, one of the world’s biggest, into their own laboratory.

The plant, located on the Hengill volcano in southwestern Iceland, sits on a layer of basalt rock formed from cooled lava, and has access to virtually unlimited amounts of water. The plant pumps up the water underneath the volcano to run six turbines providing electricity and heat to the capital, Reykjavik, about 30 kilometres away.

The carbon dioxide from the plant is captured from the steam, liquified into condensate, then dissolved in large amounts of water. The fizzy water is piped several kilometres to an area where grey, igloo-shaped domes dot the landscape. Here the fizzy water is injected under high pressure into the rock 1,000 metres under the ground. The solution fills the rock’s cavities and begins the solidification process — a chemical reaction that occurs when the gas comes in contact with the calcium, magnesium and iron in the basalt.

Almost all of the injected carbon dioxide was mineralized within two years in the pilot injection three years ago, which was much faster than during the experiments in a laboratory. Once the CO2 is turned to rock, it is captured there for good.

The CarbFix project reduces the plant’s carbon dioxide emissions by a third, which amounts to 12,000 tons of carbon dioxide captured and stored at a cost of about 25 dollars a ton. By comparison, Iceland’s volcanoes spew out between one and two million tons of carbon dioxide each year.

The main drawback of the method is that it requires large volumes of desalinated water, which, while abundant in Iceland, is rare in many other parts of the planet. Around 25 tons of water is needed for each tonne of carbon dioxide injected. Experiments are currently underway to adapt the method to saltwater.

Under the Paris climate agreement, Iceland has agreed to slash its greenhouse gas emissions by 40% by 2030, yet its emissions rose by 2.2% from 2016 to 2017, and have risen by 85% since 1990, according to a report by Iceland’s Environment Agency. A third of its emissions come from air transport, which is vital to the island for its tourism sector. Its aluminum and silicon plants account for another third. The Icelandic Environment and Natural Resources Ministry has encouraged those plants to also develop carbon capture and storage mechanisms.

Source : Philippine Daily Inquirer.

Image de la calcite formée dans le basalte par interaction entre la roche et l’eau chargée en CO2 (Source : CarbFix).

Réchauffement climatique et compétitions de ski

Le réchauffement climatique est en train de devenir une menace pour les stations de sports d’hiver et les compétitions de ski, même à des altitudes élevées. Il y a quelques semaines, j’indiquais que le glacier de Tignes, à 3100 mètres d’altitude, ouvrirait avec du retard aux entraînements de l’équipe de France. Les skieurs professionnels se rendent parfaitement compte de la situation. Sur son site web, France Info fait part du cri du cœur posté sur Twitter par la skieuse internationale Anne-Sophie Barthet qui se désole devant le triste spectacle donné par le glacier de Tignes où elle a « l’impression de voir les vestiges de ce qu’était un glacier avant. »

Malgré la rapidité des effets du réchauffement climatique en montagne, le monde du ski essaie de garantir la tenue des compétitions. Aujourd’hui, à Tignes et ailleurs, on se tourne vers les glaciers. Ainsi, la première course de Coupe du monde vient d’avoir lieu à Sölden (Autriche) sur le glacier du Rettenbach, à 3.000 mètres d’altitude. Des températures bien plus élevées que la moyenne depuis le début du mois d’octobre ont obligé les organisateurs à préparer la piste avec de la neige stockée depuis l’hiver dernier.
Comme je le faisais remarquer dans des notes récentes à propos des stations savoyardes de Bessans et du Grand-Bornand, le stockage est l’une des deux réponses au manque d’enneigement avec les enneigeurs, autrement dit les canons à neige artificielle. A côté de ces solutions bien connues, les stations de ski les plus riches comme Val d’Isère investissent dans la technologie. Les pistes sont notamment équipées de capteurs GPS qui indiquent avec précision aux dameuses la hauteur de neige et donc le travail à effectuer sur chaque secteur. Les enneigeurs sont de plus en plus performants, plus économes en énergie et en eau. Le directeur du Club des sports de Val d’Isère se veut optimiste, mais il ne faudrait pas qu’il oublie que la production de neige par les canons suppose des températures suffisamment basses pour que ce type d’équipement puisse fonctionner, ainsi que des réserves suffisantes en eau, ce qui pourrait ne plus être le cas si les épisodes de sécheresse se multiplient.
Le directeur des courses féminines de la Fédération internationale de ski se félicite des progrès du stockage de neige et des canons et affirme que « le réchauffement climatique n’est pas encore un sujet majeur dans nos réflexions sur le calendrier des épreuves de Coupe du monde, mais c’est un sujet qui va devenir de plus en plus important parce que nous observons la tendance d’un hiver de plus en plus tardif dans certains endroits du monde ». Selon ce Norvégien, « les sports de neige seront peut-être différents dans 50 ou dans 100 ans […] et des solutions vont être trouvées. » Il ne peut pas imaginer que le ski disparaisse complètement. Tout le monde dans le monde du ski ne partage pas cet optimisme…

Quelle que soit l’altitude, les canons sont l’une des principales solutions pour pallier le manque de neige (Photos: C. Grandpey)

Islande: de la géothermie au stockage du CO2 // Iceland: from geothermal energy to the storage of CO2

drapeau-francaisLa Banque Européenne d’Investissement vient de signer un accord de 125 millions d’euros avec Landsvirkjun, la compagnie nationale d’électricité islandaise, pour financer une nouvelle centrale géothermique à Theistareykir, à 30 km au SE de Husavik, dans le nord-est de l’Islande. Le financement servira à la conception, la construction et l’exploitation d’une centrale de 90 MW et ses puits géothermiques. Neuf d’entre eux, de plus de 50 MW, ont déjà été forés et testés.

Source : Iceland Review.

L’Islande pourrait aussi être l’endroit idéal pour stocker dans son sol l’excès de dioxyde de carbone présent dans l’atmosphère. En effet, alors que le monde évolue lentement vers les énergies renouvelables, il serait souhaitable de limiter le dioxyde de carbone produit par les combustibles fossiles. Certains chercheurs essayent de capter le CO2 émis par les cheminées d’usines en utilisant le moins d’énergie possible. D’autres travaillent sur des lieux de stockage éventuels.

C’est ainsi qu’une équipe dirigée par des chercheurs de l’Université de Southampton a participé au projet CarbFix, à côté d’une centrale géothermique dans la périphérie de Reykjavik. Cette centrale exploite une source de vapeur produite par le magma à faible profondeur, en sachant que du CO2 et des gaz soufrés d’origine volcanique sont émis en même temps que la vapeur. Le but est de capter le gaz et de le réinjecter dans le sous-sol. Le processus se fait avec un puits d’injection foré dans le soubassement basaltique. Les chercheurs séparent le dioxyde de carbone de la vapeur produite par la centrale et l’envoient vers un puits d’injection. Le dioxyde de carbone est injecté dans un tuyau qui de trouve lui-même logé à l’intérieur d’un autre tuyau rempli d’eau en provenance d’un lac situé à proximité. A plusieurs dizaines de mètres de profondeur, le dioxyde de carbone est libéré dans l’eau où la pression est si élevée qu’il se dissout rapidement. Ce mélange d’eau et de dioxyde de carbone dissous, qui devient très acide, est envoyé plus profondément dans une couche de roche basaltique où il commence à lessiver des minéraux comme le calcium, le magnésium et le fer. Les composants du mélange finissent par se recomposer et se minéraliser en roches carbonatées.
Les chercheurs ont été surpris de voir à quelle vitesse la roche islandaise absorbe le CO2. Des expériences en laboratoire ont montré qu’il faudrait des décennies pour que le CO2 injecté dans le basalte parvienne à minéraliser. Les résultats du projet islandais démontrent, quant à eux, que la minéralisation pratiquement intégrale du CO2 in situ dans les roches basaltiques peut se produire en moins de 2 ans.
Suite à ce premier succès, Reykjavik Energy, qui exploite la centrale géothermique, a accéléré l’injection de CO2 au cours des deux dernières années. Les techniciens vont bientôt injecter dans le sous-sol un quart du CO2 émis par la centrale. Le coût du projet est relativement faible, d’environ 30 dollars par tonne de CO2.
Malgré son succès, il n’est pas certain que cet exemple de stockage du CO2 en Islande puisse être appliqué dans le monde entier. On ne sait pas vraiment ce qui permet la minéralisation rapide sur le site de CarbFix. Ce peut être dû à une combinaison de caractéristiques géologiques du sous-sol et de la géochimie des eaux souterraines, bien que les chercheurs pensent que leur approche de dissolution du CO2 dans l’eau avant l’injection joue un rôle important. D’autres expériences ailleurs dans le monde ont révélé des taux plus lents de minéralisation. En conséquence, même si le projet CarbFix est encourageant, il y a encore de grands défis à relever si l’on veut utiliser cette technologie pour réduire les émissions de gaz à effet de serre dans l’atmosphère.
Vous trouverez plus de détails sur ce projet en cliquant sur ce lien: Ars Tecnica.

 —————————————

drapeau-anglaisThe European Investment Bank has signed a 125-million-euro loan agreement with Landsvirkjun, the National Power Company of Iceland, to finance a new geothermal power station at Þeistareykir, 30 km SE of Húsavik in north-eastern Iceland. The financing will be used to support the design, construction and operation of a new 90 MW geothermal power station and its geothermal wells. Nine of these, with over 50 MW capacity have already been drilled and tested.

Source: Iceland Review.

Iceland could also be the right place to store in its ground the excess of carbon dioxide in the atmosphere. Indeed, as the world continues to slowly shift to renewable energy, it would be great to limit the carbon dioxide produced from the fossil fuels. Some researchers are working on capturing that CO2 from smokestacks using as little energy as possible. Others are working on places to put it.

A team led by a University of Southampton researcher was involved in the CarbFix project, located next to a geothermal power plant outside Reykjavik. This plant basically taps a source of steam above Iceland’s shallow magma chambers, but some volcanic CO2 and sulfur gas come along with it. The goal is to capture that gas and stick it back underground. That’s done with an injection well drilled down into basalt bedrock. The researchers separate the carbon dioxide from the steam produced by the plant and send it to an injection well. The carbon dioxide gets pumped down a pipe that’s actually inside another pipe filled with water from a nearby lake. Dozens of metres below the ground, the carbon dioxide is released into the water, where the pressure is so high that it quickly dissolves. That mix of water and dissolved carbon dioxide, which becomes very acidic, gets sent deeper into a layer of basaltic rock, where it starts leaching out minerals like calcium, magnesium and iron. The components in the mixture eventually begin to mineralize into carbonate rocks.

The researchers were surprised to see how quickly it all happened. Laboratory experiments have shown that it ought to take decades for CO2 injected into basalt to mineralize. However, the results of this study demonstrate that nearly complete in situ CO2 mineralization in basaltic rocks can occur in less than 2 years.

Following on this early success, Reykjavik Energy, which operates the geothermal power plant, has ramped up injection over the past couple years. They’ll soon be injecting a quarter of the CO2 released by the plant. The cost of the project is comparatively low, about $30 per ton of CO2.

Although successful, it is not sure this breakthrough demonstration of CO2 storage can be emulated around the world. It’s not entirely clear what allowed such rapid mineralization about the CarbFix site. It could be some combination of characteristics of the geology and groundwater chemistry, although the researchers think their approach of dissolving the CO2 in water before injection played a role. Other experiments elsewhere in the world have revealed slower rates of mineralization. As a consequence, even though the CarbFix project is encouraging, there are still some big challenges to be met if we want to use this technology to reduce greenhouse gas emissions in the atmosphere.

More details on the project by clicking on this link: Ars Tecnica.

Islande-centrale

Photo: C. Grandpey