Vers un changement de comportement du Kilauea (Hawaï) ? // Towards a change in behaviour of Kilauea (Hawaii) ?

Le 14 janvier 2026, après la fin de l’Épisode 40, un nouvel essaim sismique a été enregistré sous le cratère Halemaʻumaʻu, au sommet du Kilauea. Cette activité sismique a progressivement diminué en fréquence et en intensité sur une période de 40 minutes. Comme on peut le voir sur la carte ci-dessous, les épicentres de ces séismes sont largement répartis dans la partie Est du cratère de l’Halemaʻumaʻu et la caldeira sud. Tous les séismes avaient une magnitude inférieure à M2,0, et de M1,0 ou moins pour la plupart.

Localisation des quelque 300 séismes enregistrés entre le 12 et le 22 janvier 2026 dans la région sommitale du Kilauea.

Il s’agit du troisième essaim sismique sous le cratère de l’Halemaʻumaʻu depuis la fin de l’Épisode 40. Les deux premiers essaims présentaient des magnitudes similaires. La plupart des séismes semblent se produire dans le secteur de la chambre magmatique superficielle de l’Halemaʻumaʻu, à une profondeur de 1,5 à 4 km.
La plupart de ces séismes sont volcano-tectoniques, liés à l’ouverture de fissures sous l’effet de la pression magmatique. Une activité sismique d’une telle intensité n’avait jamais été observée au sommet du Kilauea depuis le début de l’éruption en décembre 2024. Reste à savoir si ces essaims sismiques auront un impact sur l’activité des fontaines de lave en surface.
Actuellement, toute l’activité éruptive se concentre sous la caldeira du Kilauea et rien n’indique que le magma s’éloigne de cette zone. Les zones de rift est et sud-ouest ne montrent aucun signe de réveil pour le moment.

Dans un communiqué publié le 23 janvier 2026, l’Observatoire volcanologique d’Hawaï (HVO) indique que l’éruption qui a débuté le 23 décembre 2024 dans le cratère de l’Halema’uma’u au sommet du Kīlauea, se poursuit après 40 épisodes de fontaines de lave. Les dernières données montrent que la pression à l’intérieur de la chambre magmatique superficielle, située sous le sommet du Kīlauea, augmente lentement et pourrait (le conditionnel est de rigueur) à terme modifier la dynamique éruptive.
On ne sait pas quel sera l »impact des récents essaims sismiques sur le prochain épisode de fontaines de lave, mais aucune modification des déformations du sol ne laisse entrevoir une intrusion magmatique dans une nouvelle zone. L’Observatoire suggère plusieurs scénarios possibles pour les mois à venir :
– Poursuite de l’éruption. La lave pourrait continuer à jaillir des bouches éruptives nord et sud dans l’ l’Halemaʻumaʻu pendant une durée et un nombre d’épisodes imprévisibles.
– Une ou plusieurs nouvelles bouches éruptives pourraient se former au sommet ou dans la partie supérieure de la zone de rift sud-ouest, avec des projections de lave à proximité des bouches existantes, ou bien à l’intérieur de la caldeira sommitale.
– Une autre possibilité est une intrusion magmatique ou une éruption dans la zone de rift Est : du magma pourrait migrer vers cette zone et provoquer potentiellement une éruption. Cependant, compte tenu de l’emplacement des bouches éruptives et des déformations de la zone sommitale, ce scénario est le moins probable.
Source : HVO.

Inflation du Kilauea sur 2 jours :

Inflation du Kilauea sur 3 mois :

Source: HVO

Le communiqué du HVO illustre la difficulté de prévoir le comportement d’un volcan, même celui du Kilauea, qui est truffé d’instruments et fait l’objet d’une surveillance étroite. La même remarque pourrait s’appliquer au Piton de la Fournaise (Île de la Réunion), un volcan de point chaud, lui aussi. La dernière éruption a mis longtemps à démarrer et a parfois décontenancé l’OVPF, l’observatoire local, avec des éruptions avortées en décembre et le 1er janvier 2026.

————————————————

On January 14 2026, following the end of Episode 40, a new seismic swarm was recorded beneath Halemaʻumaʻu crater at the summit of Kilauea. Elevated seismic activity gradually died down in frequency of occurrence and intensity, over the course of 40 minutes. Locations of these earthquakes are spread broadly beneath east side of Halemaʻumaʻu crater and the south caldera. All of the detected earthquakes have been less than magnitude M2.0, with most being magnitude M1.0 or smaller.

This is the third small swarm of earthquakes beneath Halemaʻumaʻu crater since the end of episode 40. The first and second swarms both had magnitude ranges similar to the third. Most of the earthquakes seem to be occurring around the shallow Halemaʻumaʻu magma chamber, some 1.5 to 4 km beneath the surface.

Most of the earthquakes are volcano-tectonic earthquakes that accompany crack opening due to magmatic pressure. Elevated seismic activity of these intensities have not been seen at the summit since the start of the eruption in December 2024. It is yet to be determined if these swarms after Episode 40 will have an impact on lava-fountaining activity at the surface.

Currently all of the activity remains beneath Kīlauea caldera and there is no observable evidence that magma is migrating away from this area.  Both the east and the southwest rift zones remain quiet at this time.

In an information statement released on 23 January 2026, the Hawaiian Volcano Observatory (HVO) indicates that the eruption that began within Halemaʻumaʻu at the summit of Kilauea volcano on December 23, 2024, continues after 40 lava fountaining episodes. Monitoring data show that the modeled pressurization within the shallow Halemaʻumaʻu magma chamber beneath Kīlauea’s summit has been slowly increasing over time and could eventually result in a change to the eruption dynamics.

The impact of the recent earthquake swarms on the next episode of lava fountaining, if any, is unknown at this time, but there have not been changes in ground deformation patterns to suggest that magma has intruded or is intruding into a new area.

In its statement, the HVO explains that it is not possible to forecast an exact outcome of the latest seismic activity on the behaviour of Kilauea. The Observatory suggests some potential scenarios in the coming months :

  • The eruption continues. Lava could continue to erupt from the north and south vents in Halemaʻumaʻu for an unforeseeable amount of time or number of episodes.
  • One or several new vents might form in the summit region or upper Southwest Rift Zone, erupting lava near the existing vents in Halemaʻumaʻu, or nearby within the summit caldera.
  • Another possibility is an East Rift zone intrusion or eruption: Magma could migrate into East Rift Zone, potentially resulting in an eruption there. However, given the vent locations and summit region deformation patterns, this is the least likely scenario.

Source : HVO.

This statement shows the difficulty to predict a volcano’s behaviour, even on Kilauea which is fully monitored. The same remark is valid for Piton de la Fournaise (Reunion Island), a similar hotspot volcano. The last eruption took a long time to start and puzzled the OVPF. the local observatory, with aborted eruptions in December and on January 1st 2026.

Yellowstone et Hawaï : une histoire de points chauds // Yellowstone and Hawaii: a history of hotspots

Ceux qui s’intéressent au monde des volcans connaissent probablement les Yellowstone Caldera Chronicles, une publication hebdomadaire proposée par des scientifiques et des collaborateurs de l’Observatoire Volcanologique de Yellowstone (YVO). La dernière chronique pose une question intéressante : Qu’ont en commun Yellowstone et Hawaï ?

Yellowstone et l’archipel hawaïen sont des exemples spectaculaires de systèmes volcaniques actifs dans le monde, et chacun attire des millions de visiteurs chaque année. Ces systèmes volcaniques sont séparés par près de 5 000 km et ont des comportements très différents. Yellowstone ne possède pas de grandes structures volcaniques mais présente plutôt des caldeiras dessinées par des éruptions explosives de magma rhyolitique. Suite à leur formation, les caldeiras de Yellowstone ont eu tendance à se remplir de coulées de rhyolite visqueuses et de dômes qui donnent naissance à de vastes plateaux.

Photo: C. Grandpey

En revanche, l’activité volcanique à Hawaï tend à édifier des volcans en forme de boucliers, comme le Mauna Loa, où l’on observe de nombreuses coulées de lave fluide. Les volcans hawaïens peuvent présenter, eux aussi, des caldeiras, même si elles sont beaucoup plus petites que celles de Yellowstone. Ils entrent en éruption beaucoup plus fréquemment que Yellowstone, en émettant généralement des laves basaltiques fluides. De plus, les éruptions hawaïennes ont tendance à être beaucoup moins puissantes que celles de Yellowstone. Malgré ces différences de comportement éruptif et d’apparence extérieure, Yellowstone et Hawaï présentent des similitudes.

Vue du Mauna Loa (Photo: C. Grandpey)

La plupart des systèmes volcaniques dans le monde sont liés soit à des zones de subduction, où une plaque tectonique glisse sous une autre (comme sous la Chaîne Cascade dans l’ouest des États-Unis), soit à des zones d’accrétion, où un écartement dans la croûte terrestre favorise l’ascension du magma, comme le long de la dorsale médio-Atlantique. À côté de cela, le volcanisme à Hawaï et à Yellowstone est plutôt généré par des panaches mantelliques, autrement dit des zones où le magma à très haute température réussit à percer la surface. Lorsque ce magma très chaud se rapproche de la surface, il fait fondre la croûte, ce qui conduit à la mise en place d’un système magmatique capable de produire des éruptions volcaniques.

Volcanisme de point chaud (Source: Smithsonian Instutution)

Les panaches mantelliques fonctionnent indépendamment de la tectonique des plaques ; ils restent généralement stationnaires alors que les plaques tectoniques se déplacent au-dessus d’eux. En conséquence, les systèmes magmatiques comme ceux d’Hawaï et de Yellowstone produisent des chapelets de volcans dont l’âge évolue avec la longueur. Par exemple, au cours des 16 derniers millions d’années, le point chaud qui alimente actuellement Yellowstone a produit plusieurs systèmes de caldeiras allant de la caldeira McDermitt dans le sud-est de l’Oregon et le nord du Nevada, jusqu’à la celle de Yellowstone dans le nord-ouest du Wyoming

Ces différents systèmes volcaniques étaient semblables à la caldeira de Yellowstone ; en effet, ils produisaient de grosses éruptions explosives avant que le mouvement de la plaque n’éloigne le système suffisamment du point chaud – ou hotspot – et coupe l’alimentation par le panache mantellique. C’est ainsi qu’un nouveau centre volcanique s’est formé au nord-est du précédent, au-dessus du nouvel emplacement du panache mantellique. La partie orientale de la plaine de la Snake River dans le sud de l’Idaho marque cette chaîne d’ anciennes éruptions de Yellowstone ; elle ‘vieillit’ au fur et à mesure que l’on se déplace vers le sud-ouest de la caldeira de Yellowstone.

Carte du nord-ouest des États-Unis montrant les principales structures volcaniques associées au panache mantellique qui se trouve actuellement sous la caldera de Yellowstone. Les couleurs indiquent des compositions basaltiques (en bleu) et rhyolitiques (en rouge), avec des nuances indiquant l’âge (les nuances plus sombres sont plus anciennes). Les chiffres, avec des âges approximatifs en millions d’années, correspondent aux grandes lignes de caldeiras formées par le point chaud de Yellowstone. (Source: YVO)

De la même façon, le hotspot actuellement sous Hawaï est responsable de la formation de la chaîne Hawaiian Ridge-Emperor Seamount au cours des 80 derniers millions d’années. Les volcans de cette chaîne vieillissent de plus en plus en allant vers le nord-ouest dans l’océan Pacifique. Les plus anciens centres éruptifs hawaïens se trouvent au large de la côte du Kamtchatka, en Russie.

Source: HVO

Étant donné que Yellowstone et Hawaï sont tous deux alimentés par des panaches mantelliques, on peut se demander pourquoi ces systèmes volcaniques se comportent si différemment et produisent des laves aussi différentes. Il y a plusieurs raisons, mais la plus significative est peut-être la nature de la croûte terrestre dans les deux sites. Hawaï est situé sur la croûte océanique qui est beaucoup plus mince (environ 10 km d’épaisseur) que la croûte continentale présente à Yellowstone (environ 45 km d’épaisseur). Comme la croûte est plus fine sous Hawaï, le magma peut monter plus rapidement et plus facilement. Cela signifie qu’il n’a pas le temps de cristalliser ou d’interagir avec la croûte. Il a donc tendance à être émis sous forme de coulées de lave basaltique présentant une faible viscosité. Les éruptions ont aussi tendance à être plus fréquentes et plus réduites en volume.

Photo: C. Grandpey

En revanche, l’épaisse croûte continentale sous Yellowstone empêche le magma de s’élever facilement. En conséquence, il s’arrête et s’accumule et subit des transformations dans la croûte. Au fil du temps, ce processus a conduit à la mise en place d’un grand système magmatique qui couvre la majeure partie de la croûte sous Yellowstone et comprend un grand réservoir de magma rhyolitique dans la croûte supérieure (à des profondeurs de 5 à 19 km) qui alimente les éruptions et phénomènes hydrothermaux spectaculaires de Yellowstone.

Vue d’une petite portion de la caldeira de Yellowstone (Photo: C. Grandpey)

En conclusion, malgré leurs différences extérieures, les systèmes mantelliques qui alimentent le volcanisme à Yellowstone et à Hawaï ont beaucoup de points communs.

————————————————–

Those interested in the world of volcanoes are probably familiar with the Yellowstone Caldera Chronicles, a weekly publication by scientists and collaborators at the Yellowstone Volcano Observatory (YVO). The latest Chronicle asks an interesting question: What do Yellowstone and Hawaii have in common?

Yellowstone and the Hawaiian Islands are some of the most spectacular examples of active volcanic systems in the world, each drawing millions of visitors annually. These volcanic systems are separated by nearly 5000 kilometers and have dramatically different behaviors. Yellowstone doesn’t produce tall volcanic features, but instead forms large depressions in the ground, referred to as calderas, because of explosive eruptions of rhyolite magma. After formation, Yellowstone’s calderas tend to fill with viscous rhyolite lava flows and domes that form broad plateaus or steep dome-like structures that are often covered with pine trees.

In contrast, volcanic activity in Hawaii tends to build broad shield volcanoes such as Mauna Loa that are composed of numerous fluid lava flows and stand above the surrounding landscape.

Hawaiian volcanoes are often capped by calderas, albeit much smaller than those produced by Yellowstone. Hawaiian volcanoes also erupt much more frequently than Yellowstone, typically producing fluid basalt lavas, but individual eruptions tend to be much smaller than those from Yellowstone. Despite these differences in eruptive behavior and outward appearance, Yellowstone and Hawaii have some deeply rooted similarities.

Most volcanic systems around the world are related to either subduction zones, where one crustal tectonic plate slides under another — as beneath the Cascade Range in the western United States — or at divergent plate margins, where magma ascends as the crust is being pulled apart — often in the middle of ocean basins such as along the mid-Atlantic Ridge.

Volcanism in Hawai‘i and Yellowstone, however, is instead driven by mantle plumes, regions where Earth’s mantle is anomalously hot and buoyantly upwelling.

As the hot mantle rises to shallower depths, it causes melting that in turn leads to the development of a magmatic system which can produce volcanic eruptions.

Mantle plumes operate independently of plate tectonics and remain mostly stationary as the Earth’s tectonic plates move above them. As a result, magmatic systems such as those in Hawai‘i and Yellowstone produce chains of volcanoes that have an age progression along their lengths.

During the past 16 million years, the hot spot feeding Yellowstone caldera produced several caldera systems extending from McDermitt Caldera in southeastern Oregon and northern Nevada to Yellowstone caldera in northwest Wyoming.

Each of these now-buried volcanic systems was similar to Yellowstone caldera in that they produced large explosive eruptions before plate motion carried the system far enough away from the hot spot that access to the mantle plume was cut off. Eventually, a new volcanic center formed to the northeast of the previous one above the new crustal location of the mantle plume.

The eastern Snake River Plain of southern Idaho marks this chain of “ancient Yellowstones” that gets older as you move to the southwest from Yellowstone caldera.

Similarly, the hot spot under Hawai‘i is responsible for producing the Hawaiian Ridge-Emperor Seamount chain during the past 80 million years. Volcanoes in that chain get older the farther northwest you go across the Pacific Ocean from the Hawaiian Islands. The oldest “ancient Hawai‘is” are located off the coast of Kamchatka, Russia.

Given that Yellowstone and Hawai‘i are both powered by mantle plumes, why do these volcanic systems behave so differently?

There are many reasons, but perhaps the most significant is the nature of the crust in the two locations.

Hawaiʻi is located on oceanic crust, which is much thinner — about 6 miles thick — than the continental crust present at Yellowstone, which is about 28 miles thick. Because of the thinner crust underneath Hawai‘i, magma is able to rise more quickly and easily.

That means magma doesn’t have time to crystallize or interact with the crust and instead tends to erupt as runny, or low viscosity, basaltic lava flows. Eruptions also tend to be more frequent and smaller in volume.

In contrast, the thick continental crust underneath Yellowstone prevents magma from easily ascending. As a result, magma stalls and accumulates in the crust.

With time, this process has led to the development of a large magmatic system that spans most of the crust underneath Yellowstone and includes a large rhyolite magma reservoir in the upper crust — at depths of about 3 to 12 miles — that feeds Yellowstone’s dramatic eruptions.

Despite their outward differences, the fundamental engines that power volcanism in Yellowstone and Hawai‘i are quite similar.

Hawaï s’enfonce // Hawaii is sinking

Aujourd’hui, avec la fonte des glaciers et des calottes glaciaires due au réchauffement climatique, on parle beaucoup du rebond isostatique dans certaines régions du monde. Le substrat rocheux se soulève lentement car la masse de glace qui le surmonte est moins lourde. Certains scientifiques pensent même que le rebond isostatique pourrait favoriser la remontée du magma et déclencher des éruptions plus fréquentes. Cependant, nous manquons de recul pour confirmer cette hypothèse.
Sur l’archipel hawaïen, il n’y a pas de glaciers, bien que le Mauna Loa et le Mauna Kea, sur la Grande Île, culminent à plus de 4 200 mètres d’altitude. Une nouvelle étude révèle qu’Hawaï non seulement ne s’élève pas, mais s’enfonce 40 fois plus vite que les scientifiques le pensaient.
L’histoire géologique d’Hawaï est celle d’une ascension. Il y a plus d’un million d’années, lorsque la plaque tectonique Pacifique s’est déplacée et est arrivée au-dessus d’un point chaud dans la croûte terrestre, des îles volcaniques ont formé ce qui est devenu le 50e État des États-Unis. La Smithsonian Institution explique que « les quatre îles de Maui, Moloka`i, Lana`i et Kaho`olawe étaient autrefois toutes reliées et formaient une vaste masse continentale connue sous le nom de Maui Nui, littéralement « grand Maui ». À mesure que la plaque Pacifique éloigne les volcans hawaïens du point chaud, ils entrent en éruption moins fréquemment, puis ne sont plus alimentés et meurent. L’île s’érode et la croûte sous-jacente se refroidit, se rétrécit et s’enfonce, avant d’être submergée. Dans des millions d’années, les îles hawaïennes disparaîtront lorsque la bordure de la plaque Pacifique qui les soutient glissera sous la plaque nord-américaine et retournera dans le manteau. »

Source: Smithsonian Institution

Une nouvelle étude de l’Université d’Hawaï à Manoa, publiée dans la revue Communications Earth & Environment, indique que, contrairement à d’autres régions du monde, l’archipel est en train de s’enfoncer . L’étude analyse l’affaissement de l’île d’O’ahu, où se trouve Honolulu, la capitale de l’État. Les auteurs ont constaté que dans certaines zones de l’île, situées à 300 km au nord-ouest de la Grande Île – qui se trouve au-dessus du point chaud – l’affaissement atteint environ 0,6 millimètre par an. Cependant, les scientifiques ont également constaté que certaines zones s’enfoncent à un rythme environ 40 fois supérieur, soit environ 25 millimètres par an.
L’étude souligne que l’affaissement est un facteur majeur, mais souvent négligé, dans le cadre de l’exposition future aux inondations. Dans les zones à affaissement rapide, les effets de l’élévation du niveau de la mer se feront sentir beaucoup plus tôt que prévu, ce qui signifie que les autorités devront se préparer aux inondations dans un délai plus court. Cette situation s’explique en partie par le fait que les zones industrielles comme celle de Mapunapuna sont construites sur des sédiments et des remblais artificiels, ce qui, selon les chercheurs, entraîne un tassement plus rapide que dans d’autres zones d’O’ahu. Cette vitesse d’affaissement dépasse largement celle de l’élévation du niveau de la mer sur le long terme (environ 1,54 millimètre), et pourrait, à court terme, engendrer des problèmes pour le littoral de la région. Dans des secteurs comme la zone industrielle de Mapunapuna, l’affaissement pourrait agrandir la zone inondable de plus de 50 % d’ici 2050.
Certains organismes à O’ahu, comme Climate Ready O’ahu, une organisation scientifique et communautaire, s’attendent à devoir faire face à une élévation de plus en plus rapide du niveau de la mer et à une érosion de plus en plus importante des sols, ainsi qu’à d’autres phénomènes liés au réchauffement climatique, tels que les incendies de végétation et les crues soudaines. Si la conservation des zones humides et des écosystèmes dunaires contribuera à stabiliser les rivages, les chercheurs soulignent que la prise en compte de cette vitesse d’affaissement préoccupante sera essentielle pour mettre en place un véritable véritable calendrier nécessaire à la mise en œuvre des stratégies d’adaptation au réchauffement climatique.
Source : Popular Mechanics via Yahoo News.

—————————————————

Today, with the melting of glaciers and icecaps because of global warming, there is a lot of talk aboud the isostatic rebound in some regions of the world. The bedrock is slowly rising because of the lighter mass of the ice above. Some scientists even say that the isostatic rebound might favour the ascent of magma and trigger more frequent eruptions. However, we don’t have enough perspective to confirm this hypothesis.

On the Hawaiian archipelago, there are no glaciers, although Mauna Loa and Mauna Kea on the Big Island are rising more than 4,200 meters above sea level. A new study reveals that  .Hawaii Is sinking 40 times faster than scientists thought it was.

The geologic story of Hawaii has historically been one of ascension. More than a million years ago, when the Pacific Island Plate moved above a volcanic hotspot, volcanic islands formed what eventually became the U.S.’s 50th State. The Smithsonian Institution explains that « the four islands of Maui, Moloka`i, Lana`i, and Kaho`olawe were once all connected as a vast landmass known as Maui Nui, literally “big Maui.” As the Pacific plate moves Hawaii’s volcanoes farther from the hotspot, they erupt less frequently, then no longer tap into the upwelling of molten rock and die. The island erodes and the crust beneath it cools, shrinks and sinks, and the island is again submerged. Millions of years from now, the Hawaiian Islands will disappear when the edge of the Pacific plate that supports them slides under the North American plate and returns to the mantle. »

Now, a new study from the University of Hawai’i at Manoa, published in the journal Communications Earth & Environment, reports that the island chain may be reversing course. The study analyzes subsidence on the island of O’ahu, home of the state capital, Honolulu. The authors found that in some areas of the island, located 300 km northwest of the Big Island which rests on top of the hotspot, the subsidence rate was at around 0.6 millimeters per year. However, they also recorded areas that are sinking about 40 times that rate, at roughly 25 millimeters per year.

The suty highlights that that subsidence is a major, yet often overlooked, factor in assessments of future flood exposure. In rapidly subsiding areas, sea level rise impacts will be felt much sooner than previously estimated, which means that authorities should prepare for flooding on a shorter timeline.

Part of the reason for this discrepancy is that industrial areas such as the Mapunapuna area are built on sediment and artificial fill, which, according to the researchers, leads to increased compaction compared to other areas of O’ahu. This subsidence rate far outpaces the long-term rate of sea level rise, which is around 1.54 millimeters, and could cause problems for the region’s shoreline on a shorter timetable. In places like the Mapunapuna industrial region, subsidence could increase flood exposure area by over 50% by 2050.

Some institutions on O’ahu, such as the science-based, community-driven Climate Ready O’ahu, are preparing for increased sea level rise and increased soil erosion along with other climate change-induced events, such as wildfires and flash flooding. While the conservation of wetlands and dune ecosystems will help stabilize shorelines, the researchers note that taking into account this concerning rate of subsidence will be vital for understanding the true timeline required to implement climate adaptation strategies

Source : Popular Mechanics via Yahoo News.

Yellowstone (1) : le passé du super volcan // Yellowstone (1) : the past of the super volcano

Dans le dernier épisode de ses Yellowstone Caldera Chronicles, l’Observatoire Volcanologique de Yellowstone explique au public à quoi ressemblait Yellowstone avant que l’activité volcanique recouvre d’immenses étendues d’épaisses coulées de lave et de cendres.
Pour ce faire, les géologues ont examiné les zones bordant la région de Yellowstone, les chaînes de montagnes, les types de roches et les failles qui composent des secteurs comme la Chaîne Teton et Jackson Hole, et comme le chaînon Gallatin (Gallantin Range) et la Paradise Valley.
Comme je l’ai expliqué dans un article précédent, il y a environ 4 à 7 millions d’années, le point chaud de Yellowstone se trouvait sous le sud-est de l’Idaho où il alimentait les éruptions du champ volcanique Heise. Plusieurs grandes caldeiras ont été formées par des explosions majeures qui ont répandu des cendres sur le paysage jusqu’à Jackson Hole et la zone qui est aujourd’hui Yellowstone.
Le paysage prévolcanique de Yellowstone était principalement constitué de zones de haute altitude et il n’y avait pas de bassin comme c’est le cas aujourd’hui. Au lieu de cela, des chaînes de montagnes s’étendaient principalement du nord-nord-ouest au sud-sud-est. Les chaînes de montagnes Gallatin et Madison actuelles au nord étaient probablement reliées à la chaîne Teton et à d’autres montagnes au sud, formant des ensembles de chaînes continues qui étaient toutes délimitées par de grandes failles. Des chaînes délimitées par des failles comme celles-ci sont courantes dans tout l’ouest des États-Unis aujourd’hui. Elles font partie de la province Basin and Range, qui s’étend de l’est de la Californie à l’ouest du Wyoming et du Montana.
On peut voir les preuves de ces anciennes chaînes de montagnes continues dans les cartes montrant l’agencement des séismes et des bouches éruptives. Les cartes montrent plusieurs bandes de sismicité du nord-nord-ouest au sud-sud-est sous la caldeira de Yellowstone. Elles délimitent peut-être les failles encore existantes qui contrôlaient les chaînes de montagnes qui ont été détruites lorsque de grandes éruptions explosives ont commencé dans la région de Yellowstone.

Carte des séismes à Yellowstone entre 1973 et 2023. On remarquera dans la partie sud du Parc national de Yellowstone une série de bandes sismiques orientées nord-nord-ouest / sud-sud-est. Il se peut que ces alignements reflètent des failles associées à des chaînes de montagnes qui ont été détruites lors de la formation de la caldeira de Yellowstone il y a 631 000 ans.

Il existe également plusieurs alignements de points d’émission de lave rhyolitique orientés plus ou moins du nord-nord-ouest au sud-sud-est, actifs après la formation de la caldeira de Yellowstone, en particulier il y a environ 160 000 à 70 000 ans. Tout comme les schémas montrant les séismes, les alignements de bouches éruptives pourraient également avoir été contrôlés par les failles préexistantes associées aux chaînes de montagnes détruites.

Carte géologique de la caldeira de Yellowstone montrant les emplacements et les âges des éruptions de rhyolite les plus récentes. On remarquera deux séries d’alignements de bouches éruptives nord-nord-ouest / sud-sud-est. Il se peut qu’ils reflètent des orientations de failles sous-jacentes associées à des chaînes de montagnes qui ont disparu lors de la formation de la caldeira de Yellowstone il y a environ 631 000 ans.

Étant donné qu’il y avait des montagnes dans toute la région de Yellowstone avant les grandes explosions, l’érosion a été un processus déterminant. Les hautes chaînes de montagnes ont été progressivement érodées et les sédiments qui se sont détachés de ces sommets se sont accumulés dans les vallées à la base des chaînes. Certains de ces sédiments existent encore aujourd’hui; ils sont recouverts d’épaisses couvertures de cendres provenant des éruptions qui ont formé la caldeira de Yellowstone.
Les premières éruptions volcaniques de la région de Yellowstone ont commencé il y a au moins 2,2 millions d’années. La première des trois grandes éruptions ayant donné naissance à une caldeira s’est produite il y a 2,08 millions d’années; elle a répandu d’épaisses couches de cendres sur une très grande surface et modifié considérablement le paysage.
L’Observatoire Volcanologique de Yellowstone indique qu’aujourd’hui, de nombreux visiteurs du Parc national approchent la région par le nord, le sud ou l’ouest. Les géologues conseillent à ces personnes de prendre un moment pour apprécier le paysage qu’elles traversent. Ces zones illustrent aujourd’hui à quoi ressemblait Yellowstone il y a quelques millions d’années.

Voici le lien menant à l’article. Vous y trouverez les cartes avec une résolution plus élevée :
https://www.usgs.gov/observatories/yvo/news/what-did-yellowstone-look-it-became-wonderland

Source : USGS / YVO.

——————————————————–

In the latest episode of its Yellowstone Caldera Chronicles, the Yellowstone Volcano Observatory explains the public what Yellowstone looked like before volcanic activity covered huge swaths of land with thick lava and ash flows.

The geologists have looked at the characteristics of the areas bordering the Yellowstone region, at the mountain ranges, rock types, and faults that make up areas like the Tetons and Jackson Hole, and like the Gallatins and Paradise Valley.

As I explained in a previous post, during about 4–7  million years ago, the Yellowstone hotspot was located under southeastern Idaho, feeding eruptions occurring from the Heise volcanic field. That sequence included multiple large calderas that formed via major explosions, spreading ash across the landscape, including Jackson Hole and the area that is now Yellowstone.

The pre-volcanic Yellowstone landscape was mostly made of high-elevation areas and there was no basin present like there is today.  Instead, mountain ranges ran mostly north-northwest to south-southeast. Today’s Gallatin and Madison ranges in the north were probably connected to the Tetons and other mountains to the south, forming sets of continuous ranges that were all bounded by large faults.  Fault-bounded ranges like these are common throughout the western USA today. They are part of the Basin and Range province, which extends from eastern California to western Wyoming and Montana.

We can see the evidence for these formerly continuous mountain ranges in patterns of earthquakes and eruptive vents.  Seismicity maps show several north-northwest to south-southeast bands of earthquakes beneath Yellowstone Caldera, possibly delineating the still-existing faults that controlled the mountain ranges that were blown apart when large explosive eruptions began in the Yellowstone region. (see map above)

There are also several roughly north-northwest to south-southeast alignments of vents for rhyolite lava flows that erupted after Yellowstone Caldera formed, especially during about 160,000 to 70,000 years ago.  Just like patterns of earthquakes, the vent alignments might also have been controlled by the preexisting faults associated with the destroyed mountain ranges. (see map above)

Because there were mountains throughout the Yellowstone region before the big explosions, erosion was an important process.  The high mountain ranges were gradually being ground down, and sediments eroded from these peaks accumulated in valleys at the bases of the ranges.  Some of these sediments still exist today, capped by thick blankets of ash from caldera-forming eruptions of the Yellowstone system.

The first volcanic eruptions from the Yellowstone region began at least 2.2 million years ago, and the first of three great caldera-forming eruptions occurred 2.08 million years ago, spreading thick ash over a very large area and dramatically altering the landscape.

The Yellowstone Volcano Observatory indicates that today, many visitors to Yellowstone National Park approach the area from the north, south, or west. Geologists advise these persons to take a moment to appreciate the landscape they are traversing.  Those areas today exemplify what Yellowstone used to look like a few million years ago.

Here is the link leading to the article. You will find the maps with a higher resolution :

https://www.usgs.gov/observatories/yvo/news/what-did-yellowstone-look-it-became-wonderland

Source : USGS / YVO.