Kilauea (Hawaii): Radar et éruptions volcaniques // Radar and volcanic eruptions

Aucune activité de surface n’est observée sur le Kilauea depuis le 23 mai 2021. Si le HVO tient ses promesses, l’éruption ne sera plus en « pause » le 23 août ; elle sera bel et bien terminée ! Dans un nouvel article, les scientifiques de HVO expliquent comment ils utilisent le radar météorologique pour analyser les panaches émis par le Kilauea.

RADAR est l’acronyme de Radio Detection And Ranging, un outil largement utilisé depuis le début des années 1900. Aujourd’hui, le radar a de nombreuses applications : dans l’atmosphère pour suivre les systèmes météorologiques et l’activité aéronautique, dans l’espace pour imager la Terre et les corps extraterrestres à partir de satellites, et même dans le sol pour détecter des objets enfouis.
Pour fonctionner, le radar utilise une antenne qui concentre les impulsions d’énergie tout en balayant des directions et des angles spécifiques. Les impulsions se déplacent à la vitesse de la lumière et croisent des objets sur leur chemin, tels que des montagnes, des bâtiments, des avions, des oiseaux, des gouttes de pluie ou des cendres volcaniques. Lorsqu’une impulsion frappe un objet, une fraction de son énergie est réfléchie vers l’antenne. L’énergie réfléchie est ensuite mesurée et traitée pour fournir des valeurs de réflectivité. La réflectivité est plus sensible à la taille et à la forme d’un objet spécifique ; toutefois, dans la mesure où une impulsion peut interagir avec de nombreux objets simultanément, la concentration des objets est également importante.
Les antennes radar peuvent balayer à 360 degrés autour d’une station sur différents angles d’élévation et produire une couverture atmosphérique presque complète sur 150 kilomètres ou plus en quelques minutes seulement. C’est ainsi que les météorologues présentent une couverture presque continue des systèmes météorologiques dans le monde.
Le radar météorologique est également un outil extrêmement important pour étudier les éruptions volcaniques. Les systèmes radar utilisés pour mesurer la vitesse du vent peuvent également mesurer les structures de turbulence dans les panaches, ce qui permet aux scientifiques d’analyser comment ils absorbent l’air, grossissent et s’élèvent dans l’atmosphère. En utilisant des dizaines de scans par heure, ils peuvent mesurer l’évolution du panache et des éruptions dans le temps.
Le HVO explique comment les scientifiques ont utilisé les systèmes radar le 20 décembre 2020 lorsque le panache de vapeur émis par le lac d’eau dans le cratère Halema’uma’u s’est transformé en un panache volcanique. L’île d’Hawaï possède deux stations radar WSR-88D, à South Point (PHWA) et Kohala (PHKM). Le panache de l’éruption du 20 décembre 2020 était visible depuis les deux stations, de sorte que leurs données permettent de comprendre cette éruption.
Le lac d’eau au fond de l’ Halema’uma’u avait environ 50 mètres de profondeur et continuait de grandir lorsque le Kilauea est entré en éruption le 20 décembre. Une nouvelle fissure s’est ouverte au-dessus du lac sur la paroi du cratère à 21h30. (heure locale). Un grand volume de lave s’est déversé dans le lac. La lave a vaporisé l’eau et généré un volumineux panache.
Contrairement aux panaches de cendres émis par une bouche éruptive lors d’une éruption explosive, le panache du 20 décembre 2020 contenait peu de cendres. Il a commencé à s’élever immédiatement mais lentement pour atteindre jusqu’à 13 000 mètres d’altitude. À 23 heures, l’eau avait disparu, remplacée par un lac de lave.
Les mesures radar du panache ont été accessibles quelques minutes après son apparition et elles montrent clairement son développement, son élévation et son volume suite à l’ouverture de la nouvelle fissure. Le panache a ensuite décliné quand le lac s’est asséché. La visualisation 3D du panache montre comment sa hauteur et sa structure changent au fil du temps.
Les modèles radar peuvent être utilisés pour l’échantillonnage des dépôts du panache au sol et pour comparer les zones à haute réflectivité avec des phénomènes tels que la foudre afin de corréler les observations visuelles à la dynamique interne du panache. Les scientifiques peuvent aussi calculer la concentration dans le panache, son trajet, ainsi que le volume total de cendres transportées et déposées pendant l’éruption.
Un autre avantage du radar météorologique est son accessibilité. De nombreuses stations fournissent gratuitement des données en temps quasi réel. Elles sont accessibles via le logiciel Weather and Climate Toolkit de la NOAA. Toute personne intéressée par ces phénomènes peut analyser les données à partir de son ordinateur personnel. Le radar est de plus en plus utilisé en volcanologie et il sera de plus en plus utile au HVO dans les futurs scénarios d’éruption.
Source : USGS/HVO.

——————————————-

No surface activity has been observed at Kīlauea since May 23rd, 2021. If the Hawaiian Volcano Observatory (HVO) keeps its promise, the eruption will no longer living a pause on August 23rd, it will be over !

In a new article, HVO scientists explain how they use weather radar to investigate the plumes emitted by Kilauea volcano. RADAR is an acronym for Radio Detection And Ranging, a tool that has been broadly used since the early 1900s. Today, radar has many uses: in the atmosphere to track weather systems and aviation activity, in space to image the Earth and extraterrestrial bodies from satellites, and even in the ground to detect buried objects.

Radar operation uses an antenna that focuses pulses of energy as it scans specific directions and angles. The pulses travel at the speed of light and intersect objects in their path, such as mountains, buildings, airplanes, birds, raindrops, or volcanic ash. As a pulse hits an object, a fraction of its energy is reflected toward the antenna. The reflected energy is then measured and processed to give values of “reflectivity.” Reflectivity is most sensitive to an object’s size and shape, though since a pulse can interact with many objects simultaneously, the concentration of objects is also important.

Radar antennas can scan 360 degrees around a station at various elevation angles and produce nearly complete atmospheric coverage within 150 or more kilometres in just a few minutes. This is how meteorologists present nearly continuous coverage of weather systems worldwide.

Weather radar is also an extremely important tool for studying explosive eruptions. Radar systems used to measure wind speed can also measure turbulence structures in plumes, which allows scientists to track how they capture air, grow in size, and rise through the atmosphere. Using tens of scans per hour, they can measure plume and eruption evolution in time.

HVO explains how they used radar systems on December 20th, 2020 when the steam plume emitted by the water lake within Halema’uma’u crater turned into a volcanic plume.

The Island of Hawaii hosts two WSR-88D radar stations, at South Point (PHWA) and Kohala (PHKM). The December 20th, 2020, eruption plume was visible to both stations, so their data help understand this interesting eruption.

The water lake in Halema‘uma‘u was about 50 metres deep and growing when Kīlauea summit erupted on December 20t. A new fissure opened above the lake on the crater wall at 9:30 p.m. (local time). A large volume of lava spilled down into the lake, boiling the water, and producing a volcanic steam plume.

Unlike explosive ash plumes that erupt at high velocities directly from a vent, this plume originated from the boiling water, carried little ash, and began rising immediately but slowly, reaching 13,000 metres above sea level at its peak. By 11 p.m., the water had vanished, replaced by a growing lava lake.

Radar measurements of the plume were accessible minutes after the plume appeared and clearly show its development, increasing height and intensity with the opening of the new fissure, and detachment and decline after the water lake dried. The 3D visualization of the plume displays how plume height and structure through time.

The radar models can be used to locate areas of interest for sampling deposits from the plume on the ground, and to compare high reflectivity zones with phenomena like lightning to correlate visual observations to internal plume dynamics. Lastly, scientists can calculate concentration throughout the plume, the path of the plume, and the total ash volume transported and deposited during the eruption.

Another advantage of weather radar is accessibility. Many stations provide free publicly available near-real-time data, accessible through NOAA’s Weather and Climate Toolkit software. Anyone interested in radar and volcanoes can analyze data from their own computer. Radar is a vital and growing asset in volcanology that will be increasingly useful to HVO in future eruption scenarios.

Source : USGS / HVO.

 

Image du haut: Image radar 2D de la station PHWA (NOAA Weather and Climate Toolkit). Image du bas: Visualisation radar 3D (Google Earth). [Source: USGS]

Péninsule de Reykjanes (Islande) : Au cas où…// Reykjanes Peninsula (Iceland) : Just in case…

Comme je l’ai écrit précédemment, la sismicité est toujours relativement importante sur la Péninsule de Reykjanes. Les scientifiques locaux ont renforcé la surveillance, en particulier celle concernant l’inflation du Mont Þorbjörn qui pourrait être causée par une accumulation de magma. .
De nouveaux instruments ont été installés par l’Icelandic Met Office (IMO) qui a désormais accès aux données fournies par d’autres équipements de surveillance. L’IMO prévoit d’installer deux GPS, un sur le Mt Þorbjörn et un autre à l’ouest de la montagne. L’inflation dans la région a atteint environ 3 cm, après avoir progressé de 3-4 mm par jour depuis le 21 janvier 2020
L’Icelandic Met Office possède un sismomètre à l’ouest de Grindavík, un autre à l’extrémité nord de la Péninsule de Reykjanes ainsi qu’à Vogar et Krýsuvík. De plus, l’IMO aura accès aux données de trois ou quatre sismomètres supplémentaires qui sont utilisés pour un projet de recherche indépendant.
Des images satellites ainsi que la technologie InSAR sont également utilisées pour contrôler et évaluer l’inflation.
L’Icelandic Met Office dispose d’un réseau GPS dans toute la péninsule afin de pouvoir mesurer les mouvements à la surface de la terre. Par ailleurs, il pourra accéder aux données GPS de l’Institut des Sciences de la Terre.
L’accélération de la gravité sera mesurée par l’Islande GeoSurvey (Ísor) pour déterminer si le magma est toujours en train de s’accumuler.
Si une éruption devait se produire, une station radar, située sur le plateau de Miðnesheiði, fournirait des informations sur les panaches de cendre volcanique. Une autre station radar, actuellement implantée ailleurs sur l’île, sera installée à Reykjanes. Enfin, un LiDAR, utilisé pour mesurer les concentrations de cendre volcanique dans l’air, sera installé dans la zone. En cas d’éruption, il sera important de décider si les aéroports peuvent rester ouverts.
Source: Iceland Monitor.

———————————————

As I put it before, seismicity is still significant on the Reykjanes Peninsula, and local scientists want to better monitor the situation, including the inflation of Mt Þorbjörn which might be caused by magma accumulation. .

Additional monitoring equipment has been installed by the Icelandic Met Office (IMO)  and access to data from other monitoring equipment will be obtained. IMO expects to install two GPS devices – one on Þorbjörn volcano, and another one west of the mountain. Inflation in the area has reached about 3 cm, after amounting to 3-4 mm a day since January 21st, 2020

The Icelandic Met Office has one seismometer west of Grindavík, another one on the northernmost tip of Reykjanes as well as in Vogar and Krýsuvík. In addition, the Met Office will obtain access to data from three or four additional seismometers that have been used for a special research project.

Satellite pictures as well as InSAR technology are used as well to assess the inflation.

The Icelandic Met Office has a system of GPS devices throughout Reykjanes, measuring movements on the earth’s surface. The Met Office will obtain access to GPS data from the Institute of Earth Sciences.

In addition, gravity acceleration of the earth will be measured by Iceland GeoSurvey (Ísor) to help determine whether magma is accumulating.

In xase of an eruption, a radar station, located on Miðnesheiði plateau, would provide information about volcanic ash plumes. Another radar station, currently located elsewhere, will be installed in Reykjanes. Finally, a LiDAR, used to measure volcanic ash in the air, will be installed in the area. It would be important when determining whether airports can remain open.

Source : Iceland Monitor.

Vue de Grindavík et du volcan Þorbjörn (Crédit photo mbl.is / Kristinn Magnússon)

Interférométrie radar et prévision volcanique / Radar interferometry and volcanic prediction

drapeau francais.jpgUn article publié dans la revue Geophysical Research Letters indique que deux scientifiques de l’Université de Miami affirment pouvoir détecter les signes d’une éruption imminente en analysant des images satellites.

Leurs conclusions s’appuient sur une étude des volcans actifs de l’arc volcanique de la Sonde à l’aide de l’interférométrie radar à ouverture synthétique (InSAR). Grâce à cette technologie, ils ont découvert des preuves que plusieurs volcans gonflaient avant leur éruption, probablement sous l’effet de la poussée du magma.

L’étude s’appuie sur quelque 800 images InSAR montrant 79 volcans entre 2006 et 2009. Les chercheurs ont repéré des signes de gonflement sur six d’entre eux et trois édifices sont entrés en éruption au terme de la période de surveillance.

Il serait toutefois hasardeux de généraliser les conclusions des scientifiques à l’ensemble des volcans de la planète. Ils font d’ailleurs remarquer dans l’article que leurs observations concernent des volcans à chambre magmatique peu profonde (moins de 3 km).

L’interférométrie radar à usage volcanique n’est pas vraiment récente. Je me souviens d’une conférence il y a une dizaine d’années au cours de laquelle un scientifique vantaient les avantages de cette technologie qui a toutefois ses limites et ne saurait être appliquée seule à des volcans plus complexes, à chambre magmatique plus profonde.

On pourrait citer plusieurs volcans dont le seul gonflement ne suffit pas à annoncer une éruption : Yellowstone, Mauna Loa, Kilauea. On sait que Yellowstone peut gonfler périodiquement et dégonfler ensuite, sans autre activité visible. On sait que le Mauna Loa a gonflé récemment mais que l’éruption de 1984 reste la dernière de la série. La détection par satellite des successions d’épisodes de gonflement et de dégonflement du Kilauea (déjà en éruption) par satellite ne serait pas d’une grande utilité.

D’autres outils sont nécessaires pour essayer de comprendre le comportement de ces volcans et savoir si une éruption est en préparation. S’agissant des satellites, la détection d’anomalies thermiques est très utile pour des volcans isolés comme ceux du Kamchatka. Au sol, l’analyse classique des paramètres sismiques et chimiques reste cruciale et c’est souvent elle qui donne les meilleurs résultats.

La volcanologie avance, mais à petits pas. Notre capacité à prévoir les éruptions reste bien limitée !

Source : The RedOrbit.com – Your Universe Online.

————————————————-

drapeau anglais.jpgIn a new report published in the journal Geophysical Research Letters, two scientists from the University of Miami showed they may now be able to detect signs of an impending volcanic eruption by analyzing satellite imagery.

Using Interferometric Synthetic Aperture Radar (InSAR) over the active volcanoes in Indonesia’s west Sunda arc, the researchers uncovered evidence that showed the inflation of several volcanoes prior to their eruption, likely the result of rising magma.

The 800 InSAR images of 79 volcanoes used in the study were taken between 2006 and 2009. The scientists were able to detect signs of inflation at six volcanic centres, three of which erupted after the surveillance period.

However, one should be careful not to extend the scientists’ conclusions to all the volcanoes of the world. By the way, they say that their observations concerned volcanoes with shallow magma chambers (less than 3 km).

The use of radar interferometry on volcanoes is not recent. I can remember a conference some ten years ago with a scientist boasting the advantages of this technology which cannot really be used on complex volcanoes with deeper magma chambers.

One could cite the examples of volcanoes whose sole inflation does not mean that an eruption is about to occur: Yellowstone, Mauna Loa or Kilauea. It is well known that Yellowstone may periodically inflate and then deflate with no other visible activity. Mauna Loa recently inflated but the 1984 eruption is still the last one of the series. The satellite detection of the rapid succession of D/I events on Kilauea (which is erupting) would not be very useful.

More tools are necessary to try and understand the eruptive behaviour of these volcanoes. As fara s satellites are concerned, the detection of thermal anomalies is very useful on isolated volcanoes like those of Kamchatka. On the ground, conventional tools to analyse seismic or chemical parameters are still crucial. They often give the best results.

Volcanology is making slow progress and our ability to predict eruptions is still very limited!

Source : The RedOrbit.com – Your Universe Online.

radar interferometry,interférométrie radar,volcanic prediction,volcans,volcanoes

Le Vieux Fifèle, dans le Parc de Yellowstone (Photo: C. Grandpey)