Une exolune volcanique en dehors du système solaire ? // A volcanic exomoon outside the solar system ?

bLes exolunes, ou lunes gravitant autour de planètes en dehors de notre système solaire, sont en général trop petites pour être vues directement, mais les astronomes pensent que des exolunes volcaniques pourraient trahir leur présence en émettant d’énormes panaches de gaz volcanique. Des scientifiques ont découvert des preuves d’une lune potentiellement volcanique en orbite autour d’une planète au-delà de notre système solaire.
Io, la lune de Jupiter, est l’objet le plus volcanique de l’univers connu. Dans une étude publiée le 30 septembre 2024 dans les Astrophysical Journal Letters, des chercheurs du Jet Propulsion Laboratory (JPL) de la NASA expliquent qu’un objet du même type pourrait orbiter autour d’une exoplanète géante gazeuse ayant pour nom WASP-49 b. Elle est de la taille de Saturne et se trouve à 635 années-lumière de la Terre.
Un nuage de sodium détecté à proximité de WASP-49 b laisse supposer la présence d’une exolune. Alors que des études antérieures ont identifié plusieurs exolunes possibles, dont une potentiellement en orbite autour de WASP-49 b, l’existence réelle d’une exolune n’avait pas été confirmée jusqu’à présent.

Les signes d’une activité volcanique peuvent permettre de dévoiler de tels objets qui sont autrement trop petits et trop sombres pour être vus avec les télescopes modernes. De son côté, Io crache constamment des panaches de dioxyde de soufre, du sodium, du potassium et d’autres gaz qui peuvent former de vastes nuages jusqu’à 1 000 fois le rayon de Jupiter. Il est possible que les astronomes qui observent un autre système stellaire puissent détecter un nuage de gaz semblable à celui d’Io, même si la lune elle-même est trop petite pour être vue.
À l’aide du Very Large Telescope édifié au Chili, les chercheurs ont découvert que le nuage autour de WASP-49 b est situé bien au-dessus de l’atmosphère de la planète, tout comme le nuage de gaz généré par Io autour de Jupiter. De plus, la teneur élevée en sodium du nuage et ses changements soudains de taille indiquent qu’il s’agit d’un corps distinct en orbite autour de la planète. WASP-49 b et son étoile sont toutes deux composées principalement d’hydrogène et d’hélium, avec seulement des traces de sodium. Le nuage, quant à lui, semble provenir d’une source produisant environ 100 000 kilogrammes de sodium par seconde.
À deux reprises, les chercheurs de la NASA ont observé une augmentation soudaine de la taille du nuage alors qu’il n’était pas à proximité de la planète, ce qui signifie qu’il est alimenté par une autre source. Le nuage semble également se déplacer plus vite que la planète, ce qui confirme qu’il est généré par un autre corps, peut-être une exolune, se déplaçant indépendamment et plus vite que WASP-49 b. De plus, le nuage se déplace dans la direction opposée à celle qu’il devrait normalement prendre s’il faisait partie de l’atmosphère de la planète.
Un autre élément de preuve montrant que le nuage est indépendant de WASP-49 b est qu’il ne s’aligne pas sur le cycle orbital de 2,8 jours terrestres de la planète. À l’aide de modèles informatiques, les chercheurs montrent que la présence d’une exolune avec une orbite de huit heures autour de la planète pourrait expliquer les irrégularités du nuage.
Des études plus approfondies seront nécessaires pour confirmer le comportement du nuage. Selon les auteurs de l’étude, « les preuves sont très convaincantes que quelque chose d’autre que la planète et l’étoile produit ce nuage. Détecter une exolune serait tout à fait extraordinaire, et grâce à Io, nous savons qu’une exolune volcanique est possible. »
Source : NASA.

 

Vue d’artiste de l’exolune volcanique (Source : JPL / NASA)

———————————————

Exomoons, or moons around planets outside our solar system, are likely too small to see directly. But astronomers think volcanic exomoons could make themselves known by creating massive clouds of volcanic gas. Scientists have found new evidence of a potentially volcanic moon orbiting a planet beyond our solar system.

The Jupiter moon Io is the most volcanic object in the known universe. In a studypublished on September 30th, 2024 in the Astrophysical Journal Letters, researchers from NASA’s Jet Propulsion Laboratory (JPL) suggest a similar object may orbit a Saturn-size gas giant exoplanet named WASP-49 b, located 635 light-years from Earth.

A sodium cloud detected in the vicinity of WASP-49 b hints at the presence of an exomoon. While earlier studies have identified multiple exomoon candidates, including one potentially orbiting WASP-49 b, the existence of an exomoon has yet to be confirmed. Signs of volcanic activity may be the key to unveiling such objects that are otherwise too small and dim to see using modern telescopes. For example, Io, the most volcanic body in our solar system, constantly spews sulfur dioxide, sodium, potassium and other gasses that can form vast clouds around Jupiter up to 1,000 times the giant planet’s radius. It’s possible that astronomers looking at another star system could detect a gas cloud like Io’s even if the moon itself were too small to see.

In fact, using the European Southern Observatory’s Very Large Telescope in Chile, the researchers found that the cloud around WASP-49 b is located high above the planet’s atmosphere, much like the cloud of gas that Io produces around Jupiter. Additionally, the cloud’s high sodium content and sudden changes in size further indicate it is a separate body orbiting the planet. Both WASP-49 b and its star are composed mostly of hydrogen and helium, with only trace amounts of sodium. Meanwhile, the cloud appears to be coming from a source that is producing roughly 100,000 kilograms of sodium per second.

On two separate occasions, researchers also observed sudden increases in the size of the cloud when it was not next to the planet, meaning it is being refueled by another source. The cloud also appears to move faster than the planet, further suggesting it is generated by another body, possibly an exomoon, moving independently and faster than WASP-49 b.

The authors of the study think this is a really critical piece of evidence. The cloud is moving in the opposite direction that physics tells it should be going if it were part of the planet’s atmosphere.

Another piece of evidence suggesting the cloud is independent of WASP-49 b is that it does not align with the planet’s 2.8-Earth-day orbital cycle. Using computer models, the researchers show that the presence of an exomoon with an eight-hour orbit around the planet could explain the cloud’s irregularities.

Further study is needed to confirm the cloud’s behaviour. According to the study’s authors, « the evidence is very compelling that something other than the planet and star is producing this cloud. Detecting an exomoon would be quite extraordinary, and because of Io, we know that a volcanic exomoon is possible. »

Source : NASA.

Hawaii : mesure des gaz du Kilauea // Hawaii: Kilauea gas measurement

Selon le volcanologue français Haroun Tazieff, aujourd’hui disparu, l’étude des gaz volcaniques est une priorité car ils sont le moteur des éruptions. Deux gaz doivent surtout être étudiés : le dioxyde de soufre (SO2) et le dioxyde de carbone (CO2), même si d’autres gaz comme le sulfure d’hydrogène (H2S) et l’hélium (He) doivent également être pris en compte.
Un article récent Volcano Watch publié par l’Observatoire des volcans hawaïens (HVO) explique comment ces gaz sont mesurés entre les éruptions du Kilauea.
Lors des éruptions, le HVO signale fréquemment les taux d’émission de dioxyde de soufre (SO2) car c’est un moyen de suivre la progression de l’activité éruptive. Toutefois, pour les périodes précédant les éruptions, ou lorsqu’il y a une intrusion magmatique en cours sans éruption, le HVO s’appuie essentiellement sur des données géophysiques telles que la déformation du sol ou la sismicité, plutôt que sur des données géochimiques telles que les émissions de SO2.
Un autre type de gaz peut être important en période non éruptive : le dioxyde de carbone (CO2) qui a un comportement très différent du SO2 dans le système magmatique du Kilauea. Ces différences peuvent être exploitées pour mieux comprendre les processus qui se produisent sous la surface du sol. Par exemple, sur le Kilauea, le CO2 peut commencer à s’échapper du magma alors que ce dernier se trouve encore à plusieurs kilomètres sous la surface, alors que le SO2 est libéré de manière significative lorsque le magma se trouve à seulement quelques dizaines ou centaines de mètres sous la surface. Cela signifie souvent que l’on ne voit pas beaucoup de SO2 avant que la lave commence percer la surface.
Le problème du CO2 est qu’il est déjà présent en quantités très variables dans l’atmosphère, alors que le SO2 est normalement absent. Il est donc facile de détecter un signal de SO2 volcanique dans l’air ambiant, alors que le CO2 atmosphérique peut varier au cours d’une même journée, ainsi qu’avec les saisons.
Cependant, en coopération avec des chercheurs de l’Observatoire volcanologique des Cascades, le HVO a récemment accordé davantage d’attention aux données concernant le CO2 du Kilauea. L’Observatoire dispose d’une station multi-GAZ au sud-ouest de l’Halema’uma’u ; elle mesure quatre gaz volcaniques (CO2, SO2, H2S et vapeur d’eau), ainsi que des données météorologiques telles que la vitesse et la direction du vent.
Au lieu d’utiliser toutes les données CO2 de la station multi-GAZ, le HVO ne prend en compte que les données CO2 qui atteignent la station depuis certaines directions et certaines vitesses de vent. Cela permet d’essayer d’isoler le signal CO2 volcanique. Les scientifiques calculent des moyennes hebdomadaires de concentration de CO2. Une fois ce travail effectué, en examinant uniquement les données provenant de deux secteurs de Halema’uma’u (secteurs ouest et sud-est du cratère) avec des vitesses de vent modérées, ils obtiennent des tendances dans la concentration du CO2 en relation avec les récentes éruptions sommitales. En observant les données concernant ces deux directions du vent, les scientifiques ont pu constater que le CO2 semblait augmenter lentement et légèrement avant les éruptions sommitales du Kīlauea en juin et septembre. Après ces éruptions, les concentrations de CO2 ont chuté..
Aujourd’hui, depuis l’éruption de septembre, les concentrations de CO2 sont de nouveau en hausse, ce qui est probablement lié à l’intrusion magmatique dans les régions de stockage peu profondes situées sous la région sommitale et sous la caldeira sud.
Souvent, lorsque le Kīlauea entre en éruption, le HVO utilise le faible rapport CO2 / SO2 pour pouvoir dire que le magma alimentant l’éruption a été stocké à très faible profondeur, car ce rapport indique que le magma a déjà libéré la majeure partie de son CO2 avant l’éruption.
La prochaine étape de cette nouvelle méthode d’analyse des données gazeuses consistera à essayer de transformer les données de concentration de CO2 en taux d’émission de CO2, ce qui pourrait alors indiquer aux scientifiques non seulement que le magma est en train de monter à faible profondeur sous le Kilauea, mais aussi dans quelles proportions.
Source : USGS/HVO.

————————————————-

For late French volcanologist Haroun Tazieff, the study of volcanic gases should be given priority as they are what drives the eruptions. Two main gases need to be studied : sulfur dioxide (SO2) and carbon dioxide (CO2), although other gases such as hydrogen sulfide (H2S) and helium (He) should also be taken into account.

A recent Volcano Watch article by the Hawaiian Volcano Observatory (HVO) explains how these gases are measured between Kilauea’s eruptions.

During eruptions, HVO frequently reports sulfur dioxide (SO2) emission rates as a means of tracking the progression of eruptive activity. But for the periods before eruptions, or when there is an ongoing intrusion with no eruption, most of the data HVO relies on is geophysical data, such as deformation or seismicity, rather than geochemical data such as SO2 emissions.

There is another type of gas that can be important during non-eruptive periods :carbon dioxide (CO2) which behaves very differently from SO2 in Kilauea’s magmatic system. These differences can be exploited to help better understand processes occurring beneath the ground surface. For example, CO2 can begin to escape from Kilauea’s magma when it is still many kilometers beneath the surface whereas SO2 is largely released when magma is just a few tens or hundreds of meters beneath the surface. This often means we don’t see much SO2 being emitted until lava begins erupting at the surface.

The tricky thing about CO2 is that it is already present, and highly variable, in the atmosphere. This is different from SO2, which is not normally present. So it is easy to pick out a volcanic SO2 signal in ambient air measurements, but atmospheric CO2 can vary throughout the course of a day, as well as with the seasons.

Recently, however, in cooperation with researchers at the Cascades Volcano Observatory, HVO has been looking a little closer at CO2 data from Kilauea. The observatory has a multi-GAS station to the southwest of Halemaʻumaʻu that measures four volcanic gases (CO2, SO2, H2S and water vapor), as well as meteorological data such as wind speed and wind direction.

Instead of using all the CO2 data from the multi-GAS, HVO separates out CO2 data that reaches the station from certain directions at certain wind speeds. This allows to try to isolate the volcanic CO2 signal. The scientists calculate weekly averages of the CO2 concentration. Once they have done that, if they look only at data coming from two portions of Halemaʻumaʻu (the western and the southeastern parts of the crater) at moderate wind speeds, they see patterns in the CO2 concentration relative to the recent summit eruptions. For both wind directions, the scientists can see that CO2 coming from those directions appeared to increase slowly and slightly before the June and September Kīlauea summit eruptions. Once the eruptions occurred, CO2 concentrations dropped back down.

Today, since the September eruption, CO2 concentrations have been increasing again, and the increase is likely related to the intrusion of magma into the shallow storage regions beneath the summit and south caldera regions.

Often when Kīlauea erupts, HVO uses the low ratio of eruptive CO2 to SO2 to be able to say that the magma feeding the eruption was stored very shallow because that low ratio tells that the magma already degassed most of its CO2 before eruption.

The next step with this new data analysis method is to try to turn the CO2 concentration data into emission rates of CO2, which could then perhaps tell scientists not just that magma is rising to shallow depths beneath Kilauea, but how much magma is rising.

Source : USGS / HVO.

°°°°°°°°°°

Ces graphiques montrent les concentrations de dioxyde de carbone (CO2) dans deux zones sommitales du Kīlauea, de mars à octobre. Les carrés rouges et les cercles bleus représentent les moyennes hebdomadaires de concentration de CO2 mesurées à la station multi-GAZ du Kīlauea lorsque le vent vient de directions et à des vitesses spécifiques. Les symboles gris représentent les mesures individuelles (moyennes sur 30 minutes jusqu’à huit fois par jour). Les barres verticales roses représentent les éruptions du Kilauea de juin et septembre. (Source : USGS)

————————-

These plots show carbon dioxide (CO2) concentrations in two summit areas of Kīlauea, from March to October. The red squares and blue circles represent weekly averages of CO2 concentration measured at the Kīlauea Multi-GAS Station when the wind is coming from specific directions and at specific wind speeds. Gray symbols represent individual measurements (30-minute averages up to eight times per day). The pink vertical bars represent Kilauea’s June and September eruptions. (Source: USGS)

Islande : nouvelles de l’éruption // Iceland : news of the eruption

6 heures (heure française) : L’éruption continue à Litli-Hrútur (‘Petit Bélier’ en islandais) sur la péninsule de Reykjanes, à une trentaine de kilomètres de Reykjavik. Comme lors des événements précédents de 2021 et 2022, les webcams offrent de superbes vues de cette éruption. Elles sont très utiles car le site a été bouclé par la police en raison du danger que représentent les gaz toxiques qui s’échappent des fissures éruptives.
Selon le Met Office islandais, l’éruption, qui a commencé à 16h40 GMT le 10 juillet 2023, est beaucoup plus importante que les précédentes. Les volcanologues locaux affirment qu’elle émet au moins trois fois plus de lave que l’éruption de 2021 et un volume de gaz beaucoup plus important. Il s’agit d’une éruption fissurale classique, typique du volcanisme islandais.
Hier, la Protection civile avait déjà demandé au public de se tenir à l’écart du site de l’éruption en raison de son imprévisibilité et de sa nature évolutive. Les réseaux sociaux montrent malgré tout qu’il y a déjà beaucoup de monde sur le site de l’éruption!
Source : Iceland Monitor.

L’éruption vue par la webcam à 6 heures ce matin.

De mon côté, je n’ai pas prévu d’aller en Islande. Une fois la situation stabilisée, il y aura une foule de touristes sur le site éruptif. Pas trop mon truc. En fonction de la météo, cap sur les glaciers alpins.

++++++++++

11 heures : Ce n’est peut-être qu’une impression, mais au vu des images des webcams, l’éruption a l’air de marquer le pas. Il n’y a guère qu ‘une fontaine de lave active le long de la fissure éruptive. De plus, le tremor éruptif est moins vigoureux lui aussi. L’éruption est peut-être juste en train de reprendre son souffle…

L’éruption vue par la webcam à 11 heures

Source: IMO

++++++++++

18 heures : L’éruption se poursuit sur la péninsule de Reykjanes, mais son intensité a diminué. C’est normal pour ce type d’éruption fissurale. Ces éruptions ont tendance à être plus intenses lorsqu’elles commencent, en raison du gaz qui s’accumule dans la partie supérieure de l’intrusion magmatique. Après le début de l’éruption, la pression dans le système d’alimentation magmatique commence à baisser et, avec elle, l’intensité de l’éruption. Personne ne sait combien de temps durera l’éruption actuelle ; ce pourrait être une question de jours, voire de mois.
Les habitants de la péninsule de Reykjanes et de Reykjavík sont invités à garder leurs fenêtres fermées en raison de la pollution par les gaz. Pour l’instant, l’éruption ne menace ni les routes, ni les infrastructures, ni les zones habitées. Toutefois, le risque de gaz nocifs sur le site et ailleurs dans la région est important. C’est la raison pour laquelle il a été demandé aux curieux de se tenir à l’écart du site de l’éruption, une recommandation qui ne semblait pas vraiment respectée dans la matinée !
Source : Médias islandais.

Beaucoup de gaz ce soir sur le site de l’éruption

++++++++++

20 heures : L’accès au site de l’éruption a été ouvert à partir de la route côtière sud, connue sous le nom de route Meradalir. Aucune autre route ou accès routier n’a été ouvert.
Il faut marcher une vingtaine de kilomètres aller-retour pour atteindre la zone d’éruption.
Les autorités locales indiquent qu’il est important de garder à l’esprit que le site de l’éruption est une zone dangereuse où les conditions peuvent changer soudainement. La pollution par les gaz est un risque majeur qui augmente lorsque le vent faiblit. Des gaz potentiellement mortels peuvent alors s’accumuler dans les zones basses. De plus, de nouvelles fissures peuvent s’ouvrir rapidement.
Il est conseillé de s’habiller en fonction des conditions météorologiques, à emporter de la nourriture et à recharger les téléphones portables. La police rappelle que la conduite hors piste est formellement interdite.

Plan d’accès au site éruptif

—————————————————–

06:00 am (French time) : The eruption is going on at Litli-Hrútur (‘Little Ram’ in Icelandic) on the Reykjanes Peninsula, about 30 km from Reykjavik. Like during the previous events of 2021 and 2022, the webcams provide great views of the current eruption. They are very useful because the site has been cordoned off by the National Police due to the hazard caused by toxic volcanic gases escaping from the eruptive fissures.

The eruption, which commenced at 4.40pm GMT on July 10th, 2023, is significantly larger than previous ones in the area ;. Local volcanologists say it is emitting at least three times more lava than the 2021 eruption and a much larger volume of gases. It is a conventional fissure eruption, typical of Icelandic volcanism.

The Civil Protection had earlier asked the public to steer clear of the eruption site due to its unpredictability and evolving nature. However, the social networks show there are already quite a lot of folks on the eruption site!

Source : Iceland Monitor.

 ++++++++++

11am: It may just be an impression, but from the webcam images, the eruption seems to be slowing down. There isjust a single active lava fountain along the eruptive fissure. What’s more, the eruptive tremor is also less vigorous. Perhaps the eruption is just catching its breath…

++++++++++

06:00 pm : The eruption continues on the Reykjanes Peninsula, but it has decreased in intensity. This is normal for this type of fissure eruption. Such eruptions tend to be most powerful when they start, due to gas that accumulates high up in the magma intrusion. After the eruption begins, the pressure in the magma feeding system begins to drop and with it the intensity of the eruption. Nobody knows how long the eruption might last ; it could be a matter of days, or a matter of months.

Residents of the Reykjanes peninsula and the Reykjavík capital area are encouraged to keep their windows closed due to gas pollution. At the moment, the eruption does not threaten roads, infrastructure, or inhabited areas. However, the risk of gas pollution both at the site and elsewhere in the region is significant. This is the reason why civilians have been asked to stay away from the eruption site, a recommendation that didn’t really seem to be respected in the morning! .

Source : Icelandic news media.

++++++++++

08:00:pm : The area of the eruption sites has been opened from the southern coastal road, a route known as Meradalir route. No other roads or road access have been opened.

The walk towards the eruption zone is about 20 km back and forth.

Local authorities say that it is important to bear in mind that the eruption site is a dangerous area where conditions may change suddenly. Gas pollution is a major risk which increases when the wind gets lower. Then potentially lethal gases can accumulate in depressions. Moreover, new fissures can open up quickly.

People are also encouraged to dress for the weather, take food and charge mobile phones. The police also repeatedly say that off-road driving is forbidden.

Approche scientifique de l’éruption islandaise de 2021 // Scientific approach of the 2021 Icelandic eruption

Nous ne savons pas prévoir les éruptions, mais nous savons décrire le déroulement des événements éruptifs.
Des scientifiques de l’Université d’Islande et du Met Office islandais (IMO) ont publié deux articles dans la revue Nature, dans lesquels ils présentent le fruit de leurs observations lors de l’éruption de Fagradalsfjall en 2021. C’était la première éruption sur la péninsule de Reykjanes après 800 ans de calme volcanique.
Les études montrent que les précurseurs de l’éruption islandaise étaient différents de ceux qui ont précédé de nombreuses autres éruptions à travers le monde, et que la composition de la lave a évolué au fur et à mesure que l’éruption progressait.
Les chercheurs ont analysé l’activité sismique sur la péninsule de Reykjanes. Elle a commencé en décembre 2019, a culminé avec l’éruption du 19 mars 2021 et s’est poursuivie pendant environ six mois.

L’un des articles – intitulé « La déformation et le déclin de la sismicité avant l’éruption de Fagradalsfjall de 2021 » – s’attarde sur les précurseurs de l’éruption et montre dans quelle mesure ils diffèrent des précurseurs de nombreuses autres éruptions dans le monde.
Il y a eu une activité sismique intense sur la péninsule de Reykjanes dans les semaines qui ont précédé l’éruption de 2021, avec une libération de contraintes tectoniques dans la croûte terrestre. Cependant, pendant plusieurs jours avant l’éruption, la déformation du sol et l’activité sismique ont diminué dans la zone autour du site de l’éruption. Ce schéma précurseur est donc différent de ceux qui précèdent de nombreuses autres éruptions dans le monde, qui montrent souvent une augmentation de la déformation du sol et de la sismicité peu de temps avant le début de l’éruption, signe que le magma se fraye un chemin vers la surface.
Les auteurs de l’article expliquent que la situation observée sur le Fagradalsfjall a été provoquée par l’interaction entre le flux magmatique et les contraintes au niveau des plaques tectoniques. Lorsque le magma se fraye un chemin à travers la croûte avant une éruption, une contrainte tectonique est parfois libérée, ce qui provoque des séismes et une déformation du sol. Un déclin de la sismicité et de la déformation peut indiquer que ce processus touche à sa fin et que le magma est prêt à percer la surface.
Au cours de la période de trois semaines qui a précédé l’éruption de Fagradalsfjall, il y a eu à la fois une déformation de surface considérable et une forte sismicité. La cause était la mise en place d’un dyke magmatique vertical entre la surface et 8 km de profondeur. Dans le même temps, des contraintes tectoniques dans la croûte ont été libérées. Des séismes d’une magnitude pouvant atteindre M 5,6 ont été enregistrés dans les zones voisines.
Les scientifiques pensent que la baisse de la sismicité dans les jours qui ont précédé l’éruption peut s’expliquer par le fait que le magma avait alors presque atteint la surface, là où la croûte est la plus faible et où il y a donc moins de résistance.
Cette situation montre qu’il faut tenir compte de la relation entre les volcans et les contraintes tectoniques dans la prévision des éruptions. Une libération des contraintes tectoniques, suivie d’une diminution de la déformation et de la sismicité, peut précéder un certain type d’éruption.

Le deuxième article – intitulé « Déplacement rapide d’une source magmatique profonde sur le volcan Fagradalsfjall » – traite des changements dans la composition de la lave dans la Geldingadalir au cours de l’éruption.
Les scientifiques ont fréquemment échantillonné la lave au cours des 50 premiers jours de l’éruption et ils ont mesuré les gaz volcaniques autour du site éruptif. Ces mesures ont révélé que la lave du Fagradalsfjall provenait directement d’un réservoir magmatique à grande profondeur, à la frontière entre la croûte et le manteau, autrement dit la zone proche du Moho.
Une éruption avec du magma provenant directement de la zone proche du Moho n’a pas été observée dans d’autres éruptions en temps réel. Dans ces cas précédents, le magma provenait de profondeurs moindres de la croûte terrestre. On manque d’informations sur les parties les plus profondes des systèmes magmatiques. L’éruption du Fagradalsfjall a fourni à la communauté scientifique de nouvelles connaissances sur les processus impliqués.
Au début de l’éruption de 2021, la lave était relativement riche en magnésium, comparée à la lave d’autres éruptions historiques en Islande, ce qui révèle un apport de magma particulièrement chaud. Il y avait aussi beaucoup de dioxyde de carbone (CO2) dans les gaz volcaniques émis par la bouche éruptive, ce qui confirme un apport de magma très profond. Selon les scientifiques, cela montre que le magma a subi peu de refroidissement en remontant à travers la croûte jusqu’à la surface. On pense que le réservoir magmatique se trouvait à une quinzaine de kilomètres sous la surface.

L’étude de l’éruption révèle également que la composition de la lave du Fagradalsfjall a radicalement changé au fur et à mesure que l’éruption progressait. Cela laisse supposer que pendant l’éruption un nouveau magma est arrivé en provenance de profondeurs plus importantes que le magma déjà présent dans le réservoir.
Les scientifiques expliquent que l’on sait depuis longtemps que différents types de magma peuvent se mélanger en profondeur, dans les systèmes magmatiques, avant une éruption. Cette éruption présente des preuves en temps réel que ces processus se produisent.
De plus, les modifications de la composition des produits volcaniques montrent que du nouveau magma peut s’introduire rapidement dans un réservoir profond, dans un délai d’environ 20 jours, et se mélanger au magma déjà présent dans le réservoir, en déclenchant potentiellement l’éruption.
Ces découvertes peuvent aider à mieux comprendre les volcans et la géochimie du manteau et pourraient contribuer à l’élaboration de modèles de systèmes magmatiques partout dans le monde.

Source: Met Office islandais, Université d’Islande, The Watchers.

Il sera maintenant intéressant de comparer les conclusions de l’éruption de 2021 avec celles de l’éruption de 2022. Il faudra voir si la dernière éruption se situe dans le prolongement de celle de 2021 ou s’il s’agit de deux événements indépendants l’un de l’autre.

———————————————

We are not good at predicting eruptions, but we are dood at describing what happened.

Scientists from the University of Iceland, the Icelandic Met Office (IMO) have published two papers in the journal Nature, presenting new findings from the 2021 eruption at Fagradalsfjall. It was the first eruption on the Reykjanes Peninsula after 800 years of dormancy.

The studies show that the precursors to the eruption were unusual compared to many other eruptions across the world and that the composition of the lava changed as the eruption continued.

Researchers closely observed the seismic activity on Reykjanes Peninsula, which began in December 2019, culminated with the eruption on March 19th, 2021 and continued for around half a year.

One of the papers – titled “Deformation and seismicity decline before the 2021 Fagradalsfjall eruption” -discusses the precursors to the eruption and how they differ from the precursors of many other eruptions around the world.

There was a significant seismic activity on the Reykjanes Peninsula in the weeks leading up to the 2021 eruption, marked by tectonic stress release in the crust. However, for several days before the eruption, deformation and seismic activity declined in the area around the eruption site. This precursory pattern is different from those preceding many other eruptions around the world, which often show escalating rates of ground displacement and seismicity shortly before the eruption onset, as the magma forces its way to the surface.

The scientists behind the paper explain that the behaviour at Fagradalsfjall was caused by the interplay between magma flow and plate tectonic stress. As magma forces its way through the crust before an eruption, tectonic stress may be released, causing earthquakes and ground deformation in the early stages. A decline in seismicity and deformation may indicate that this process is coming to an end and that the magma may erupt.

During the three-week period preceding the eruption at Fagradalsfjall, there was both considerable surface deformation and a large number of earthquakes. This was caused by the emplacement of a vertical magma-filled dyke between the surface and a depth of 8 km. At the same time, tectonic stress in the crust was released. Earthquakes occurred in nearby areas, up to magnitude M 5.6.

The scientists also suggest that the decline in seismicity in the days before the eruption could be explained by the fact that the magma had then almost reached the surface, where the crust is weakest and there is therefore less resistance.

This situation shows that consideration must be given to the relationship between volcanoes and tectonic stress in eruption forecasting. A release of tectonic stress followed by a decline in deformation and seismicity rate may be a precursory activity for a certain type of eruption.

The second paper – titled “Rapid shifting of a deep magmatic source at Fagradalsfjall volcano, Iceland” – discusses the changes to the composition of the lava that flowed through Geldingadalir and the surrounding area as the eruption continued.

Scientists sampled the lava frequently during the first 50 days of the eruption and measured the volcanic gases around the eruption site. This revealed that the lava at Fagradalsfjall was directly sourced from a magma reservoir at great depth, at the boundary between the crust and the mantle – the near-Moho zone.

Eruption directly from the near-Moho zone has not been observed in other eruptions with real-time investigation. In these previous cases, the magma came from shallower levels in the crust. Until now, there has therefore been a lack of information about the deepest parts of magmatic systems. The eruption at Fagradalsfjall has provided the scientific community with new knowledge of the processes involved.

At the start of the eruption, the lava was relatively rich in magnesium in comparison with lava from other historical eruptions in Iceland, indicating an unusually hot magma supply. There was also a lot of carbon dioxide in the volcanic gases emitted from the eruption vent, indicating an unusually deep magma supply. The scientists explain that this suggests that the magma underwent little cooling on its way up through the crust to the surface. It is believed that the magma reservoir was located about 15 km from the surface.

The research also revealed that the composition of the lava at Fagradalsfjall radically changed as the eruption progressed. This suggests that during the eruption, a new magma was generated at greater depths than the magma already present in the reservoir.

The scientists point out that it has long been argued that different kinds of magma can mix deep in magmatic systems before an eruption. This study presents real-time evidence that these processes do occur.

Furthermore, changes to the composition of volcanic products show that new magma can flow into a deep reservoir rapidly, in a timescale of around 20 days, mixing with the magma already in the reservoir and potentially triggering the eruption.

These findings may aid our understanding of volcanoes and the geochemistry of the mantle and could support the development of models of magmatic systems all over the world.

Source: Icelandic Met Office, University of Iceland, The Watchers.

It will now be interesting to compare the conclusions of the 2021 eruption with those of the 2022 eruption. It will be particularly interesting to see if the last eruption is a continuation of that of 2021 or if they are two distinct events.

Captures d’écran de l’éruption de 2021