Un lien entre Cascadia et San Andreas ? // Link between Cascadia and San Andreas ?

Quand je présente mon diaporama « La Descente des Cascades » qui montre la chaîne volcanique du même nom, j’indique que sa présence est due à la subduction de la plaque tectonique Juan de Fuca qui plonge sous la plaque nord-américaine. Je signale par ailleurs que, comme dans toutes les zones de subduction, il existe – outre le risque volcanique – un risque sismique élevé dans les Etats d’Oregon et de Washington, même si la région ne se fait pas secouer très souvent.

Source: USGS

Selon une nouvelle étude menée par des chercheurs de l’Université d’État de l’Oregon et publiée en septembre 2025 dans la revue Geosphere, un puissant séisme sur la zone de subduction de Cascadia, dans le Nord-Ouest du Pacifique, pourrait déclencher un séisme d’une intensité semblable sur la faille de San Andreas, en Californie.

Zone de subduction de Cascadia et Faille de San Andreas, avec le cap Mendicino entre les deux (Source : USGS)

Ces conclusions reposent sur l’étude de sédiments prélevés au large du cap Mendocino, en Californie, et au large de l’Oregon. C’est au niveau de ce cap que se termine la faille de San Andreas et que commence la zone de subduction de Cascadia.

Il s’agit de deux systèmes de failles très différents, mais les relevés sédimentaires montrent que, par le passé, au moins trois séismes le long de la faille de San Andreas se sont produits quelques heures à quelques jours après d’importants séismes sur celle de Cascadia. Il se pourrait que sept autres se soient produits en quelques décennies, voire quelques années, voire moins.
Si les deux systèmes de failles sont réellement synchronisés, cela pourrait poser un réel problème pour les secours en cas de catastrophe, car les ressources ne seraient pas suffisantes pour répondre à deux séismes déclenchés simultanément ou à un court intervalle.
La zone de subduction de Cascadia peut provoquer des séismes extrêmement puissants. En 1700, la région a connu un séisme de magnitude estimée entre M8,7 et M9,2, qui a provoqué des tsunamis destructeurs jusqu’au Japon. De tels séismes sont causés par le mouvement de trois plaques océaniques (l’Explorer, la Juan de Fuca et la Gorda) qui glissent sous le continent nord-américain.
La faille de San Andreas, quant à elle, est une faille en décrochement où les masses rocheuses de part et d’autre de la faille se déplacent horizontalement. Le plus important séisme causé par cette faille fut celui de San Francisco (de magnitude M7,9) en 1906. Comme la faille traverse des zones densément peuplées, elle pourrait causer des dégâts considérables, comme lors du séisme de Loma Prieta en 1989, qui a fait 63 morts.

Séisme de Loma Prieta (Crédit photo : USGS)

Les deux systèmes de failles – Cascadia et San Andreas – se rejoignent au large de Mendocino, dans une zone dite de « triple jonction ».

Cap Mendicino

La découverte de cette zone s’est faite de manière fortuite. En 1999, des scientifiques effectuaient une campagne pour prélever des carottes de sédiments au fond de l’océan à Cascadia, à la recherche de signes de séismes anciens. Lors de cette mission, un problème technique a fait dévier le navire d’environ 100 kilomètres de sa position initiale. Les scientifiques, qui tentaient de dormir entre deux séances de travail, ne se sont rendu compte de l’erreur qu’à leur réveil. Ils ont tout de même décidé de prélever une carotte de sédiments à cet endroit. Lorsqu’ils ont analysé l’échantillon plus tard, ils ont découvert qu’il contenait un mystère.

Les turbidites [NDLR : Le terme turbidite désigne à la fois une unité géologique structurée composée de roches sédimentaires mises en place à la suite d’un écoulement de sédiments le long d’une pente sous-marine ou sous-lacustre, ainsi que les roches qui composent cette unité.] de l’échantillon ne présentaient pas une couche grossière au fond et une couche plus fine au-dessus, comme c’est généralement le cas. Cette carotte de la zone de San Andreas présentait des dépôts qui semblaient à l’envers, avec le sable à la surface. Les chercheurs n’ont pu donner aucune explication à cette inversion stratigraphique. Ils n’avaient pas non plus d’explication à un autre mystère étrange concernant ces échantillons offshore : les carottes prélevées au sud de la « triple jonction », dans la zone nord de San Andreas, semblaient illustrer des séismes correspondant à la chronologie des séismes enregistrés au nord de la triple jonction en Cascadia. Au cours des 1 300 dernières années, ils ont découvert 18 turbidites probablement d’origine sismique à Cascadia et 19 au large du nord de San Andreas. Dix d’entre elles semblent s’être déposées à 50 à 100 ans d’intervalle.
Plus surprenant encore, dans trois cas, le sable grossier de la couche supérieure était mélangé au sable plus fin de la couche inférieure. Cela laissait supposer que la couche supérieure s’était tassée alors que la couche inférieure était encore en mouvement. Cela pourrait signifier que les deux couches se sont déposées à quelques heures ou quelques jours d’intervalle. Cela incluait trois événements : le séisme de Cascadia de 1700, ainsi que ceux d’il y a 1 200 et 1 500 ans.
Il a fallu de nombreuses années pour effectuer des datations supplémentaires au Carbone 14 et comprendre ce qui s’est passé. Les scientifiques sont arrivés à la conclusion que ces turbidites de San Andreas pourraient correspondre à deux séismes différents : l’un, dans la région lointaine de Cascadia, n’aurait secoué que du limon et du sable plus légers ; l’autre, dans la zone de San Andreas serait survenu peu de temps après, localement plus fort, aurait déplacé des matériaux plus grossiers.
Dans cette nouvelle étude, les chercheurs pensent que les puissants séismes de la zone de Cascadia peuvent transférer des contraintes à la région voisine de San Andreas, provoquant un séisme le long de la faille de San Andreas peu après. Cascadia et la région nord de San Andreas sont très actives sur le plan sismique, et de nombreuses autres failles pourraient également entrer en jeu. L’interprétation des dépôts sédimentaires est complexe, et la datation au radiocarbone présente des incertitudes. D’autres études seront nécessaires pour confirmer l’hypothèse avancée dans la dernière étude.
Source : Live Science via Yahoo News.

 ———————————————

According to a new study by researchers at Oregon State University,, published in September 2025 in the journal Geosphere, a « Big One » on the Cascadia subduction zone in the Pacific Northwest might trigger a similarly serious earthquake on California’s San Andreas Fault. The findings are based on sediments taken from the seabed off the coast of Cape Mendocino, California and offshore Oregon. It is at Cape Mendocino that California’s famous San Andreas fault ends and the Cascadia subduction zone begins.

These are two very different fault systems, but the sediment record suggests that in the past, at least three San Andreas earthquakes have happened within hours to a couple of days after large Cascadia quakes. Another seven or so may have occurred within decades to years or less.

If the two fault systems are really synchronized, it could be a real problem for disaster relief as there would not be enough resources to respond to two earthquakes triggered simultaneaously or a short time apart.

Cascadia can create extremely powerful earthquakes. Un 1700, the region experienced a quake thought to be between magnitude M8.7 and M9.2 that sent destructive tsunami waves all the way to Japan. These quakes are caused by movement of three oceanic plates (the Explorer, the Juan de Fuca, and the Gorda) slipping beneath the North American continent.

The San Andreas Fault, on the other hand, is a strike-slip fault where rock masses on either side of the fault move past each other horizontally.. The largest known quake on the northern San Andreas was the M7.9 1906 San Francisco earthquake. Because the fault runs through densely populated areas, it could do a great deal of damage, as in the 1989 Loma Prieta earthquake that killed 63 people.

The two fault systems meet off the coast of Mendocino in an area known as the « triple junction. » Scientists were on a research cruise in 1999 drilling core samples from the ocean floor in Cascadia, looking for signs of ancient earthquakes. On that cruise, a ptoblem led to the ship traveling about 100 kilometers from where it was supposed to be. The scientists, who were trying to sleep between working, did not realize the error until the ship arrived. They decided to take a core sample in that spot anyway. When the team later analyzed the sample, they realized it contained a mystery. The turbidites in the sample didn’t have the coarse layer on the bottom and the finer layer on top, as was typical. This original core of the San Andreas had deposits that looked like they were upside-down because the sand was at the top.

The researchers had no explanation for this flip-flopped pattern. Nor did they have an explanation for another strange mystery of these offshore samples: Cores taken south of the triple junction, in the area of the northern San Andreas, seemed to show earthquakes that matched well to the timing of earthquakes taken north of the triple junction in Cascadia. In the last 1,300 years, they found, there were 18 likely earthquake-generated turbidites in Cascadia and 19 offshore from the northern San Andreas. Ten of those appeared to be deposited within 50 to 100 years of each other.

Even more surprising, in three cases, the coarse sand of the upper layer was mixed into the finer sand of the lower layer, suggesting the upper layer had settled while the bottom layer was still in motion. That would mean that the two layers were deposited within hours to days of one another. These three events included the 1700 Cascadia quake, as well as quakes 1,200 years ago and 1,500 years ago.

It took many years to conduct additional radiocarbon dating and understand what has happened. The scientists finally thought that these San Andreas turbidites might represent two different quakes: One, from the far-off Cascadia region, which shook off only lighter silt and sand, and the second, from a soon-after San Andreas quake that was locally stronger and could move coarser material.

In the new study, the researchers think that large quakes in Cascadia can transfer stress to the neighboring San Andreas, which then leads to a San Andreas earthquake not long after. Cascadia and the northern San Andreas region are highly seismically active, and many other faults could trigger earthquakes. Sedimentary deposits are complicated to interpret, and there are uncertainties inherent in radiocarbon dating. More studies will be necessary to corroborate the hypothesis suggested in the last research. .

Source : Live Science via Yahoo News.

Scénario catastrophe dans le Pacifique Nord-Ouest // Worst case scenario in the Pacific Northwest

Comme je l’ai souligné dans plusieurs notes de ce blog, dont celles du 26 mai 2025, aux États Unis, la pression continue de s’accroître sous la surface de la Terre au large de la côte Pacifique nord-ouest, et la presse américaine insiste sur la menace d’un scénario catastrophe susceptible de survenir à tout moment. De leur côté, les scientifiques ont prévenu à plusieurs reprises qu’un puissant séisme est probable le long de la zone de subduction de Cascadia. Selon eux, il est certain qu’il se produira, même si on ne sait pas quand. Un tel événement pourrait détruire des ponts, remodeler le paysage et déclencher un puissant tsunami. Les scientifiques connaissent l’imminence de ce danger depuis des années et les recherches en cours brossent un tableau de plus en plus précis de ce qui pourrait se produire.
Parmi les dangers, les chercheurs évoquent un gigantesque tsunami qui submergerait les zones côtières et les inonderait définitivement. Des études récentes se sont concentrées sur la façon dont le réchauffement climatique accroîtrait l’impact d’un séisme sur les zones côtières. Les chercheurs s’attendent à ce que le séisme provoque un affaissement du sol de 1,80 mètre dans certaines zones intérieures. Il serait suivi d’un puissant tsunami qui inonderait ces régions, certaines de manière définitive.
La perte de vastes étendues de terres n’est que l’un des nombreux événements qui se produiront lorsque le séisme se déclenchera. Le séisme est une certitude, mais on ne sait pas quand il se déclenchera, peut-être dans des centaines d’années. Bien qu’il puisse se produire à tout moment, les sismologues estiment à 15 % la probabilité d’un événement de magnitude M8,0 au cours des 50 prochaines années. Leur pronostic repose en partie sur l’historique des séismes majeurs dans la région. Le dernier a eu lieu en 1700, et les archives paléosismiques montrent que ces séismes se reproduisent environ tous les 200 à 800 ans. D’ici 2100, la probabilité qu’un séisme majeur se produise est de 30 %.
Les scientifiques ont une idée précise de ce qui se passera lorsque le séisme se déclenchera. Ils prévoient tout d’abord une secousse extrêmement forte. Cette secousse durera probablement une minute ou plus. Ensuite, le niveau des terres le long de la côte s’abaissera jusqu’à deux mètres par endroits, probablement en quelques minutes. Ensuite, il y aura probablement 30 à 40 minutes de calme apparent. Mais ce sera une fausse impression, car ce calme sera suivi d’un tsunami qui déferlera sur la côte. Les vagues seront comparables au tsunami de 2004 dans l’océan Indien, qui a fait plus de 50 000 morts. La vague d’un tsunami provoqué par un séisme de cette ampleur peut atteindre 2,50 à 3 m de haut.
Lorsqu’un tel tsunami atteint le rivage, les géologues expliquent que la déferlante dure en général des heures, parfois des jours. C’est là qu’intervient le réchauffement climatique. Deux facteurs contribuent à cette catastrophe. D’une part, le terrain pourrait s’affaisser jusqu’à 1,80 mètre. D’autre part, l’élévation du niveau de la mer due au réchauffement climatique pourrait permettre à l’eau de s’engouffrer et de recouvrir davantage de terres. Certaines zones côtières pourraient devenir définitivement inhabitables. De plus, même si certaines zones côtières s’assèchent par la suite, elles seront beaucoup plus proches du niveau de la mer et deviendront vulnérables aux inondations en cas de violentes tempêtes ou de grandes marées.

La côte nord-ouest des États Unis est constamment soumise à de nombreux petits séismes, mais leur intensité est insuffisante pour soulager la pression qui s’accumule le long de la faille de Cascadia. L’énergie accumulée dans la zone est telle que même un séisme de magnitude M8,0 ne suffirait pas à l’évacuer. Le grand séisme de San Francisco de 1906, d’une magnitude M8,0, fut dévastateur. Les scientifiques expliquent que « si un seul séisme de magnitude M8.0 se produisait dans le nord-ouest du Pacifique, il en faudrait encore 29 pour évacuer la pression le long de la faille de Cascadia.»
Source : USA Today via Yahoo News.

 

Zones exposées à la submersion en cas de séisme et tsunami (Source : presse américaine)

———————————————-

As I put it in several posts on this blog, the pressure keeps building below the Earth’s surface off the coast of the Pacific Northwest, and a disaster could strike at any time.Scientists have warned that a huge earthquake is likely along the Cascadia Subduction Zone. They say it is a matter of if, not when. It could destroy bridges, reshape the landscape and trigger a massive tsunami. Scientists have known about the looming danger for years, but ongoing research keeps painting a clearer picture of what could happen.

Among the dangers, the researchers predict a huge tsunami that will wash over costal areas and permanently flood them. Recent studies have focused on how global warming is increasing the impact of the earthquake on coastal areas. Researchers expect the quake will trigger an as much a 1.80-meter-drop in some inland areas, then a massive tsunami will flood those regions, some permanently.

The loss of swaths of land is just one of the series of events that will occur when the earthquake eventually strikes. The quake is a certainty, but could be hundreds of years off. While it could happen at any time, seismologists have estimated there is a 15% probability of an M8.0 event  in the next 50 years. Part of their confidence comes from the history of huge earthquakes in the region. The last event was in 1700, and paleoseismic records show these earthquakes recur roughly every 200 to 800 years. By 2100, there is a 30% chance of a large earthquake happening.

Scientists have a clear picture of what will happen when the earthquake strikes. They say that, first of all, there would be extremely strong shaking. This would probably last a minute or longer. Next, land along the coast would drop as much as two meters in places, probably within minutes. Then there would probably be 30 to 40 minutes of seeming peace. But that would be a false impression, because the tsunami would be coming. The waves would be on the order of the 2004 Indian Ocean tsunami that killed more than 50,000 people.The tsunami wave from an earthquake of this size could be 2.50m – 3.00 m tall.

When the tsunami wave arrives at the shore, geologists explain that the massive surge lasts for hours, sometimes days. This is where global warming comes in. Two things play a part in creating the catastrophe. First, the land would have dropped as much as 1.80 meters. At the same time, sea level rise caused by global warming means that some coastal communities will become permanently uninhabitable. Even if some areas along the coastline do dry out, they will be much closer to sea level and become susceptible to flooding if there is a particularly big storm or high tide.

The West Coast is subject to numerous small earthquakes all the time, but they are not big enough to relieve the pressure that is being built up along the Cascadia fault line. So much energy has built up in the zone that even an M 8.0 earthquake wouldn’t relieve it. The great San Francisco earthquake of 1906 had a magnitude M 8.0 and it was devastating. The scientists explain that « if we had one magnitude 8 quake in the Pacific North West, we’d still have 29 to go to relieve the pressure. »

Source : USA Today via Yahoo News.

Prévision sismique et séisme au Myanmar // Seismic prediction and earthquake in Myanmar

Bien que des progrès certains aient été réalisés ces dernières décennies, notre capacité à prédire les éruptions volcaniques reste faible, et nous ne sommes pas capables, non plus, de prévoir les séismes. Nous savons où se trouvent les volcans les plus dangereux de la planète ; nous savons également où se trouvent les failles susceptibles de déclencher de puissants séismes, mais les prévisions volcaniques et sismiques n’ont guère progressé ces dernières années. Nous sommes en mesure d’analyser les éruptions et les tremblements de terre APRÈS qu’ils se soient produits, mais nous ne sommes pas capables de faire des prévisions susceptibles de protéger les populations menacées. Le nombre de morts qui suivent ces événements naturels est souvent très élevé. Le dernier séisme majeur qui a secoué le Myanmar ne fait que confirmer ce que je viens d’écrire.

Un puissant séisme de magnitude M7,7 a frappé le Myanmar le 28 mars 2025 à 12h50 heure locale (06h20 UTC). L’hypocentre du décrochement était très peu profond, à une dizaine de kilomètres, le long de la faille de Sagaing, ce qui explique le lourd bilan humain et les dégâts causés aux infrastructures. Il s’agit du séisme le plus puissant au Myanmar depuis 1912. Il a causé des dégâts considérables dans le centre du pays, mais aussi dans le nord de la Thaïlande, le sud de la Chine et certaines régions du Vietnam. Au total, le séisme a fait plus de 5 000 morts au Myanmar, 51 en Thaïlande et un au Vietnam, apparemment des suites d’un choc cardiaque. Au moins 11 400 personnes ont été blessées et des centaines sont toujours portées disparues, notamment des ouvriers bloqués lors de l’effondrement spectaculaire d’un chantier de construction à Bangkok.

Après le séisme – aucun signe de l’événement n’a été détecté auparavant –, les sismologues ont indiqué que la faille de Sagaing, une importante limite tectonique, s’est rompue sur 400 km à très grande vitesse, avec une propagation plus rapide que la vitesse du son après une phase initiale lente. Les secousses se sont étendues sur 100 km, avec des niveaux d’intensité dépassant VIII sur l’échelle de Mercalli Modifiée (MM) dans plusieurs régions.
Selon l’USGS, la faible profondeur du séisme a amplifié les secousses dans toute la région, contribuant à des dommages structurels à grande échelle. Une liquéfaction – quand le sol saturé perd temporairement sa résistance et se comporte comme un liquide – a été observée à plusieurs endroits, ce qui a intensifié les dégâts. Une réplique de magnitude M6,4 a eu lieu 12 minutes plus tard, et une activité sismique supérieure à la normale a continué d’être enregistrée les jours suivants.

Des chercheurs de l’Université Johns Hopkins et de l’USGS ont utilisé l’imagerie satellite pour cartographier la rupture de faille et évaluer les dommages structurels à Mandalay. Cette analyse géospatiale rapide a permis d’identifier les zones les plus gravement touchées et a démontré le rôle de plus en plus important des données satellitaires dans l’évaluation en temps réel des dégâts causés par les séismes.
Pour la première fois lors d’un séisme de forte magnitude, un réseau de câbles de télécommunication sous-marins, équipé de plus de 100 capteurs sismiques, a détecté des mouvements du sol en temps réel. Cela confirme les progrès mentionnés en introduction de cette note. Les scientifiques expliquent que le système a fourni des données sismiques en continu pendant l’événement, offrant des informations précieuses sur les mouvements du sol en mer. Cette intégration de la détection sismique aux infrastructures sous-marines représente une avancée dans le développement des capacités de surveillance des séismes dans le monde, en particulier dans les régions où l’instrumentation terrestre est limitée.
Lors de la réunion annuelle de la Société Sismologique Américaine à Baltimore, des chercheurs ont présenté des analyses préliminaires de la rupture de faille au Myanmar. Le séisme s’est produit sur une faille sismique inactive depuis 1839, entre les zones de rupture des séismes de Naypyidaw en 1929 et de Sagaing Sud en 1956. Cette situation met en évidence la complexité structurelle du système de failles de Sagaing.

Les études sur les mouvements du sol réalisées depuis 2014 permettent d’expliquer aujourd’hui l’amplification des secousses observées dans des régions éloignées comme Bangkok, où les couches sédimentaires peu profondes ont contribué à l’augmentation des mouvements du sol. En Thaïlande, le séisme a provoqué de fortes secousses, causant d’importants dégâts et des pertes humaines. Dans la province chinoise du Yunnan, le séisme a endommagé environ 847 habitations. Deux personnes ont été blessées dans la ville frontalière de Ruili. Au Vietnam, les séismes ont été ressentis à Hô-Chi-Minh-Ville, endommageant plus de 400 appartements. Une personne est décédée des suites d’un choc cardiaque lors des opérations d’évacuation.
La crise humanitaire actuelle au Myanmar touche plus de 20 millions de personnes et en a déplacé 3,5 millions. Elle complique les opérations d’urgence. Suite au séisme, le gouvernement militaire a déclaré le centre du Myanmar zone sinistrée et a officiellement demandé l’aide internationale.
Source : Seismological Society of America, The Watchers.

———————————————-

Although much progress has been made in the past decades, our ability to predict volcanic eruptions is still low and we are not yet able to predict earthquakes. We know where the most dangerous volcanoes are located ; we also know where the faults that may trigger powerful earthquakes are located, but volcanic and seismic predictions do not go much further. We are good at analysing eruptions and earthquakes AFTER they have happened, but we are not able to make predictions that might protect the populations at risk. The death tolls that follow these natural events are often very high. The latest disastrous earhquake that shook Myanmar can only confirm what I have just written.

A powerful M7.7 earthquake struck Myanmar, on March 28th, 2025, at 12:50 local time (06:20 UTC). The hypocenter of the strike-slip event was very shallow at about 10 km along the Sagaing Fault, which accounts for thr heavy death toll and the damage caused to infrastructure. It was the strongest earthquake in Myanmar since 1912. It caused widespread damage across central Myanmar, but also in northern Thailand, southern China, and parts of Vietnam.In all, the earthquake caused more than 5 000 fatalities in Myanmar, 51 in Thailand, and one in Vietnam, reportedly due to cardiac shock. At least 11 400 people were injured, and hundreds remain missing, including workers trapped during the dramatic collapse of a construction site in Bangkok.

After the earthquake – they did not detect signs of the event before – seismologists reported that the Sagaing fault, a major tectonic boundary, ruptured over 400 km at very high speed, traveling faster than the speed of sound following an initial slow phase. Ground shaking extended over 100 km, with Modified Mercalli Intensity levels exceeding VIII in multiple regions.

According to the USGS, the earthquake’s shallow depth amplified ground shaking across the region, contributing to widespread structural damage. Liquefaction—where saturated soil temporarily loses strength and behaves like a liquid—was observed in multiple locations, further intensifying damage. An M6.4 aftershock struck 12 minutes later, and seismic activity was still recorded in the following days.

Researchers from Johns Hopkins University and the USGS used satellite imagery to map the surface rupture and assess structural damage in Mandalay. This rapid geospatial analysis helped identify the most severely affected areas and demonstrated the increasing role of satellite data in real-time assessment of earthquake damage.

For the first time during a large-magnitude earthquake, a submarine telecommunication cable network equipped with more than 100 seismic sensors detected ground motion in real time. This confirms the progress I mentioned in the introduction to thid post. Scientists say that the system provided continuous seismic data during the event, offering valuable insights into offshore ground motion. This integration of seismic sensing into undersea infrastructure represents a step forward in expanding global earthquake monitoring capabilities, particularly in regions with limited land-based instrumentation.

At the Seismological Society of America’s Annual Meeting in Baltimore, researchers presented preliminary analyses of the rupture. The earthquake occurred within a seismic gap that had remained inactive since 1839, located between the rupture zones of the 1929 Naypyidaw and 1956 southern Sagaing earthquakes. This situation highlights the structural complexity of the Sagaing Fault system.

Ground motion studies performed since 2014 help explain today the amplified shaking observed in distant regions like Bangkok, where shallow sedimentary layers contributed to increased ground motion. In Thailand, the earthquake caused severe ground shaking, leading to substantial damage and casualties. In China’s Yunnan Province, the earthquake resulted in the damage of approximately 847 homes. Two people sustained injuries in the border city of Ruili. In Vietnam, the earthquakes were felt in Ho Chi Minh City, causing damage to over 400 apartments. One person died from shock during evacuation efforts.

Myanmar’s ongoing humanitarian crisis—affecting more than 20 million people and displacing 3.5 million—is complicating emergency response operations. Following the earthquake, the military government declared central Myanmar a disaster zone and formally requested international assistance.

Source : Seismological Society of America, The Watchers.

Le risque sismique en Californie du Sud // The seismic risk in Southern California

La Californie du Sud, où se trouve Los Angeles, est une zone hautement sismique où plusieurs séismes ont été enregistrés ces dernières semaines. On peut se demander si le choix de Los Angeles pour les Jeux olympiques d’été de 2028 était raisonnable. Dans un remarquable article, le site The Watchers met en lumière le contexte géologique de la région.

Un séisme de magnitude M5,2 a frappé le comté de San Diego le 14 avril 2025. Il s’est produit le long de la zone de faille d’Elsinore, une importante faille décrochante en Californie du Sud, capable de déclencher des séismes de magnitude M7,8. La faille se situe à proximité de zones densément peuplées, notamment Los Angeles, Long Beach et Riverside, et le fait qu’elle soit restée inactive pendant longtemps pourrait faire redouter un événement sismique majeur.

Le séisme de magnitude M5,2 n’a causé ni blessés ni dégâts majeurs, mais il a rappelé le potentiel de la faille d’Elsinore à générer des séismes beaucoup plus importants. En effet, la faille fait partie d’un système complexe capable de provoquer des ruptures en cascade, avec des secousses pouvant affecter des millions de personnes.

Vue de la zone de faille d’Elsinore (Source :Southern California Earthquake Data Center – SCEDC)

La zone de faille d’Elsinore s’étend sur environ 180 km à travers la Californie du Sud, parallèlement à la faille de San Andreas et fait partie du système de failles de San Andreas. Elle coupe les Peninsular Ranges et passe à proximité de plusieurs grands centres urbains, ce qui en fait un risque sismique important.

La faille d’Elsinore (Source : NASA, ISS)

Selon le Centre de données sismiques de Californie du Sud (SCEDC), la faille glisse à raison d’environ 4 mm par an, ce qui génère une accumulation progressive de contraintes tectoniques. Bien que relativement calme ces dernières décennies, cette lente accumulation d’énergie contribue au risque sismique sur le long terme. Selon les sismologues californiens, un séisme débuterait sur la faille d’Elsinore et se propagerait sur la faille de Whittier. Ce processus enverrait une énergie considérable dans le bassin de Los Angeles, avec pour conséquence un des scénarios sismiques les plus dangereux.
Selon un modèle développé par l’USGS, un séisme de magnitude M7,8 le long du système Elsinore-Whittier pourrait provoquer de violentes secousses sur une vaste région. La faille d’Elsinore a été relativement calme historiquement. L’événement le plus important s’est produit le 15 mai 1910, près de la Temescal Valley, avec une magnitude estimée à M6. Ce séisme a causé des dégâts minimes.
La faille s’étire vers le sud-est jusqu’au Mexique où elle rejoint la faille de Laguna Salada. Le 23 février 1892, la faille de Laguna Salada a connu un séisme important, estimé entre M7,1 et 7,3. Cet événement a causé des dégâts dans le nord de la Basse-Californie et le sud de la Californie.
Plusieurs villes comme Torrance, Santa Monica et West Hollywood ont pris des mesures pour renforcer leurs bâtiments contre les séismes. Toutefois, à Los Angeles, les bâtiments à ossature métallique ne font toujours pas l’objet d’un programme de rénovation obligatoire, une lacune qui suscite des inquiétudes quant à la capacité de la ville à faire face au prochain puissant séisme.
Ces dernières années, seuls deux séismes d’une magnitude supérieure à M5,0 se sont produits dans les comtés de Los Angeles et d’Orange : un séisme de magnitude M5,1 en 2014 près de Brea et un séisme de magnitude M5,4 en 2008 près de Chino Hills. Le séisme de 2014 a causé 2,5 millions de dollars de dégâts, tandis que celui de 2008 a eu un impact minime.
Le fort risque sismique en Californie est dû à la situation géographique de cet État, à la limite de plaques tectoniques. La plaque Pacifique, où se trouvent des villes comme San Diego, Los Angeles et Santa Barbara, se déplace lentement vers le nord-ouest, tandis que la plaque nord-américaine, avec San Francisco, la Central valley et Big Bear Lake, se déplace dans la direction opposée. Ce mouvement fait s’accumuler les contraintes au fil du temps, et elles finissent par se libérer sous forme de séismes pouvant être destructeurs.
Croisons les doigts pour qu’aucun séisme majeur ne provoque de catastrophe pendant les Jeux de 2028…

Source : The Watchers.

————————————————-

Southern California – the region that includes Los Angeles – is a highly seismic zone where several earthquakes have been recorded in the past weeks. One can wonder whether of Los Angeles for ther 2028 Summer Olympic Games was a cautious one. In a remarkable article, The Watchers website highlights the geological context of the region.

An M5.2 earthquake struck San Diego County on April 14th, 2025. It occurred along the Elsinore Fault Zone, a major strike-slip fault in Southern California capable of producing earthquakes up to M7.8. The fault runs near densely populated areas including Los Angeles, Long Beach, and Riverside, and its long period of limited activity may indicate an increased potential for a significant seismic event.

The M5.2 earthquake caused no injuries or major damage, but it drew renewed attention to the Elsinore Fault’s potential to generate much larger earthquakes. While historically quiet, the fault forms part of a complex system capable of producing cascading ruptures that could impact millions.

The Elsinore Fault Zone extends about 180 km through Southern California, running parallel to the San Andreas Fault and forming part of the broader San Andreas fault system. It cuts through the Peninsular Ranges and passes near several major population centers, making it a significant seismic hazard.

According to the Southern California Earthquake Data Center (SCEDC), the fault has a slip rate of approximately 4 mm per year, indicating gradual accumulation of tectonic strain. Though relatively quiet in recent decades, this slow deformation contributes to long-term seismic potential. According to Californian seismologists, an earthquake would start on the Elsinore Fault and move onto the Whittier Fault. This would send powerful energy straight into the L.A. Basin, making it one of the more dangerous earthquake scenarios.

In a model developed by the U.S.G.S., an M7.8 earthquake along the Elsinore-Whittier system could produce violent shaking across a wide region. The Elsinore Fault has been relatively quiet historically. The most significant recorded event occurred on May 15, 1910, near Temescal Valley, with an estimated magnitude of M6.0. This earthquake caused minimal damage.

The fault extends southeast into Mexico, connecting with the Laguna Salada Fault. On February 23, 1892, the Laguna Salada Fault experienced a significant earthquake, estimated between M7.1 and 7.3. This event caused damage in both northern Baja California and southern California.

Several cities like Torrance, Santa Monica, and West Hollywood have taken steps to strengthen their buildings against earthquakes. But in Los Angeles, steel frame buildings are still not part of any mandatory retrofit program, a gap that’s sparked concern about how ready the city really is for the next big quake.

In recent years, only two earthquakes with magnitudes above M5.0 have occurred beneath Los Angeles and Orange Counties : M5.1 earthquake in 2014 near Brea and M5.4 event in 2008 near Chino Hills. The 2014 earthquake caused 2.5 million dollars in damage, while the 2008 event resulted in minimal impact.

California’s high earthquake risk comes from its location on the edge of a tectonic plate boundary. The Pacific plate, home to cities like San Diego, Los Angeles, and Santa Barbara, is slowly shifting northwest, while the North American plate, holding San Francisco, the Central Valley, and Big Bear Lake, moves in the opposite direction. This movement builds up stress over time, which is eventually released in potentially destructive earthquakes.

Let’s cross our fingers that no major earthquake causes a disaster during the 2028 Games…

Source : The Watchers.