Datation des éruptions de Yellowstone // Dating the Yellowstone eruptions

Les scientifiques de l’Observatoire Volcanologique de Yellowstone (YVO) ont recensé au moins 28 éruptions au sein de la caldeira de Yellowstone depuis sa formation il y a 631 000 ans. Il s’agit d’une estimation minimale basée sur les vestiges géologiques préservés. Les travaux en cours visent à affiner ce décompte en identifiant les éruptions plus anciennes dont les dépôts ont été enfouis ou masqués par des coulées de lave plus récentes. Ces résultats ont été présentés dans les Yellowstone Caldera Chronicles, une publication hebdomadaire rédigée par des scientifiques et des collaborateurs de l’Observatoire. À noter qu’en janvier 2025, un numéro des Yellowstone Caldera Chronicles avait déjà été consacré au passé du super volcan :

Yellowstone (1) : le passé du super volcan // Yellowstone (1) : the past of the super volcano

L’histoire volcanique de Yellowstone comprend trois éruptions qui ont formé la caldeira au cours des 2,1 derniers millions d’années. La plus récente, il y a 631 000 ans, a créé la caldeira que nous connaissons actuellement et a marqué un tournant vers des coulées de lave rhyolitique de plus petite taille et des dômes confinés principalement à l’intérieur de la caldeira, et non plus vers des éruptions d’envergure continentale.
La cartographie géologique et la datation ont permis d’identifier au moins 28 éruptions au sein de la caldeira depuis sa formation. Il s’agit d’un décompte minimal basé sur les éruptions identifiables avec certitude dans les archives géologiques. Les dépôts éruptifs plus anciens sont souvent masqués par des coulées de lave plus récentes, et dans de nombreuses zones, seuls de petits affleurements isolés subsistent, ce qui limite notre compréhension de leur étendue et de leur âge. La glaciation et l’érosion ont par ailleurs modifié le paysage, en déplaçant ou en redistribuant les matériaux volcaniques.
Pour reconstituer l’histoire éruptive de Yellowstone, les géologues ont établi une relation entre une cartographie de terrain détaillée avec la géochimie, la géochronologie et le paléomagnétisme. La composition chimique permet de distinguer les différents types de de magmas ; la datation radiométrique précise le calendrier des éruptions, tandis que les signatures paléomagnétiques conservées lors du refroidissement de la lave permettent de différencier les éruptions survenues à des périodes différentes.
Les rhyolites du Plateau Central (Central Member Plateau) constituent l’une des séquences éruptives post-caldeira les mieux étudiées et recouvrent une grande partie du fond de la caldeira. De nouvelles datations avec la méthode 40Ar/39Ar divisent ces coulées en cinq groupes éruptifs informels, avec des âges moyens rapportés à un niveau de confiance de 95 %, ce qui améliore la résolution entre les éruptions rapprochées.
La région de West Thumb, au bord du lac Yellowstone, enrichit ce tableau. On pense qu’il s’agit de la zone d’émission d’une éruption explosive à l’origine du Tuf de Bluff Point. Cela prouve que le volcanisme post-caldeira ne s’est pas limité aux seules coulées de lave.

Le canyon de la Yellowstone River présente de beaux exemples de tufs rhyolitiques (Photo: C. Grandpey)

Une coulée de lave affleurant dans la vallée de Hayden (célèbre pour ses meutes de loups) était auparavant associée à une éruption datée d’environ 102 000 ans, mais les nouvelles données montrent que la lave pourrait être plus proche de 160 000 ans, ce qui laisse supposer une éruption jusqu’alors inconnue. Des scientifiques de l’USGS ont prélevé des échantillons de cette coulée en 2025 pour une datation à l’argon ; on attend les résultats.
Des travaux effectués sur le terrain en 2025 ont également permis d’identifier un petit affleurement de lave le long de la Gibbon River, près du ruisseau Nez Perce Creek, qui semble se situer sous une coulée connue. L’analyse géochimique et la datation à l’argon permettront de déterminer si cet affleurement correspond à une éruption distincte ou s’il fait partie d’une unité déjà identifiée.
Par ailleurs, des chercheurs de l’Université du Montana ont identifié des dépôts volcaniques au nord-ouest de la caldeira, près de la Madison Junction. Ces dépôts pourraient provenir d’éruptions survenues peu avant la formation de la caldeira, il y a 631 000 ans. Si c’est le cas, cela permettrait de combler le fossé entre l’activité de pré-caldeira et de post-caldeira.
Source : USGS, The Watchers.

Carte de la caldeira de Yellowstone avec la localisation et l’âge des éruptions rhyolitiques les plus récentes à Yellowstone, et appartenant au Central Plateau Member. La région de West Thumb est indiquée car elle est considérée comme le lieu d’une éruption explosive et la source du Tuf de Bluff Point. Les rhyolites du Central Plateau Member sont divisées en cinq groupes informels d’après les nouvelles datations effectuées avec la méthode 40Ar/39Ar. Chaque groupe informel est représenté par la même couleur. Les numéros figurant sur la carte et dans la légende indiquent l’emplacement des différentes coulées de lave. L’âge moyen par groupe et son intervalle de confiance à 95 % sont indiqués à côté de la liste des unités. (Source : USGS)

Carte de meilleure résolution à cette adresse :

https://www.facebook.com/USGSVolcanoes/posts/how-many-eruptions-has-yellowstone-had-simple-questioncomplex-answer-todays-yell/1300881892086276/

————————————————-

Scientists at the Yellowstone Volcano Observatory (YVO) have identified at least 28 eruptions within the Yellowstone Caldera since it formed 631 000 years ago, a minimum estimate based on preserved geologic evidence. Ongoing work is focused on refining this count by identifying older eruptions whose deposits were buried or obscured by younger lava flows. The findings were presented in Yellowstone Caldera Chronicles, a weekly column written by scientists and collaborators of the Yellowstone Volcano Observatory. In January 2025, an issue of the Yellowstone Caldera Chronicles was already dedicated to the supervolcano’s past (see above).

Yellowstone’s volcanic history includes three caldera-forming eruptions over the past 2.1 million years. The most recent, 631 000 years ago, created the present-day caldera and marked a shift toward smaller rhyolite lava flows and domes confined largely within the caldera rather than continent-wide eruptions.

Geologic mapping and age dating identify at least 28 eruptions within the caldera since its formation. This is a minimum count based on eruptions that can be confidently recognized in the geologic record. Earlier eruptive deposits are often obscured by younger lava flows, and in many areas, only small, isolated outcrops remain, limiting insight into their extent or age. Glaciation and erosion have further modified the landscape, removing or redistributing volcanic material.

To reconstruct Yellowstone’s eruptive history, geologists combined detailed field mapping with geochemistry, geochronology, and paleomagnetics. Chemical compositions distinguish magma batches, radiometric ages constrain eruption timing, while paleomagnetic signatures preserved during lava cooling separate eruptions that formed at different times.

The Central Plateau Member rhyolites form one of the best-studied post-caldera eruptive sequences and cover much of the caldera floor. New 40Ar 39Ar dating divides these flows into five informal eruption groups, with mean ages reported at the 95 percent confidence level, improving resolution between closely spaced eruptions.

The West Thumb region of Yellowstone Lake adds another layer to this picture. It is thought to be the vent area for an explosive eruption that produced the Tuff of Bluff Point, showing that post-caldera volcanism was not limited to lava flows alone.

A lava flow exposed in Hayden Valley was previously linked to an eruption dated at about 102 000 years but the new data suggest the lava may be closer to 160 000 years old, suggesting a previously unrecognized eruption. USGS scientists collected samples from this flow in 2025 for argon dating, with results pending.

Field work in 2025 also identified a small lava exposure along the Gibbon River near Nez Perce Creek that appears to lie beneath a known flow. Geochemical analysis and argon dating will determine whether this exposure represents a distinct eruption or part of an already identified unit.

In addition, researchers from Montana State University have identified volcanic deposits northwest of the caldera near Madison Junction. The deposits may represent eruptions that occurred shortly before the caldera-forming event 631 000 years ago, helping overcome the gap between pre-caldera and post-caldera activity.

Source : USGS, The Watchers.

Nouvelle méthode d’alerte précoce des éruptions volcaniques // New early warning method for volcanic eruptions

En volcanologie, l’expérience m’a appris à me méfier des annonces tonitruantes qui, au final, font Pschitt ! et ne font pas avancer la science. C’est pourquoi je reçois avec la même prudence l’annonce par l’Institut Physique du Globe de Paris (IPGP) d’une nouvelle méthode – baptisée « Jerk » – qui permettrait d’accélérer l’alerte précoce des éruptions volcaniques.

Force est d’admettre qu’aujourd’hui nous ne savons pas prévoir les éruptions volcaniques les plus dangereuses, celles produites par les volcans explosifs de la Ceinture de Feu du Pacifique. La plupart du temps, les populations sont évacuées après le déclenchement des éruptions. S’agissant des volcans effusifs comme le Kilauea, l’urgence est beaucoup moins grande car il suffit de se déplacer pour éviter les coulées de lave lorsqu’elles apparaissent. J’ai tendance à appeler le Kilauea ou le Piton de la Fournaise des volcans d’opérette avec des éruptions pour touristes.

La prévision éruptive ne prend son sens que si les scientifiques sont en mesure d’alerter les autorités et les populations. Dans une étude publiée dans le journal Nature Communications, des chercheurs et ingénieurs de l’Institut de Physique du Globe de Paris (IPGP) et du GFZ Helmholtz Centre for Geosciences proposent une nouvelle méthode de détection, baptisée « Jerk » (en français «secousse » ou « saccade », même si ce terme peut avoir un sens plus péjoratif), capable d’identifier en temps réel des signaux précurseurs très précoces des éruptions volcaniques à partir d’un seul instrument sismologique.

L’IPGP nous explique que la méthode « Jerk » permet de détecter en temps réel des mouvements extrêmement subtils du sol liés aux injections de magma en profondeur. Ces signaux, appelés signaux Jerk, se manifestent sous la forme de transitoires à très basse fréquence observés dans les mouvements horizontaux du sol, à la fois en accélération et en inclinaison. Les auteurs montrent qu’ils sont probablement générés par les processus de fracturation dynamique de la roche précédant une éruption. D’une amplitude de l’ordre de quelques nanomètres par seconde cube (nm/s³), ces signaux peuvent être détectés à l’aide d’un seul sismomètre à très large bande, moyennant un traitement spécifique intégrant notamment la correction des marées terrestres.

En avril 2014, l’outil a été implémenté à l’Observatoire volcanologique du Piton de la Fournaise (OVPF) comme un module entièrement automatisé du système WebObs, en exploitant les données d’une station sismologique du réseau mondial Geoscope située à 8 km du sommet du volcan (Rivière de l’Est).

Dès le 20 juin 2014, une première alerte a été envoyée 1 heure et 2 minutes avant le début de l’éruption. Durant plus de 10 années, ce système de détection et d’analyse des signaux Jerk a fonctionné en continu 24h/24, permettant d’émettre des alertes automatiques pour 92 % des 24 éruptions qui se sont produites entre 2014 et 2023. Les délais d’alerte varient de quelques minutes à 8,5 heures avant que le magma n’atteigne la surface. La méthode a également été testée sur les données de 24 anciennes éruptions entre 1998 et 2010, montrant que l’alerte Jerk fonctionne de façon systématique. Le système a cependant fait quelques erreurs en émettant des alertes claires mais non suivies d’éruptions.

Toujours avec les populations à l’esprit, c’est le délai d’alerte qui me semble le plus important. Si l’alerte ne se déclenche que quelques minutes avant la sortie de la lave, il est évident qu’elle ne sert à rien.

Lors de la dernière crise sismique au Piton de la Fournaise le 5 décembre 2025, associée à de faibles déformations et anomalies de gaz, un petit signal Jerk a été émis (seulement 0,1 nm/s3), confirmant qu’une intrusion de magma avait bien eu lieu. Bien, mais fin décembre, le magma n’a toujours pas percé la surface ! Heureusement, aucune population n’a été évacuée et mise à l’abri dans des centres d’hébergement provisoires. Car c’est là que se trouve l’intérêt d’une prévision éruptive digne de ce nom : savoir prévoir une éruption et évacuer des populations dans des délais raisonnables.

Comme le rappelle l’IPGP, le Piton de la Fournaise est un volcan laboratoire très instrumenté et surveillé,mais c’est un volcan inoffensif d’un point de vue humain. Il est urgent de tester la méthode Jerk sur d’autres volcans plus dangereux et peu instrumentés, avec des populations à risque. L’Etna pourrait servir de tremplin vers les volcans philippins ou indonésiens.

Source : IPGP.

Le Piton de la Fournaise est un excellent volcan laboratoire (Photo: C. Grandpey)

———————————————–

In volcanology, experience has taught me to be wary of sensational announcements that ultimately fizzle out and don’t help science to progress. That’s why I receive with the same caution the announcement by the Paris Institute of Earth Physics (IPGP) of a new method—dubbed « Jerk »—that is supposed to accelerate the early warning of volcanic eruptions.
Xwe are forced to admit today that we are not able to predict the most dangerous volcanic eruptions, those produced by the explosive volcanoes of the Pacific Ring of Fire. Most of the time, populations are evacuated after eruptions begin. With effusive volcanoes like Kilauea, the urgency is much less significant because one just neeeds to move a few steps away to avoid the lava flows when they appear. I tend to call Kilauea or Piton de la Fournaise « opera-style volcanoes » with eruptions for tourists.
Eruptive prediction is only meaningful if scientists are able to alert authorities and the public. In a study published in the journal Nature Communications, researchers and engineers from the IPGP and the GFZ Helmholtz Centre for Geosciences propose a new detection method, called « Jerk », capable of identifying very early precursor signals of volcanic eruptions in real time using a single seismological instrument.
The IPGP explains that the « Jerk » method makes it possible to detect extremely subtle ground movements in real time, linked to deep magma injections. These signals, called Jerk signals, appear as very low-frequency transients observed in horizontal ground movements, both in acceleration and inclination. The authors show that these signals are likely generated by the dynamic fracturing processes of the rock preceding an eruption. With an amplitude on the order of a few nanometers per cubic second (nm/s³), these signals can be detected using a single very broadband seismometer, provided that specific processing is implemented, notably incorporating correction for Earth tides.
In April 2014, the tool was implemented at the Piton de la Fournaise Volcanological Observatory (OVPF) as a fully automated module of the WebObs system, using data from a seismological station of the Geoscope global network located 8 km from the summit of the volcano (Rivière de l’Est).
On June 20, 2014, an initial alert was sent 1 hour and 2 minutes before the start of the eruption. For over 10 years, this Jerk signal detection and analysis system operated continuously, 24/7, enabling automatic alerts for 92% of the 24 eruptions that occurred between 2014 and 2023. Alert times ranged from a few minutes to 8.5 hours before magma reached the surface. The method was also tested on data from 24 past eruptions between 1998 and 2010, demonstrating that the Jerk alert system works consistently. However, the system did make some errors, issuing clear alerts that were not followed by eruptions. Always keeping the population in mind, the alert time seems to me to be the most important factor. If the alert is triggered only a few minutes before the start of an eruption, it is clearly useless.
During the last seismic crisis at Piton de la Fournaise on December 5, 2025, associated with minor deformations and gas anomalies, a small jerk signal was emitted (only 0.1 nm/s³), confirming that a magma intrusion had indeed occurred. However, by the end of December, magma has still not pierced the surface! Fortunately, no population needs to be evacuated or sheltered in temporary accommodation centers. This is precisely where the value of a truly reliable eruption prediction lies: being able to predict an eruption and evacuate populations within a reasonable timeframe.
As the IPGP points out, Piton de la Fournaise is a highly instrumented and monitored laboratory volcano, but it is harmless from a human perspective. It is urgent to test the jerk method on other, more dangerous and less instrumented volcanoes with at-risk populations. Mount Etna could serve as a springboard to volcanoes in the Philippines or Indonesia.
Source: IPGP

 

Éruptions volcaniques et Peste Noire // Volcanic eruptions and Black Death

Bien que son parcours à travers l’Asie centrale demeure incertain, deux chercheurs allemands pensent avoir découvert comment – et pourquoi – la Peste Noire est parvenue en Europe médiévale. Une catastrophe climatique ayant entraîné une refonte des routes commerciales serait probablement à l’origine de l’introduction de la maladie en Europe au 14ème siècle.
La Peste Noire, l’une des pandémies les plus meurtrières de l’histoire de l’humanité, a ravagé l’Europe entre 1347 et 1353, causant la mort de 25 à 50 millions de personnes. Elle est provoquée par la bactérie Yersinia pestis. La morsure d’un animal infecté par cette bactérie, comme une puce ou un rongeur, provoque l’apparition de bubons (gonflement des ganglions lymphatiques) et parfois de la fièvre, de la fatigue, des vomissements, nausées et courbatures. Si les poumons sont atteints, la peste bubonique devient la peste pulmonaire, une forme plus rapide et toujours mortelle. Heureusement, la mise au point d’antibiotiques a permis d’éradiquer en grande partie cette maladie qui persiste dans certaines régions du monde, notamment à Madagascar, en République démocratique du Congo et au Pérou. Des cas continuent d’être signalés dans l’ouest des États-Unis, dans certaines parties du Brésil et de la Bolivie, ainsi qu’en Asie du Sud et en Asie centrale.
Les historiens ignoraient jusqu’alors pourquoi la Peste Noire avait débuté précisément à cette période, où, pourquoi elle avait causé autant de décès et comment elle s’était propagée si rapidement.
Une nouvelle étude menée par des chercheurs de l’Université de Cambridge au Royaume-Uni et de l’Institut Leibniz (GWZO) en Allemagne a permis de mieux comprendre les circonstances qui ont conduit à l’arrivée de la peste bubonique en Europe. Leurs travaux ont été publiés dans la revue Communications Earth & Environment.
S’appuyant sur un ensemble de données climatiques et de documents comme l’analyse des cernes des arbres, l’étude conclut qu’une éruption volcanique – ou une série d’éruptions – survenue vers 1345 a entraîné une baisse des températures pendant plusieurs années consécutives, à cause de la brume de cendres et de gaz volcaniques générée par cette – ou ces – éruptions.
Ce phénomène a provoqué de mauvaises récoltes dans toute la région méditerranéenne. Pour éviter les émeutes et la famine, les cités-États italiennes ont exploité leurs relations commerciales avec les producteurs de céréales de la Horde d’Or qui dominait alors l’Asie centrale. Cette méthode leur a permis d’éviter la famine, mais a également introduit la Peste Noire par le biais des navires étrangers.
Les auteurs de l’étude ont analysé les cernes de croissance des arbres des Pyrénées espagnoles et découvert des cernes bleus consécutifs révélant des étés exceptionnellement froids et humides en 1345, 1346 et 1347 dans une grande partie de l’Europe du Sud. Ils ont également trouvé des preuves, datant de la même période, d’une nébulosité inhabituelle et d’éclipses lunaires sombres, signes d’une activité volcanique.
Un historien du GWZO, spécialiste du climat et de l’épidémiologie médiévale, a collaboré avec l’équipe scientifique pour reconstituer le tableau le plus complet à ce jour de la conjonction de facteurs qui a conduit la peste jusqu’aux ports européens. Il explique que, pendant plus d’un siècle, les puissantes cités-États italiennes avaient établi des routes commerciales sur de longues distances à travers la Méditerranée et la mer Noire, ce qui leur a permis de mettre en place un système très efficace pour prévenir la famine. Mais au final, ces facteurs ont involontairement conduit à une catastrophe bien plus grave : l’apparition et la diffusion de la Peste Noire.
En 2022, une autre équipe de chercheurs allemands et britanniques a réussi à identifier l’origine de la souche originelle de la bactérie Yersinia pestis. Ils ont établi un lien entre les preuves de la maladie qui a ravagé l’Europe et les épidémies survenues dans les montagnes du Tian Shan, à la frontière du Kirghizistan actuel, en 1338. Il est probable que, par le biais du commerce et des migrations humaines, des rongeurs et des insectes porteurs de la maladie aient été transportés sur de longues distances jusqu’en Eurasie occidentale et en Europe, propageant ainsi la peste.
Les auteurs de la dernière étude ajoutent que leurs recherches sont « particulièrement pertinentes » dans le contexte de la pandémie de Covid-19. Selon eux,« bien que la conjonction de facteurs ayant contribué à la Peste Noire semble rare, la probabilité que des zoonoses (maladies infectieuses se transmettant de l’animal à l’homme) émergent sous l’effet du réchauffement climatique et se transforment en pandémies est susceptible d’augmenter dans un monde globalisé.»
Source : Médias britanniques et allemands.

 

Enterrement de victimes de la peste noire à Tournai, dans les Annales de Gilles Le Muisit (1272-1352), Bibliothèque royale de Belgique. (Source : Wikipedia)

———————————————

Though its route through Central Asia remains elusive, two German researchers believe they have discovered how — and why — the Black Death made it to Medieval Europe. A climate catastrophe that forced a rethink in trade routes was probably responsible for causing the Black Death in the 14th century.

The Black Death, one of the most fatal pandemics in human history, ravaged Europe between 1347 and 1353, and killed an estimated 25 to 50 million people. It is caused by Yersinia pestis bacteria. If bitten by an animal, such as a flea or a rodent, that is infected with the bacteria, a person would develop symptoms of swollen lymph nodes — called « buboes » — and potentially a mix of fever, fatigue, vomiting, nausea, and aches. If the lungs were infected, the bubonic plague became pneumonic plague, a type that spread faster and was always fatal. Fortunately, the development of bacteria-killing antibiotics has largely consigned plague to the past. But it still exists as a problem in some parts of the world, especially Madagascar, DR Congo and Peru. Cases continue to occur in the western United States, parts of Brazil and Bolivia, South and Central Asia.

Historians had not previously understood why the Black Death began precisely when it did, where it started, why it was so deadly, and how it spread so quickly.

A new study by researchers at the University of Cambridge in the UK and the Leibniz Institute (GWZO) in Germany has shed light on the circumstances that led to the bubonic plague coming to Europe. Their research was published in the journal Communications Earth & Environment,

Using a combination of climate data and documentary evidence, including analysing tree rings, the study suggests that a volcanic eruption – or cluster of eruptions – around 1345 caused annual temperatures to drop for consecutive years due to the haze from volcanic ash and gases.

This, in turn, caused crops to fail across the Mediterranean region. To avoid riots or starvation, Italian city states used their connections to trade with grain producers of the Golden Hord, which dominated Central Asia at the time. This method helped them avoid famine, but introduced the Black Death through foreign ships.

The authors of the study analysed tree rings from the Spanish Pyrenees, discovering consecutive Blue Rings, which suggest unusually cold and wet summers in 1345, 1346 and 1347 across much of southern Europe. They found evidence from the same period that documented unusual cloudiness and dark lunar eclipses, which also suggest volcanic activity.

A historian of medieval climate and epidemiology from the GWZO, worked with the scientific team to piece together “the most complete picture to date” of the “perfect storm” that led the plague to Europe’s ports. He explains that for more than a century, the powerful Italian city states had established long-distance trade routes across the Mediterranean and the Black Sea, allowing them to activate a highly efficient system to prevent starvation. But ultimately, these inadvertently led to a far bigger catastrophe.

In 2022, another group of researchers from Germany and the UK were able to pinpoint the origin of the so-called « source strain » of Yersinia pestis. They connected evidence of the disease that tore through Europe to outbreaks in the Tian Shan mountains, which border modern day Kyrgyzstan, in 1338. It’s likely that through trade and human movement, disease-carrying rodents and insects were transported the long distances into western Eurasia and Europe — bringing the plague with them.

The authors of the latest study add that the research is “especially relevant” following the Covid-19 pandemic. “Although the coincidence of factors that contributed to the Black Death seems rare, the probability of zoonotic diseases emerging under climate change and translating into pandemics is likely to increase in a globalised world.”

Source : British and German news media.

Des dépôts de glace dans la région équatoriale de la planète Mars ? // Ice deposits in the equatorial region of Mars ?

Selon une nouvelle étude publiée le 14 octobre 2025 dans la revue Nature Communications, d’anciennes éruptions volcaniques explosives sur Mars pourraient expliquer la possible présence de glace enfouie dans la région équatoriale de la Planète rouge.
Des recherches antérieures ont montré que la surface de Mars est riche en glace. La plupart de ces dépôts se situent au niveau des pôles, comme on peut l’observer sur Terre.

Source: NASA / Hubble telescope

Cependant, récemment, les sondes spatiales Mars Odyssey et ExoMars Trace Gas Orbiter ont détecté des niveaux élevés d’hydrogène près du sol dans les régions équatoriales de Mars. Il se peut que cette glace soit là depuis fort longtemps si elle était enfouie sous de la poussière ou des matériaux volcaniques, et il est donc possible qu’elle soit toujours présente sous la surface de la région équatoriale de la Planète rouge.

Traces de glace près de la formation Medusae Fossae (MFF) au niveau de l’équateur martien, vues par la sonde Mars Express de l’Agence spatiale européenne.

Les scientifiques s’interrogent désormais sur l’origine de cette glace dans une zone où ils ne l’attendaient pas. Des travaux antérieurs avaient laissé supposer que l’une des origines possibles de cette glace était le volcanisme. En effet, les éruptions peuvent générer de grandes quantités de vapeur d’eau. À l’aide de modèles informatiques du climat martien, des chercheurs ont simulé des éruptions volcaniques explosives qui, selon des recherches antérieures, se seraient produites sur la Planète rouge il y a entre 4,1 et 3 milliards d’années. Ces modèles montrent que ces éruptions ont envoyé de la vapeur d’eau à haute altitude, et cette vapeur a pu geler dans l’atmosphère très froide de Mars avant de retomber sous forme de glace.

Olympus Mons et d’autres édifices montrent que le volcanisme a été très actif sur la planète Mars (Source: NASA)

Cela signifie qu’un volume considérable de glace a pu se déposer après des éruptions répétées pendant des millions d’années. Le volcanisme explosif a pu provoquer de tels dépôts de glace et de cendres à plusieurs reprises sur les basses latitudes de la planète. Cela expliquerait les signaux d’hydrogène significatifs mesurés près de l’équateur.
Cependant, les chercheurs ont averti qu’il existe d’autres possibilités et que l’hydrogène détecté par les sondes spatiales autour de l’équateur martien peut ne pas provenir de dépôts de glace, mais de divers minéraux. Les recherches futures devront rechercher des signes de glace recouverte de cendres dans les régions équatoriales de Mars afin de confirmer ou d’infirmer la présence de glace à cet endroit. Si ces poches de glace équatoriales existent vraiment sur Mars, elles pourraient s’avérer précieuses pour les futures explorations par l’Homme. Une autre hypothèse est que des éruptions volcaniques ont pu envoyer de l’acide sulfurique dans l’atmosphère martienne. Cela a pu générer des aérosols qui ont réfléchi la lumière solaire et refroidi la Planète rouge, la plongeant dans un hiver global, ce qui a pu entraîner une accumulation prolongée de glace.
Il se peut aussi que ces anciennes éruptions volcaniques martiennes aient également généré de la chaleur et des substances chimiques susceptibles de créer des environnements habitables de courte durée. Ces régions ont alors pu offrir des conditions transitoires, mais potentiellement propices à la vie. Comprendre où et comment ces dépôts de glace et de cendres se sont formés pourrait contribuer à la recherche de biosignatures passées sur Mars.
Source : space.com.

——————————————

According to a new study published on October14 2025 in the journal Nature Communications, ancient explosive volcanic eruptions on Mars could help explain mysterious hints of buried ice from the Red Planet’s equator.

Previous research found that the surface of Mars is rich in ice. Most of these deposits are located at its poles, just as seen on Earth. However, recently the Mars Odyssey and the ExoMars Trace Gas Orbiter spacecraft detected elevated levels of hydrogen near the ground on the equatorial regions of Mars. This ice could have lasted for long spans of time if buried under dust or volcanic debris, and still might exist below the surface of equatorial regions on the Red Planet.

Scientists are now wondering how this ice might have originated in this unexpected area. Prior work noted one possible origin of this ice was volcanism, which could generate large amounts of water vapor.

Using computer models of the Martian climate, researchers simulated explosive volcanic eruptions that previous research found happened on the Red Planet between 4.1 billion and 3 billion years ago. The models suggested that the eruptions released water vapor into high altitudes, which could have frozen in the cold Martian atmosphere and later fallen as ice.

This means that a huge volume of ice could have been delivered after repeated eruptions over the course of millions of years. Explosive volcanism could have repeatedly seeded low latitudes with ice and ash, producing buried or insulated ice deposits that help explain the excess hydrogen signals measured near the equator.

However, the researchers cautioned that the hydrogen that spacecraft have detected around the Martian equator might not come from deposits of ice, but a range of minerals, among other possibilities. Future research will need to look for signs of ash-covered ice in the equatorial regions of Mars to support or refute the chances of ice there. If these equatorial ice pockets exist on Mars, they could prove valuable for human explorers there.

Another hypothesis is that volcanic eruptions could have spewed out sulfuric acid into the Martian atmosphere. This could have generated sunlight-reflecting aerosols that cooled the Red Planet, plunging it into a global winter that could in turn have let ice accumulate for a prolonged time.

But these ancient Martian volcanic eruptions might have also generated heat and chemicals that could create short-lived habitable environments. Those regions might have offered transient but potentially life-supporting conditions. Understanding where and how these ice–ash deposits formed could help guide the search for past biosignatures on Mars.

Source : space.com.

https://www.space.com/