Géothermie, l’énergie du futur ? // Is geothermal the energy of the future ?

L’Islande est connue pour ses faibles émissions de gaz à effet de serre, en grande partie grâce à l’énergie géothermique produite sur plus de 30 sites volcaniques qui alimentent également ses célèbres sources chaudes. L’utilisation par l’Islande de la géothermie pour le chauffage et d’un mélange de géothermie et d’hydroélectricité pour l’électricité lui a permis d’avoir de la chaleur et de l’électricité à des prix abordables, sans être impactée par le hausse du prix du gaz naturel comme ce fut la cas pour le reste de l’Europe suite à l’invasion de l’Ukraine par la Russie.
À l’heure actuelle, l’énergie géothermique représente moins de 1 % de la production d’électricité aux États-Unis. Contrairement à l’éolien et au solaire, qui ne produisent de l’énergie que dans certaines conditions, l’énergie géothermique est beaucoup plus constante. Les sources d’énergie éolienne et solaire doivent être complétées par des centrales qui brûlent du charbon ou du gaz. La géothermie n’a pas ce problème. En revanche, le coût de son exploitation peut être élevé dans les endroits qui nécessitent un forage profond. En 2021, un kilowattheure d’électricité généré par la géothermie coûtait en moyenne 3,991 dollars dans les pays du G20, contre 0,857 dollars pour l’énergie solaire et 1,325 dollars pour l’éolien terrestre.
Les progrès technologiques récents, tels que les systèmes EGS peuvent résoudre ce problème. [Remarque personnelle : EGS est l’abréviation de Enhanced Geothermal System, traduit littéralement par système géothermique amélioré, mais EGS est couramment utilisé sous l’appellation française ‘principe des systèmes géothermiques stimulés’ ou encore ‘géothermie profonde des réservoirs’ que nous utiliserons ici]. Dans un EGS, comme dans un puits de fracturation hydraulique, un fluide est injecté profondément sous terre, provoquant l’ouverture de fractures dans la roche, ce qui permet au fluide chaud de remonter vers la surface. En juin 2022, le Département Américain de l’Energie a annoncé un investissement de 165 millions de dollars dans la recherche et le déploiement de l’énergie géothermique. Le secteur privé prend également des mesures timides en matière d’énergie géothermique et un grand nombre de jeunes entreprises ont levé des millions de dollars en capital.
En janvier 2022, une entreprise danoise a signé un accord pour développer la plus grande centrale de chauffage géothermique de l’Union européenne. Des entreprises islandaises développent actuellement des projets de chauffage et d’énergie géothermiques dans d’autres pays. Dans le cadre d’un partenariat entre l’islandais Orka Energy Holding et le chinois Sinopec, la province chinoise de Xiong, qui compte 390 000 habitants, est en train de se convertir à la géothermie pour le chauffage résidentiel. Des puits d’environ 1 500 à 1 900 mètres de profondeur font remonter de l’eau à 70°C qui sert à chauffer les habitations. Dans cette région où les familles brûlaient auparavant du charbon pour se chauffer, le résultat est une réduction spectaculaire des émissions de carbone et de brouillard. Orka et la société islandaise Mannvit construisent également des centrales électriques qui produiront de l’électricité à partir de la géothermie dans des pays comme la Slovénie et la Hongrie.
Aux États-Unis, la géothermie représente 6 % de l’électricité produite en Californie et 10 % dans des états comme le Nevada. Hawaii, l’Utah, l’Oregon et l’Idaho qui ont également des centrales géothermiques. Comme en Islande, où 27 % de l’électricité et du chauffage de 90 % des foyers proviennent de la géothermie, ces États de l’ouest américain ont une activité volcanique qui fait remonter la chaleur près de la surface de la Terre. Cela rend la géothermie plus économiquement viable que dans la moitié Est des États-Unis où la chaleur est enfouie plus profondément sous terre.
Les détracteurs de la géothermie attirent l’attention sur les problèmes techniques liés au forage profond. Certaines sociétés espèrent faciliter le forage profond grâce à l’EGS, qui pourrait permettre un essor géothermique similaire à la fracturation hydraulique. Cette dernière a transformé l’extraction du pétrole et du gaz, mais pour le moment le coût de cette technologie reste trop élevé dans le secteur géothermique. On s’attend toutefois à ce qu’au cours de la prochaine décennie, l’intensification de la recherche et du développement dans le domaine de l’EGS réduise suffisamment les coûts pour rendre l’énergie géothermique économiquement compétitive.
En Oregon, la société AltaRock a mis en place un projet de démonstration sur le volcan Newberry qui permet de faire remonter de l’eau à plus de 400°C à 4 200 m sous terre. A 374°C, l’eau atteint l’état supercritique auquel elle s’écoule avec la facilité du gaz tout en gardant la densité d’énergie d’un liquide. Pour obtenir une eau aussi chaude dans des États comme celui de New York, il faudrait descendre de 6 000 ou 9 000 mètres de profondeur. AltaRock travaille actuellement en laboratoire avec la société Quaise Energy sur l’utilisation de la technologie des ondes millimétriques. (voir ma note du 27 décembre 2022 à ce sujet)
Les sceptiques font d’autre part remarquer que les systèmes de géothermie profonde rencontreront de nombreux obstacles techniques. Il y aura de l’eau qui s’échappera dans les fractures de la roche, le besoin de matériaux capables de résister à des températures extrêmement élevées et le fait que les nouvelles techniques opérationnelles dans une zone ne le seront pas forcément partout, étant donné la variabilité de la géologie à travers le pays.
Il y a aussi les obstacles politiques et économiques potentiels, tels que les objections de la population locale qui – comme pour la fracturation hydraulique – peuvent s’inquiéter des séismes qui pourraient être déclenchés par l’injection de liquide à l’intérieur de la Terre. Il y a aussi des coûts élevés que les distributeurs d’électricité devraient supporter, comme l’acheminement des lignes de transmission vers les sites des futures centrales géothermiques et le fait qu’un processus à forte consommation d’eau peut ne pas être réalisable dans les zones affectées par la sécheresse et le manque d’eau.

Néanmoins, les compagnies pétrolières et gazières sont de plus en plus intéressées. Elles possèdent la technologie et le savoir-faire pour effectuer des forages profonds. De plus, cette technologie a évolué et s’est développée, et peut être directement appliquée à la géothermie.
Source : Yahoo Actualités.

————————————————-

Iceland is known for its low greenhouse emissions thanks in part to its reliance on clean, geothermal energy derived from the more than 30 active volcanic systems that also power its famous hot springs. Iceland’s use of geothermal for heating and a mix of geothermal and hydropower for electricity has given it uninterrupted access to affordable heat and power, insulating its economy from the natural gas price shocks being felt by the rest of Europe since Russia’s invasion of Ukraine.

At present, geothermal energy accounts for less than 1% of the U.S. electricity portfolio. Unlike wind and solar energy, which do not produce as much energy in certain conditions, geothermal energy is much more constant. Wind and solar power sources need to be complemented with complementary plants which burn coal or gas. Geothermal does not have that problem. Yet the cost of tapping it can be expensive in places that require extensive digging. In 2021, a kilowatt hour of electricity generated by geothermal cost an average of $3,991 in G20 countries, compared to $857 for utility-scale solar power and $1,325 for on-shore wind

Recent technological advances, such as Enhanced Geothermal Systems (EGS) may solve that problem. In an EGS, much as in a fracking well, fluid is injected deep underground, causing fractures to open in the rock, which allows hot fluid to rise from far below. In June 2022, the U.S. Department of Energy (DOE) announced a $165 million investment in geothermal energy research and deployment. The private sector is also taking tentative steps into geothermal energy. A slew of geothermal energy startups have each raised millions of dollars in capital.

In January 2022, a Danish company signed an agreement to develop the largest geothermal heating plant in the European Union, and Icelandic companies are currently developing geothermal heating and energy projects in other countries. Under a partnership between Iceland’s Orka Energy Holding and China’s Sinopec, the 390,000-person Chinese county of Xiong is being converted to geothermal for residential heating. Wells roughly 1,500 to 1,900 meters deep bring up water at 70°C that is used to heat homes. In an area where families previously burned coal for heat, the result has been a dramatic cut in carbon emissions and smog. Orka and the Icelandic firm Mannvit are also building power plants that will produce electricity from geothermal in countries including Slovenia and Hungary.

In the U.S., geothermal accounts for 6% of the electricity produced in California and 10% in Nevada. Hawaii, Utah, Oregon and Idaho have geothermal plants as well. Like Iceland, where 27% of the electricity and heating in 90% of homes comes from geothermal, these western states have volcanic activity that brings heat close to the Earth’s surface. That makes geothermal more economically viable than in the eastern half of the U.S., where heat is buried deeper underground.

Skeptics of geothermal’s potential note the technological challenges to drilling deeper. Some energy companies hope to facilitate deeper drilling through EGS, which offers the possibility of a geothermal boom similar to the way fracking has transformed oil and gas extraction, but at the moment the cost is higher than other ressources. It is expected that over the next decade or so, increased research and development in EGS will bring the cost down enough to make geothermal energy economically competitive.

In Oregon, AltaRock is building a demonstration project at the Newberry Volcano to bring up water of more than 400°C from 4,200 m below ground. At 374°C, water reaches the supercritical state at which it flows with the ease of gas but carries the energy density of a liquid. Bringing up water that hot in states like New York would require going 6,000 to 9,000 meters below ground. AltaRock is currently working in a laboratory with the Quaise Energy company on using millimeter wave technology. (see my post of December 27th, 2022)

Skeptics point out that Enhanced Geothermal Systems will have plenty of technical obstacles. There will be water escaping into the rock cracks, the need for materials that can withstand incredibly high temperatures, and the fact that new techniques that work in one area may not apply everywhere, given the variability in geology around the country.

Then there are the potential political and economic roadblocks, such as objections of nearby residents who – like for fracking – may worry about earthquakes that could be triggered by injecting liquid into the Earth. There are also steep costs that utilities would have to bear, such as bringing transmission lines to the sites of future geothermal power plants and the fact that a water-intensive process may not be feasible in areas with water scarcity.

Nonetheless, oil and gas companies are increasingly interested. They have the technology and know-how to drill deep below the ground. Moreover, this technology has evolved and grown, and can be directly applied to geothermal power.

Source : Yahoo News.

Photos: C. Grandpey

Urgence énergétique aux Etats Unis // Energy emergency in the United States

Avec la sécheresse qui sévit depuis des mois aux Etats Unis, les cours d’eau et les réserves sont au plus bas, ce qui pose des problèmes en agriculture et menace l’approvisionnement en électricité des zones habitées. Certaines régions doivent s’attendre à des coupures de courant.

C’est pourquoi le président américain Joe Biden a déclaré l’urgence énergétique dans le pays le 6 juin 2022 en raison des menaces qui pèsent sur « la disponibilité d’une production d’électricité suffisante pour répondre aux besoins de la population ». L’urgence énergétique restera en vigueur pendant au moins 24 mois.
Voici un extrait de la déclaration de M. Biden :

« De nombreux facteurs menacent la capacité des États-Unis à fournir une production d’électricité suffisante pour répondre à la demande de la population. Ces facteurs comprennent les perturbations causées au marché de l’énergie par l’invasion de l’Ukraine par la Russie et les phénomènes météorologiques extrêmes exacerbés par le changement climatique. Par exemple, dans certaines parties du pays, les conditions de sécheresse couplées aux vagues de chaleur provoquent à la fois des pénuries d’approvisionnement en électricité et une demande record d’électricité. En conséquence, la Federal Energy Regulatory Commission et la North American Electric Reliability Corporation ont toutes deux mis en garde contre les problèmes de distribution d’électricité à court terme. Afin d’assurer l’adéquation des ressources électriques, les services publics et les opérateurs de réseau doivent s’engager à construire dès maintenant de nouvelles capacités de production afin de répondre aux besoins de la population.
L’énergie solaire est l’une des sources de production d’électricité qui se développe le plus vite aux États-Unis. Les services publics et les opérateurs de réseau s’appuient de plus en plus sur de nouvelles installations solaires pour maintenir une bonne distribution d’électricité. Les nouveaux champs photovoltaïques devraient représenter plus de la moitié de la capacité du secteur électrique en 2022 et 2023.
Actuellement, la pénurie de composants compromet les nouvelles installations solaires prévues, ce qui menace à son tour la production d’électricité pour répondre à la demande de la population.
L’électricité produite par l’énergie solaire est essentielle pour réduire la combustion de combustibles fossiles qui entraîne le changement climatique. Le ministère de la Défense a reconnu que le changement climatique était une menace pour notre sécurité nationale.
Ces dernières années, la grande majorité des modules solaires installés aux États-Unis ont été importés. Ceux en provenance d’Asie du Sud-Est représentaient environ les trois quarts des importations en 2020.
Récemment, les États-Unis n’ont pas été en mesure d’importer des modules solaires en quantité suffisante pour assurer les ajouts de capacité solaire nécessaires pour atteindre nos objectifs en matière de climat et d’énergie propre, pour assurer l’adéquation des ressources du réseau électrique, et pour aider à lutter contre la hausse des prix de l’énergie. Cette pénurie aiguë de modules solaires et de composants a brusquement mis en péril les ajouts de capacité solaire à court terme. Ces nouvelles installations pourraient aider à assurer la suffisance de la production d’électricité et répondre à la demande de la population. Environ la moitié du déploiement de modules solaires prévu aux Etats Unis au cours de l’année prochaine est actuellement menacé en raison d’un approvisionnement insuffisant. Dans tout le pays, des projets solaires sont reportés ou annulés.
Le gouvernement fédéral travaille avec le secteur privé pour promouvoir la fabrication solaire nationale, y compris notre capacité à fabriquer des modules et d’autres éléments de la chaîne solaire, mais le renforcement de cette capacité prendra du temps. En attendant, une action immédiate est nécessaire pour s’assurer que les États-Unis auront accès à un approvisionnement suffisant de modules solaires pour répondre à nos besoins de production d’électricité.

Source : Declaration of Emergency and Authorization for Temporary Extensions of Time and Duty-Free Importation of Solar Cells and Modules from Southeast Asia – The White House – June 6th, 2022.

———————————————-

With the severe drought that has been affecting parts of the U.S. for several months, rivers ans water reserves are at their lwest, which causes problems in the electricity supply. Powercuts are likely in several regions of the country.

U.S. President Joe Biden declared a national energy emergency on June 6th, 2022, due to the threats to the availability of sufficient electricity generation to meet expected customer demand. It will stay in effect for at least 24 months.

Here is an excertpt of Mr. Biden’s declaration :

“Multiple factors are threatening the ability of the United States to provide sufficient electricity generation to serve expected customer demand. These factors include disruptions to energy markets caused by Russia’s invasion of Ukraine and extreme weather events exacerbated by climate change. For example, in parts of the country, drought conditions coupled with heatwaves are simultaneously causing projected electricity supply shortfalls and record electricity demand. As a result, the Federal Energy Regulatory Commission and the North American Electric Reliability Corporation have both warned of near-term electricity reliability concerns in their recent summer reliability assessments. In order to ensure electric resource adequacy, utilities and grid operators must engage in advance planning to build new capacity now to serve expected customer demand.

Solar energy is among the fastest growing sources of new electric generation in the United States. Utilities and grid operators are increasingly relying on new solar installations to ensure that there are sufficient resources on the grid to maintain reliable service. Additions of solar capacity and batteries were expected to account for over half of new electric sector capacity in 2022 and 2023.

The unavailability of solar cells and modules jeopardizes those planned additions, which in turn threatens the availability of sufficient electricity generation capacity to serve expected customer demand.

Electricity produced through solar energy is also critical to reducing our dependence on electricity produced by the burning of fossil fuels, which drives climate change. The Department of Defense has recognized climate change as a threat to our national security.

In recent years, the vast majority of solar modules installed in the United States were imported, with those from Southeast Asia making up approximately three-quarters of imported modules in 2020.

Recently, however, the United States has been unable to import solar modules in sufficient quantities to ensure solar capacity additions necessary to achieve our climate and clean energy goals, ensure electricity grid resource adequacy, and help combat rising energy prices. This acute shortage of solar modules and module components has abruptly put at risk near-term solar capacity additions that could otherwise have the potential to help ensure the sufficiency of electricity generation to meet customer demand. Roughly half of the domestic deployment of solar modules that had been anticipated over the next year is currently in jeopardy as a result of insufficient supply. Across the country, solar projects are being postponed or canceled.

The Federal Government is working with the private sector to promote the expansion of domestic solar manufacturing capacity, including our capacity to manufacture modules and other inputs in the solar supply chain, but building that capacity will take time. Immediate action is needed to ensure in the interim that the United States has access to a sufficient supply of solar modules to assist in meeting our electricity generation needs. »

Source : Declaration of Emergency and Authorization for Temporary Extensions of Time and Duty-Free Importation of Solar Cells and Modules from Southeast Asia – The White House – June 6th, 2022.

Beaucoup de réserves d’eau sont quasiment à sec dans l’Ouest des Etats Unis et la pénurie de composants photovoltaïques n’arrange rien (Photos: C. Grandpey)

Vague de chaleur et de sécheresse en Alaska // Hot and dry days in Alaska

Comme je l’ai déjà écrit, tout l’Arctique souffre du réchauffement climatique. Le sud-est de l’Alaska en particulier traverse une période chaude et sèche. À partir du 17 mars 2019, une ou plusieurs localités de la région ont connu des températures record pendant 16 jours consécutifs. Au total, 26 sites du sud-est de l’Alaska ont connu des niveaux de température record en mars.
Parallèlement à la chaleur, de nombreuses régions du sud-est connaissent une sécheresse qui n’en finit pas. Juneau a connu le 19 mars le plus sec de son histoire, après plus d’une année de faibles précipitations. À l’aéroport international de la ville, qui reçoit habituellement une trentaine de centimètres de neige en mars, seule une mince couche a recouvert le sol pendant le mois cette année. Sur l’ensemble de l’hiver,  il est tombé environ 1,30 mètre de neige à l’aéroport, contre 2,16 mètres habituellement.

Une des conséquences les plus évidentes du manque de pluie est le risque d’incendie. Les personnes qui font brûler des détritus doivent s’assurer d’avoir un tuyau d’arrosage ou une pelle à proximité en cas de problème. Elles doivent également ne pas faire un feu de plus de 3 mètres de diamètre et veiller à ne pas faire de feu en période de vent fort.
En ce qui concerne les semaines à venir, avril est historiquement le mois le plus sec à Juneau. En avril, les précipitations sont en moyenne de 7,35 centimètres dans la capitale. Le mois a commencé par une bonne nouvelles Le distributeur d’électricité Alaska Electric Light and Power vient d’annoncer que, après des mois de déconnexion de certains de ses clients en raison du faible niveau d’eau dans les barrages, il est de nouveau possible de les reconnecter. Les niveaux d’eau sont revenus à la normale, en partie grâce à la fonte de la neige. Cependant, on ne sait pas si les niveaux d’eau resteront élevés cet été ou s’il ne s’agit que d’une hausse temporaire due à la fonte de la neige.
Source: Juneau Empire.

————————————————

As I put it before, the whole Arctic is suffering from global warming. Southeast Alaska in particular is going through a hot period. Starting March 17th, 2019, one or more locations in the region have seen record high temperatures for 16 days in a row. All told, there were 26 sites in Southeast Alaska that experienced record highs in March.

Along with the heat, many areas in Southeast are experiencing an extended drought. Juneau experienced its 19th driest March on record, following up on more than a year of low precipitation. At the Juneau International Airport which usually sees about 30 centimetres of snow in March, only a thin layer fell during the month this year. For the winter season, 130 centimetres of snow have fallen at the airport. It is almost certain that the snow season will finish well short of its usual average of 216 centimetres.

One of the most obvious consequences of lower precipitation is the higher risk of fire.  People who are going to burn their trash should make sure thry have an extinguishing method such as a garden hose or a shovel. They should also keep the fire under 3 metres in diameter and make sure not to have a fire when the wind strong.

As far as the coming weeks are concerned, April is historically Juneau’s driest month. The capital city gets an average of 7.35 centimetres of precipitation in April per year. The month began with a bit of good news. Alaska Electric Light and Power has just announced that after months of disconnecting some of its customers due to low water levels, there is enough hydropower to reconnect them. Water levels have returned to normal, in part because of melting snow. However, it is not clear whether water levels will remain high for the summer or if this is just a temporary rise due to melting snow.

Source : Juneau Empire.

Vues de Juneau et du Mendenhall Glacier à proximité de la capitale de l’Alaska (Photos: C. Grandpey)

 

Les voitures électriques sont-elles écologiques? (2) // Are electric cars environment-friendly? (2)

Dans ma note du 21 novembre, je mettais l’accent sur les problèmes environnementaux posés par l’extraction du lithium, l’un des composants essentiels des batteries de véhicules électriques.

Au vu des problèmes environnementaux qu’elle occasionne, on peut se demander si  la voiture électrique est réellement le moyen idéal de faire la transition vers un transport écologique. Est-elle toujours plus écologique qu’une voiture thermique essence ou diesel ?

On reproche souvent au diesel d’émettre des particules fines. Comme elle n’utilise pas d’énergie fossile, on pourrait penser que la voiture électrique n’en produit pas. Ce type de raisonnement est en partie erroné. En effet, une bonne partie des particules fines émises par les voitures ne l’est pas par le moteur, mais par l’abrasion des pneus, de la route et des plaquettes de frein. Donc, même avec un véhicule électrique, il y aura toujours la présence de particules fines à cause du roulage, des frottements sur la route et du freinage.

Une autre idée fausse concerne l’électricité utilisée pour faire fonctionner ces voitures. En effet, pour produire de l’électricité on utilise différentes sources d’énergie qui diffèrent d’un pays à l’autre. Par exemple, en France, l’énergie nucléaire est majoritaire. 69% de l’électricité est produite par les centrales, mais elle est également générée par le gaz (8%), le charbon (2%) et le fioul (1%). La France importe aussi une partie de son électricité de pays voisins comme l’Allemagne, la Suisse et l’Italie, et une partie de cette électricité importée est produite à partir d’énergies fossiles. Par exemple, l’électricité achetée en Allemagne est largement produite à partir du charbon. On consomme donc de l’électricité provenant indirectement des énergies fossiles. Aux Etats-Unis, où 40% de l’électricité est produite à partir du charbon, l’utilisation des voitures électriques reste donc polluante. En résumé, dans tous les pays qui n’ont pas mis en place une vraie transition énergétique vers des énergies non-fossiles, rouler en voiture électrique revient à rouler au charbon au lieu de rouler au pétrole. En France, rouler avec un véhicule électrique permet de réduire nos émissions de CO2. En revanche, comme notre électricité est produite à partir du nucléaire, nous produisons des déchets radioactifs.

L’autre gros problème des voitures électriques est qu’elles sont plus complexes à produire que les voitures à moteurs à combustion. Ainsi, lorsqu’une voiture électrique sort de l’usine, elle a beaucoup plus contribué à la pollution globale qu’une voiture conventionnelle. C’est notamment dû à la production de la batterie et au développement de composés électroniques complexes du moteur.

Je ne reviendrai pas sur les problèmes liés à l’extraction du lithium à laquelle il faudrait ajouter la question des réserves de lithium disponibles. Sommes-nous certains d’avoir suffisamment de lithium sur notre planète pour assurer la transition énergétique ? Le recyclage des batteries pose également problème car il est relativement coûteux en énergie et en termes d’impacts environnementaux.

Au final, on estime que la fabrication d’un véhicule électrique serait en moyenne 5 fois plus polluante que la fabrication d’un véhicule conventionnel. Il faut toutefois noter qu’en théorie cet écart se réduit au fur et à mesure que l’on utilise le véhicule. En effet, puisque l’utilisation d’un véhicule électrique est moins polluante, plus on l’utilise, plus on rentabilise la pollution initiale. Des chercheurs ont calculé qu’avec une utilisation longue, sur au moins 200 000 km, le véhicule électrique aura un impact 27 à 29% plus positif sur le réchauffement climatique par rapport aux véhicules essence. Si le véhicule est utilisé sur 100 000 km, cet impact tombera à 9 à 14%.  .

En résumé, la problématique de l’impact écologique des véhicules électriques est extrêmement complexe. Elle dépend des pays et de leur production énergétique, ainsi que de l’utilisation des véhicules. Elle dépend donc aussi des choix énergétiques et des évolutions technologiques qui auront lieu dans le futur. Ainsi, les technologies des batteries évoluent rapidement et leur production deviendra de plus en plus facile, ce qui pourrait améliorer l’impact des véhicules électriques dans le futur.

Source : Différents articles dans la presse nationale et internationale.

————————————————-

In my note of November 21st, I shed light on the environmental issues raised by the extraction of lithium, one of the essential components in the batteries of  electric vehicles.
In view of the environmental problems it causes, one may wonder if the electric car is the ideal solution to make the transition to an ecological transport. Is it really more environmentally friendly than a petrol or diesel fuel car?
Diesel is often criticized for emitting fine particles. Since it does not use fossil energy, one might think that the electric car does not produce them. This type of reasoning is partly wrong. Indeed, a good part of the fine particles emitted by cars is not by the engine, but by the abrasion of the tires, the road and the brake pads. So, even with an electric vehicle, there will always be fine particles because of rolling, friction on the road and braking.
Another misconception concerns the electricity used to run these cars. Indeed, to produce electricity we use different energy sources that differ from one country to another. For example, in France, priority has been given to nuclear energy. 69% of our electricity is generated by nukes, but it is also generated by gas (8%), coal (2%) and fuel oil (1%). France also imports some of its electricity from neighbouring countries such as Germany, Switzerland and Italy, and some of this imported electricity is produced from fossil fuels. For example, electricity purchased in Germany is largely produced from coal. We therefore consume electricity indirectly from fossil fuels. In the United States, where 40% of electricity is produced from coal, the use of electric cars is polluting. To put it in a nutshell, in all countries that have not implemented a real energy transition to non-fossil energies, driving an electric car is like driving with coal instead of driving with oil. In France, driving with an electric vehicle reduces our CO2 emissions. On the other hand, since our electricity is produced from nuclear power, we have to deal with radioactive waste.
The other big problem with electric cars is that they are more complex to produce than conventional cars. Thus, when an electric car leaves the factory, it has contributed much more to global pollution than a conventional car. This is due in particular to the production of the battery and the development of complex electronic compounds in the engine.
I will not come back to the problems of lithium extraction, to which should be added the question of the availability of lithium reserves. Are we sure we will have enough lithium on our planet to make the energy transition? Battery recycling is also a problem because it is relatively expensive in terms of energy and environmental impacts.
In the end, it has been estimated that the manufacture of an electric vehicle would be on average 5 times more polluting than the manufacture of a conventional vehicle. It should be noted however that in theory this difference is reduced as and when the vehicle is used. Indeed, since the use of an electric vehicle is less polluting, the more we use it, the more we reduce the initial pollution. Researchers have calculated that with long-term use – at least 200,000 km – the electric vehicle will have a 27 to 29% more positive impact on global warming compared to petrol vehicles. If the vehicle is used on 100,000 km, this impact will fall to 9 to 14%. .
In summary, the problem of the environmental impact of electric vehicles is extremely complex. It depends on the countries and their energy production, as well as the use of the vehicles. It also depends on energy choices and technological developments that will take place in the future. Thus, battery technologies are evolving rapidly and their production will become easier and easier, which could improve the impact of electric vehicles in the future.
Source: Various articles in the national and international press.

Les bornes de recharge pour voitures électriques remplaceront-elles un jour les pompes à essence? (Crédit photo : Wikipedia)