Nouvelles inquiétudes pour l’AMOC et le Gulf Stream // New concerns for AMOC and the Gulf Stream

A plusieurs reprises sur ce blog (17 avril, 2018, 3 août 2020, 11 mars 2021, etc.), j’ai attiré l’attention sur les modifications qu’était en train de connaître la circulation méridienne de retournement atlantique (AMOC) et les effets désastreux que cela pourrait avoir pour notre planète si la situation venait à empirer.

Alors que le GIEC s’apprête à divulguer son rapport annuel sur l’évolution du climat, des scientifiques attirent à nouveau l’attention sur la circulation méridienne de retournement atlantique et la dégénérescence de sa stabilité à cause du réchauffement climatique.

Une étude publiée le 5 août 2021 dans la revue Nature Climate Change dresse un nouveau constat alarmant sur cette circulation à laquelle appartient également le Gulf Stream. Les analyses montrent un affaiblissement progressif de son équilibre au cours des dernières décennies.

Il est bon de rappeler que l’AMOC est l’un des principaux systèmes de courants océaniques de notre planète. Il transporte les eaux de surface chaudes des Caraïbes vers l’Atlantique nord, et rapatrie l’eau froide dans le sens inverse. Ce tapis roulant géant répartit la chaleur reçue du soleil et influence les climats dans de nombreuses régions du monde.

Le problème, c’est qu’avec la fonte des glaces au Groenland et de l’Arctique sous les coups de boutoir du réchauffement climatique, ce système de renouvellement est fortement perturbé au Nord. Les calottes glaciaires apportent au courant de l’eau douce moins dense que l’eau salée, ce qui a pour conséquence de ralentir le tapis roulant.

On savait que le Gulf Stream était à son plus bas niveau de circulation depuis plus de 1000 ans mais la cause de cette dégradation était encore floue. Ce qui inquiète les scientifiques, c’est que « la perte de stabilité dynamique impliquerait que l’AMOC a approché son seuil critique, au-delà duquel une transition substantielle et probablement irréversible vers le mode faible pourrait se produire. »

Pour en arriver à cette conclusion, les scientifiques ont analysé huit indices AMOC indépendants, répertoriés à travers l’Océan Atlantique. Ils sont basés sur des données d’observation de la température et de la salinité de la surface de la mer. On parle “d’empreintes digitales”. Une analyse détaillée de ces empreintes digitales dans huit indices indépendants suggère que l’affaiblissement de l’AMOC au cours du siècle dernier est susceptible d’être associé à une perte de stabilité.

Selon les chercheurs, le déclin de l’AMOC signifie probablement l’approche d’un seuil critique au-delà duquel le système de circulation pourrait s’effondrer. C’est le “point de basculement”, celui de non-retour tant redouté par les scientifiques et qui apportera des conséquences désastreuses irréversibles.  Les conséquences d’un tel scénario sont faciles à imaginer. On assistera forcément à un refroidissement de l’hémisphère nord, une élévation du niveau de la mer dans l’Atlantique, une baisse globale des précipitations en Europe et en Amérique du Nord ou bien un changement sur le niveau des pluies en Amérique du Sud, en Afrique et Asie. La série d’événements catastrophiques se fera ressentir à travers la planète entière.

Selon les auteurs de la dernière étude, la seule solution est de maintenir les émissions de gaz à effet de serre aussi basses que possible. La probabilité que cet événement à impact extrêmement élevé ne fait que s’accroître avec chaque gramme de CO2 que nous rejetons dans l’atmosphère.

Source : Presse internationale.

——————————————-

On several occasions on this blog (April 17, 2018, August 3, 2020, March 11, 2021, etc.), I drew attention to the changes that the Atlantic Meridional Overturning Circulation (AMOC) was undergoing. and the disastrous effects it could have on our planet if the situation worsened.
As the IPCC prepares to release its annual report on climate change, scientists are once again drawing attention to AMOC and the degeneration of its stability due to global warming.
A study published on August 5th, 2021 in the journal Nature Climate Change draws up an alarming new finding on this circulation to which the Gulf Stream also belongs. Analyses show a gradual weakening of its balance over the past decades.
It is worth remembering that AMOC is one of the main ocean current systems on our planet. It carries warm surface water from the Caribbean to the North Atlantic, and repatriates cold water in the opposite direction. This giant treadmill distributes the heat received from the sun and influences climates in many parts of the world.
The problem is that with the melting of the ice in Greenland and the Arctic under the blows of global warming, this system is severely disrupted in the North. Ice caps bring fresh water which is less dense than salt water, slowing down the conveyor belt.
We knew that the Gulf Stream was at its lowest circulation level for more than 1000 years, but the cause of this degradation was still unclear. What worries scientists is that « the loss of dynamic stability would imply that AMOC has approached its critical threshold, beyond which a substantial and probably irreversible transition to the weak mode could occur.  »
To come to this conclusion, the scientists analyzed eight independent AMOC indices, listed across the Atlantic Ocean. They are based on observational data of the temperature and salinity of the sea surface. They are called “fingerprints”. A detailed analysis of these fingerprints in eight independent indices suggests that the weakening of AMOC over the past century is likely to be associated with a loss of stability.
According to the researchers, the decline in AMOC likely means it is approaching a critical threshold beyond which the circulation system could collapse. This is the “tipping point” feared by scientists,which would bring disastrous and irreversible consequences.

The consequences of such a scenario are easy to imagine. There will inevitably be a cooling of the northern hemisphere, a rise in sea level in the Atlantic, an overall decrease in precipitation in Europe and North America or a change in rainfall in South America, in Africa and Asia. The series of catastrophic events will be felt across the entire planet.
The only solution, according to the authors of the latest study, is to keep greenhouse gas emissions as low as possible. The likelihood of this extremely high impact event is only increasing with every gram of CO2 we release into the atmosphere.
Source: International press.

Vers une perturbation de la circulation thermohaline ? // Toward a disruption of the AMOC ?

Bien que complexe, la circulation thermohaline, autrement dit le mécanisme qui gère les courants marins, est essentielle à la vie sur notre planète. Ce sont en grande partie les courants marins qui, par leur influence, gèrent le climat des zones où nous vivons. Il ne faudrait pas oublier que les océans couvrent 71 % de la surface du globe. Il s‘ensuit qu’une modification de la circulation océanique aura forcément des conséquences sur toute la planète et particulièrement dans l’Atlantique Nord, là où les courants marins prennent naissance.

Ainsi, le Gulf Stream prend naissance dans le Golfe du Mexique pour ensuite se diriger vers l’Angleterre. On lui attribue les hivers peu rigoureux en Europe, contrairement à ceux que subit l’Amérique du Nord. Peu de gens savent que l’arrivée du Gulf Stream près des côtes occidentales de l’Europe constitue le point de départ des grands courants qui sillonnent la planète. Lorsque le Gulf Stream passe entre la Scandinavie et le Groenland, il côtoie les eaux froides de l’Arctique et se refroidit considérablement, au point que la mer se recouvre de glace.

L’eau sous forme de glace n’a pas la capacité de contenir du sel. En passant au stade de glace, cette eau rejette le sel qu’elle contenait. On se retrouve donc en présence d’une eau froide qui contient plus de sel que les eaux avoisinantes. Comme c’est le cas dans l’atmosphère où l’air chaud monte et l’air froid descend, dans l’océan l’eau chaude reste à la surface et l’eau froide coule vers le fond. De plus, cette eau contient beaucoup plus de sel et est donc plus dense. La conséquence est que son mouvement vers le fond est accéléré.

Cette eau froide et très salée longe la dorsale atlantique jusqu’au sud des Amériques avant de glisser vers l’Océan Pacifique, où elle se réchauffera et remonte donc plus près de la surface avant de continuer sa course vers son point de départ. On se rend compte que cette circulation thermohaline est due aux différences de températures et de salinité des eaux du globe.

Les océanographes ont remarqué depuis quelques années que la circulation thermohaline s’est modifiée dans l’Arctique. Cela a commencé avec les premières observations du ralentissement du courant-jet polaire dans les années 1990. La chose inquiétante, c’est que ce ralentissement est devenu la norme depuis 2005 et qu’il est directement lié au réchauffement de l’Arctique. Ce réchauffement est responsable de la disparition de la vieille glace au profit d’une glace plus jeune et moins épaisse.

La disparition de la glace de mer en Arctique est une catastrophe par son effet sur l’albédo. En effet, les rayons du soleil ne sont plus réfléchis vers l’espace, et ils sont au contraire absorbés par l’océan. Les scientifiques ont mesuré une température de l’eau atteignant par endroits 11°C en été, ce qui est tout à fait anormal et correspond aux observations climatiques qui montrent que l’Arctique se réchauffe deux fois plus vite que le reste de la planète. De ce fait, les secteurs les moins profonds, comme le bord des côtes vont perdre leur pergélisol et libérer de grandes quantités de méthane. Comme je l’ai écrit à plusieurs reprises, le méthane (CH4) est un gaz à effet de serre 28 fois plus puissant que le CO2, même si sa durée de vie est plus brève. Néanmoins, le méthane peut faire grimper la température globale de 0,6°C.

Comme les eaux de l’Arctique se réchauffent, le point de départ de la circulation thermohaline s’est également réchauffé. On a longtemps cru que si l’Arctique fondait, l’apport d’eau froide et non salée dans l’Atlantique Nord ralentirait le Gulf Stream avec des hivers beaucoup plus rigoureux en Europe. La vérité, c’est que le réchauffement de la planète est arrivé à un tel point que toutes les régions vont se réchauffer. Les côtes occidentales de l’Europe, qui bénéficient de l’influence du Gulf Stream, vont se réchauffer moins vite à cause de l’apport d’eau froide dans l’Atlantique Nord, mais elles vont se réchauffer quand même.

Dans la mesure où le Gulf Stream évacue naturellement la chaleur accumulée aux tropiques vers le pôle et que ce courant sera ralenti par la fonte de l’Arctique, la chaleur va s’accumuler plus vite dans l’Atlantique au niveau des tropiques, ce qui risque fort de favoriser le développement d’ouragans majeurs. Si l’on associe un courant chaud qui amorce plus difficilement la circulation thermohaline d’une part, et la plus grande facilité à accumuler de la chaleur dans la zone de formation des cyclones tropicaux atlantiques d’autre part, on arrive à une situation qui met en danger des centaines de millions de personnes.

Source : Météo Media.

——————————————–

Although complex, the thermohaline circulation – or AMOC (Atlantic Meridional Overturning Circulation) – is the mechanism that manages ocean currents, and that is essential to life on our planet. It is largely the ocean currents that, through their influence, manage the climate of the regions where we live. It should not be forgotten that the oceans cover 71% of the Earth’s surface. It follows that a change in ocean circulation will inevitably have consequences on the whole planet and particularly in the North Atlantic, where sea currents originate.
Thus, the Gulf Stream originates in the Gulf of Mexico and then moves towards England. It is rhe cause of mild winters in Europe, unlike those in North America. Few people know that the arrival of the Gulf Stream near the western coasts of Europe is the starting point for the great currents that crisscross the planet. When the Gulf Stream passes between Scandinavia and Greenland, it coasts with the cold Arctic waters and cools considerably, to the point that the sea becomes covered with ice.
Water in the form of ice does not have the capacity to contain salt. Passing the ice stage, this water rejects the salt it contained. We therefore find ourselves in the presence of cold water which contains more salt than the surrounding waters. As is the case in the atmosphere where warm air rises and cold air sinks, in the ocean warm water stays on the surface and cold water sinks to the bottom. In addition, this water contains much more salt and is therefore more dense. The consequence is that its movement towards the bottom is accelerated.
This cold and very salty water runs along the Atlantic ridge to the southern Americas before sliding towards the Pacific Ocean, where it will warm up and therefore rise closer to the surface before continuing its course towards its starting point. We realize that this thermohaline circulation is due to the differences in temperature and salinity of the world’s waters.
Oceanographers have noticed in recent years that thermohaline circulation has changed in the Arctic. It started with the first observations of the polar jet slowdown in the 1990s. The worrying thing is that this slowdown has become the norm since 2005 and is directly linked to the warming of the Arctic. This warming is responsible for the disappearance of old ice in favour of younger, thinner ice.
The disappearance of sea ice in the Arctic is a disaster because of its effect on the albedo. Indeed, the sun’s rays are no longer reflected back to space, and are instead absorbed by the ocean. Scientists have measured a water temperature in places as high as 11°C in summer, which is completely anomalous and corresponds to climatic observations which show that the Arctic is warming twice as fast as the rest of the planet. As a result, the shallower areas, such as the coastline, will lose their permafrost and release large amounts of methane. As I have written several times, methane (CH4) is a greenhouse gas 28 times more powerful than CO2, even if its lifespan is shorter. However, methane can cause the global temperature to rise 0.6°C.
As the Arctic waters warm, the starting point of the thermohaline circulation has also warmed. It has long been believed that if the Arctic melted, the flow of cold, unsalted water to the North Atlantic would slow the Gulf Stream with much harsher winters in Europe. The truth is, global warming has come to such an extent that all regions are going to get warmer. The western coasts of Europe, which benefit from the influence of the Gulf Stream, will warm up less quickly due to the cold water coming into the North Atlantic, but they will warm anyway.
Insofar as the Gulf Stream naturally evacuates the heat accumulated in the tropics towards the pole and that this current will be slowed down by the melting of the Arctic, the heat will accumulate more quickly in the Atlantic at the level of the tropics, with a strong risk of favouring the development of major hurricanes. If we associate a hot current which is more difficult to initiate the thermohaline circulation on the one hand, and the greater facility to accumulate heat in the zone of formation of Atlantic tropical cyclones on the other hand, we arrive at a situation which puts hundreds of millions of people at risk.
Source: Météo Media.

Schéma montrant la circulation thermohaline [Source :Groupe d’experts intergouvernemental sur l’évolution du climat (GIEC)]

Réchauffement climatique, fonte des calottes glaciaires et effets sur les courants océaniques // Global warming, melting ice caps and effects on ocean currents

Avec la fonte des calottes glaciaires arctique et antarctique, on sait d’ores et déjà que des milliards de tonnes d’eau douce vont se déverser dans l’océan. On sait aussi que ce phénomène va avoir un double effet dévastateur. D’une part, on va assister à une rapide hausse du niveau des océans. D’autre part, cette arrivée d’eau douce et très froide risque fort d’entraîner un dérèglement des grands courants océaniques, donc du climat du globe, avec des effets catastrophiques faciles à imaginer.

Une étude internationale qui vient d’être publiée début février 2019 dans la revue Nature prévient que la fonte des calottes glaciaires du Groenland et de l’Antarctique, en plus d’augmenter le niveau des océans, va aussi multiplier les événements météo extrêmes et déstabiliser le climat de certaines régions dans les prochaines décennies. On peut lire que les milliards de tonnes d’eau issues de la fonte des glaces, en particulier au Groenland, vont affaiblir les courants océaniques qui aujourd’hui transportent l’eau froide vers le sud en plongeant vers le fond de l’Atlantique, tout en repoussant les eaux tropicales vers le nord plus près de la surface. Ce phénomène est connu sous l’appellation anglaise Atlantic Meridional Overturning Circulation (AMOC) – circulation méridienne de retournement de l’Atlantique, ou circulation thermohaline. C’est une espèce de grand tapis roulant océanique qui joue un rôle crucial dans le système climatique et aide à maintenir une certaine chaleur sur l’hémisphère nord.

Selon les modèles établis par des chercheurs néo-zélandais dans le cadre de l’étude, la fonte des banquises va provoquer des perturbations importantes dans les courants océaniques et changer les niveaux de réchauffement à travers le globe.

Jusqu’à présent, de nombreuses études sur les calottes glaciaires se sont concentrées sur la vitesse de leur fonte sous l’effet du réchauffement, et sur leur point de basculement (« tipping point ») autrement dit le niveau de hausse de température à partir duquel leur disparition sera inévitable, même si la fonte totale pourrait prendre des siècles.

Les changements à grande échelle observés par les scientifiques dans leurs simulations révèlent que le climat sera plus chaotique dans les prochaines années, avec des événements météo extrêmes plus nombreux, des canicules plus fréquentes et plus intenses.

Selon des chercheurs californiens, d’ici le milieu du 21ème siècle, l’eau de fonte de la calotte du Groenland perturbera sensiblement l’AMOC, qui montre déjà des signes de ralentissement. L’échéance serait beaucoup plus courte que prévu. Les conclusions des chercheurs s’appuient sur des simulations détaillées et des observations satellitaires des changements des calottes depuis 2010. Parmi les conséquences probables de l’affaiblissement de l’AMOC, la température de l’air sera plus élevée dans le haut Arctique, l’est du Canada et l’Amérique centrale, et au contraire plus basse sur l’Europe de l’Ouest.

Source : Presse scientifique.

——————————————————–

With the melting of the Arctic and Antarctic ice sheets, we know that billions of tons of fresh water will flow into the ocean. We also know that this phenomenon will have a double devastating effect. On the one hand, we will witness a rapid rise in the level of the oceans. On the other hand, this arrival of fresh and very cold water is likely to cause a disruption of major ocean currents, and therefore of the global climate, with disastrous effects easy to imagine.
An international study just published early February 2019 in the journal Nature warns that the melting of the icecaps of Greenland and Antarctica, in addition to increasing the level of the oceans, will also multiply extreme weather events and destabilize the climate of certain regions in the coming decades. One can read that the billions of tons of water from melting ice, especially in Greenland, will weaken the ocean currents that today carry cold water to the south by diving towards the bottom of the Atlantic, while pushing tropical waters further north closer to the surface. This phenomenon is known as the Atlantic Meridional Overturning Circulation (AMOC). It is a sort of large oceanic treadmill that plays a crucial role in the climate system and helps maintain some warmth in the northern hemisphere.
According to models developed by New Zealand researchers who took part in the study, melting sea ice will cause major disturbances in ocean currents and change warming levels across the globe.
So far, many studies on ice caps have focused on the speed of their melting under the effect of warming, and on their tipping point, in other words the level of temperature rise from which their disappearance will be inevitable, even if total melting could take centuries.
The large-scale changes observed by scientists in their simulations reveal that the climate will be more chaotic in the coming years, with more extreme weather events, more frequent and more intense heat waves.
According to California researchers, by the middle of the 21st century, meltwater from the Greenland ice cap will significantly disrupt AMOC, which is already showing signs of slowing down. The deadline is thought to be much shorter than expected. The researchers’ conclusions are based on detailed simulations and satellite observations of ice sheet changes since 2010. Among the likely consequences of the weakening of AMOC, the air temperature will be higher in the high Arctic. East of Canada and Central America, and on the contrary lower in Western Europe.
Source: Scientific Press.

Schémas montrant la circulation thermohaline [Source : GIEC]

Changement climatique et circulation océanique // Climate change and ocean circulation

Avec le changement climatique et le réchauffement de la planète, une crainte majeure des scientifiques est que la hausse des températures puisse modifier la circulation mondiale des océans, avec des conséquences sur des courants comme le Gulf Stream.
Des scientifiques qui étudient un secteur de l’Atlantique Nord ont découvert de nouvelles preuves que l’eau douce produite par la fonte du Groenland et de la banquise arctique modifie déjà un processus clé qui contribue à la circulation mondiale des océans.
Dans les eaux froides qui se trouvent de part et d’autre du Groenland, la circulation océanique «se renverse» : les eaux de surface se déplacent vers le nord, deviennent plus froides et plus denses et finissent par s’enfoncer vers l’Antarctique à des profondeurs extrêmes. Toutefois, une trop grande quantité d’eau douce à la surface pourrait interférer avec cette convection car, étant moins salée, l’eau perd de sa densité et ne s’enfonce pas aussi facilement.
Dans une nouvelle étude, des scientifiques du Centre GEOMAR Helmholtz pour la Recherche Océanique à Kiel (Allemagne) ont découvert qu’après des étés particulièrement chauds dans la Mer d’Irminger, au sud-est du Groenland, la convection avait tendance à être perturbée en hiver. Dans certains cas, une couche d’eau de fonte reste à la surface de l’océan l’année suivante, au lieu de disparaître dans ses profondeurs dans le cadre de la circulation méridienne de retournement. Les dernières observations montrent que cette eau douce retarde considérablement la convection depuis plusieurs années.
La dernière étude repose sur un travail d’observation ; il ne s’agit pas d’une prévision, et personne ne sait vraiment quelle quantité d’eau douce serait suffisante pour ralentir ou arrêter de façon significative la Circulation Méridienne de Retournement – Atlantic Meridional Overturning (AMOC) – aussi appelée circulation thermohaline. Néanmoins, cela montre que des processus clés qui inquiètent le monde scientifique depuis longtemps sont maintenant en cours.
Pour rassembler toutes les données, les chercheurs ont parcouru en bateau la Mer d’Irminger. Là, ils ont récolté les données fournies par des balises qui effectuent des mesures des eaux dans les régions clés de la convection océanique. Les chercheurs possèdent maintenant des données qui s’étalent sur 13 années de mesures. Ils ont constaté qu’en hiver, l’air froid refroidit suffisamment l’eau de surface qui s’écoule vers le nord pour la rendre plus dense et la faire s’enfoncer. Toutefois, l’eau de fonte interfère avec ce processus et le retarde, faute d’une salinité suffisante. Dans les années où se déversent de grandes quantités d’eau de fonte, l’océan devient également plus chaud. Cela contribue à retarder le début de la convection car la couche superficielle de l’océan éprouve des difficultés à perdre suffisamment de chaleur pour s’enfoncer dans les profondeurs. L’étude a révélé que 40% des eaux de fonte se sont attardées dans la Mer d’Irminger pendant l’hiver 2010-2011.
L’étude n’est pas en mesure de prévoir le moment où ces processus atteindront un seuil critique et provoqueront un changement majeur vers un nouveau régime de circulation océanique. Les simulations du changement climatique montrent généralement que si la hausse globale des températures devait effectivement affaiblir la circulation méridienne de retournement dans l’Atlantique, le processus se ferait progressivement, mais les scientifiques reconnaissent que ces simulations ne sont pas nécessairement exhaustives. C’est pourquoi l’étude actuelle est très importante et représente une pièce maîtresse du puzzle.
Source: The Washington Post.

—————————————–

With climate change and global warming, a major fear of scientists is that the rising temperatures may alter the global circulation of the oceans, with consequences on currents like the Gulf Stream.

Scientists studying a stretch of the North Atlantic have found new evidence that fresh water, likely melted from Greenland or Arctic sea ice, may already be altering a key process that helps drives the global circulation of the oceans.

In cold waters on either side of Greenland, the ocean circulation « overturns, » as surface waters travelling northward become colder and more dense and eventually sink, travelling back southward toward Antarctica at extreme depths. But too much fresh water at the surface could interfere with the convection because with less salt, the water loses density and does not sink as easily.

In a new research, scientists at the GEOMAR Helmholtz Center for Ocean Research in Kiel, Germany, found that following particularly warm summers in the remote Irminger Sea, convection tended to be more impaired in winter. In some cases, a layer of meltwater stayed atop the ocean into the next year, rather than vanishing into its depths as part of the overturning circulation. The latest observations show that there is actually freshwater and that it is already affecting the convection and it delays this convection quite a lot in some years.

However, this is an observational study, not a prediction for the future, and nobody really knows how much freshwater is enough to significantly slow or shut down the AMOC, an acronym for Atlantic Meridional Overturning Circulation.  Still, it suggests that key processes that have raised long-standing concern are already happening.

To collect the data, the researchers travelled by ship out into the Irminger Sea to the southeast of Greenland. There, they read data from ocean moorings that take measurements of the character of the waters in key regions of ocean convection. The researchers now have a 13-year record to draw upon from this area.

In winter, cold air chills the northward-flowing surface water in this region enough to cause it to become denser and sink. But meltwater interferes with and delays this process because, lacking salinity, it is less dense and so less prone to sink. In the high meltwater years, the ocean is also just warmer overall. That also delays the onset of convection because it is harder for the ocean surface layer to lose enough heat to sink. The study found that in the single year 2010, 40 percent of fresh meltwater managed to linger in the Irminger Sea over winter and into the next year.

There are no predictions in this study about when these processes would actually reach such a threshold or cause a major switch to a new regime. Climate change simulations have generally found that while global warming should indeed weaken the Atlantic overturning circulation, that should play out gradually, but scientists acknowledge that these simulations are not necessarily complete. That’s why the current study, also matters a great deal and represents an important piece in the puzzle.

Source : The Washington Post.

Circulation des courants de surface (courbes entières) et des courants profonds (courbes en pointillés) qui forment une partie de la circulation méridienne de retournement dans l’Atlantique (Source: Woods Hole Oceanographic Institution)