Réchauffement climatique, fonte des calottes glaciaires et effets sur les courants océaniques // Global warming, melting ice caps and effects on ocean currents

Avec la fonte des calottes glaciaires arctique et antarctique, on sait d’ores et déjà que des milliards de tonnes d’eau douce vont se déverser dans l’océan. On sait aussi que ce phénomène va avoir un double effet dévastateur. D’une part, on va assister à une rapide hausse du niveau des océans. D’autre part, cette arrivée d’eau douce et très froide risque fort d’entraîner un dérèglement des grands courants océaniques, donc du climat du globe, avec des effets catastrophiques faciles à imaginer.

Une étude internationale qui vient d’être publiée début février 2019 dans la revue Nature prévient que la fonte des calottes glaciaires du Groenland et de l’Antarctique, en plus d’augmenter le niveau des océans, va aussi multiplier les événements météo extrêmes et déstabiliser le climat de certaines régions dans les prochaines décennies. On peut lire que les milliards de tonnes d’eau issues de la fonte des glaces, en particulier au Groenland, vont affaiblir les courants océaniques qui aujourd’hui transportent l’eau froide vers le sud en plongeant vers le fond de l’Atlantique, tout en repoussant les eaux tropicales vers le nord plus près de la surface. Ce phénomène est connu sous l’appellation anglaise Atlantic Meridional Overturning Circulation (AMOC) – circulation méridienne de retournement de l’Atlantique, ou circulation thermohaline. C’est une espèce de grand tapis roulant océanique qui joue un rôle crucial dans le système climatique et aide à maintenir une certaine chaleur sur l’hémisphère nord.

Selon les modèles établis par des chercheurs néo-zélandais dans le cadre de l’étude, la fonte des banquises va provoquer des perturbations importantes dans les courants océaniques et changer les niveaux de réchauffement à travers le globe.

Jusqu’à présent, de nombreuses études sur les calottes glaciaires se sont concentrées sur la vitesse de leur fonte sous l’effet du réchauffement, et sur leur point de basculement (« tipping point ») autrement dit le niveau de hausse de température à partir duquel leur disparition sera inévitable, même si la fonte totale pourrait prendre des siècles.

Les changements à grande échelle observés par les scientifiques dans leurs simulations révèlent que le climat sera plus chaotique dans les prochaines années, avec des événements météo extrêmes plus nombreux, des canicules plus fréquentes et plus intenses.

Selon des chercheurs californiens, d’ici le milieu du 21ème siècle, l’eau de fonte de la calotte du Groenland perturbera sensiblement l’AMOC, qui montre déjà des signes de ralentissement. L’échéance serait beaucoup plus courte que prévu. Les conclusions des chercheurs s’appuient sur des simulations détaillées et des observations satellitaires des changements des calottes depuis 2010. Parmi les conséquences probables de l’affaiblissement de l’AMOC, la température de l’air sera plus élevée dans le haut Arctique, l’est du Canada et l’Amérique centrale, et au contraire plus basse sur l’Europe de l’Ouest.

Source : Presse scientifique.

——————————————————–

With the melting of the Arctic and Antarctic ice sheets, we know that billions of tons of fresh water will flow into the ocean. We also know that this phenomenon will have a double devastating effect. On the one hand, we will witness a rapid rise in the level of the oceans. On the other hand, this arrival of fresh and very cold water is likely to cause a disruption of major ocean currents, and therefore of the global climate, with disastrous effects easy to imagine.
An international study just published early February 2019 in the journal Nature warns that the melting of the icecaps of Greenland and Antarctica, in addition to increasing the level of the oceans, will also multiply extreme weather events and destabilize the climate of certain regions in the coming decades. One can read that the billions of tons of water from melting ice, especially in Greenland, will weaken the ocean currents that today carry cold water to the south by diving towards the bottom of the Atlantic, while pushing tropical waters further north closer to the surface. This phenomenon is known as the Atlantic Meridional Overturning Circulation (AMOC). It is a sort of large oceanic treadmill that plays a crucial role in the climate system and helps maintain some warmth in the northern hemisphere.
According to models developed by New Zealand researchers who took part in the study, melting sea ice will cause major disturbances in ocean currents and change warming levels across the globe.
So far, many studies on ice caps have focused on the speed of their melting under the effect of warming, and on their tipping point, in other words the level of temperature rise from which their disappearance will be inevitable, even if total melting could take centuries.
The large-scale changes observed by scientists in their simulations reveal that the climate will be more chaotic in the coming years, with more extreme weather events, more frequent and more intense heat waves.
According to California researchers, by the middle of the 21st century, meltwater from the Greenland ice cap will significantly disrupt AMOC, which is already showing signs of slowing down. The deadline is thought to be much shorter than expected. The researchers’ conclusions are based on detailed simulations and satellite observations of ice sheet changes since 2010. Among the likely consequences of the weakening of AMOC, the air temperature will be higher in the high Arctic. East of Canada and Central America, and on the contrary lower in Western Europe.
Source: Scientific Press.

Schémas montrant la circulation thermohaline [Source : GIEC]

Changement climatique et circulation océanique // Climate change and ocean circulation

Avec le changement climatique et le réchauffement de la planète, une crainte majeure des scientifiques est que la hausse des températures puisse modifier la circulation mondiale des océans, avec des conséquences sur des courants comme le Gulf Stream.
Des scientifiques qui étudient un secteur de l’Atlantique Nord ont découvert de nouvelles preuves que l’eau douce produite par la fonte du Groenland et de la banquise arctique modifie déjà un processus clé qui contribue à la circulation mondiale des océans.
Dans les eaux froides qui se trouvent de part et d’autre du Groenland, la circulation océanique «se renverse» : les eaux de surface se déplacent vers le nord, deviennent plus froides et plus denses et finissent par s’enfoncer vers l’Antarctique à des profondeurs extrêmes. Toutefois, une trop grande quantité d’eau douce à la surface pourrait interférer avec cette convection car, étant moins salée, l’eau perd de sa densité et ne s’enfonce pas aussi facilement.
Dans une nouvelle étude, des scientifiques du Centre GEOMAR Helmholtz pour la Recherche Océanique à Kiel (Allemagne) ont découvert qu’après des étés particulièrement chauds dans la Mer d’Irminger, au sud-est du Groenland, la convection avait tendance à être perturbée en hiver. Dans certains cas, une couche d’eau de fonte reste à la surface de l’océan l’année suivante, au lieu de disparaître dans ses profondeurs dans le cadre de la circulation méridienne de retournement. Les dernières observations montrent que cette eau douce retarde considérablement la convection depuis plusieurs années.
La dernière étude repose sur un travail d’observation ; il ne s’agit pas d’une prévision, et personne ne sait vraiment quelle quantité d’eau douce serait suffisante pour ralentir ou arrêter de façon significative la Circulation Méridienne de Retournement – Atlantic Meridional Overturning (AMOC) – aussi appelée circulation thermohaline. Néanmoins, cela montre que des processus clés qui inquiètent le monde scientifique depuis longtemps sont maintenant en cours.
Pour rassembler toutes les données, les chercheurs ont parcouru en bateau la Mer d’Irminger. Là, ils ont récolté les données fournies par des balises qui effectuent des mesures des eaux dans les régions clés de la convection océanique. Les chercheurs possèdent maintenant des données qui s’étalent sur 13 années de mesures. Ils ont constaté qu’en hiver, l’air froid refroidit suffisamment l’eau de surface qui s’écoule vers le nord pour la rendre plus dense et la faire s’enfoncer. Toutefois, l’eau de fonte interfère avec ce processus et le retarde, faute d’une salinité suffisante. Dans les années où se déversent de grandes quantités d’eau de fonte, l’océan devient également plus chaud. Cela contribue à retarder le début de la convection car la couche superficielle de l’océan éprouve des difficultés à perdre suffisamment de chaleur pour s’enfoncer dans les profondeurs. L’étude a révélé que 40% des eaux de fonte se sont attardées dans la Mer d’Irminger pendant l’hiver 2010-2011.
L’étude n’est pas en mesure de prévoir le moment où ces processus atteindront un seuil critique et provoqueront un changement majeur vers un nouveau régime de circulation océanique. Les simulations du changement climatique montrent généralement que si la hausse globale des températures devait effectivement affaiblir la circulation méridienne de retournement dans l’Atlantique, le processus se ferait progressivement, mais les scientifiques reconnaissent que ces simulations ne sont pas nécessairement exhaustives. C’est pourquoi l’étude actuelle est très importante et représente une pièce maîtresse du puzzle.
Source: The Washington Post.

—————————————–

With climate change and global warming, a major fear of scientists is that the rising temperatures may alter the global circulation of the oceans, with consequences on currents like the Gulf Stream.

Scientists studying a stretch of the North Atlantic have found new evidence that fresh water, likely melted from Greenland or Arctic sea ice, may already be altering a key process that helps drives the global circulation of the oceans.

In cold waters on either side of Greenland, the ocean circulation « overturns, » as surface waters travelling northward become colder and more dense and eventually sink, travelling back southward toward Antarctica at extreme depths. But too much fresh water at the surface could interfere with the convection because with less salt, the water loses density and does not sink as easily.

In a new research, scientists at the GEOMAR Helmholtz Center for Ocean Research in Kiel, Germany, found that following particularly warm summers in the remote Irminger Sea, convection tended to be more impaired in winter. In some cases, a layer of meltwater stayed atop the ocean into the next year, rather than vanishing into its depths as part of the overturning circulation. The latest observations show that there is actually freshwater and that it is already affecting the convection and it delays this convection quite a lot in some years.

However, this is an observational study, not a prediction for the future, and nobody really knows how much freshwater is enough to significantly slow or shut down the AMOC, an acronym for Atlantic Meridional Overturning Circulation.  Still, it suggests that key processes that have raised long-standing concern are already happening.

To collect the data, the researchers travelled by ship out into the Irminger Sea to the southeast of Greenland. There, they read data from ocean moorings that take measurements of the character of the waters in key regions of ocean convection. The researchers now have a 13-year record to draw upon from this area.

In winter, cold air chills the northward-flowing surface water in this region enough to cause it to become denser and sink. But meltwater interferes with and delays this process because, lacking salinity, it is less dense and so less prone to sink. In the high meltwater years, the ocean is also just warmer overall. That also delays the onset of convection because it is harder for the ocean surface layer to lose enough heat to sink. The study found that in the single year 2010, 40 percent of fresh meltwater managed to linger in the Irminger Sea over winter and into the next year.

There are no predictions in this study about when these processes would actually reach such a threshold or cause a major switch to a new regime. Climate change simulations have generally found that while global warming should indeed weaken the Atlantic overturning circulation, that should play out gradually, but scientists acknowledge that these simulations are not necessarily complete. That’s why the current study, also matters a great deal and represents an important piece in the puzzle.

Source : The Washington Post.

Circulation des courants de surface (courbes entières) et des courants profonds (courbes en pointillés) qui forment une partie de la circulation méridienne de retournement dans l’Atlantique (Source: Woods Hole Oceanographic Institution)