Comme la plume au vent… une « plume de chaleur »…!

« Inédite », « exceptionnelle », tels sont les qualificatifs utilisés par Météo France pour parler de la vague de chaleur qui touche la France en cette fin de mois d’octobre. Malheureusement, on le voit avec les événements extrêmes à répétition, le « jamais vu » ou l' »exceptionnel » ont tendance à se répéter!

Actuellement, sur l’ensemble du territoire français, les températures dépassent largement les normales de saison, avec des pointes supérieures à 30°C relevées localement dans le Sud. C’est bien sûr une conséquence directe du réchauffement climatique, une expression beaucoup plus parlante que « changement » ou « dérèglement » régulièrement utilisées par les médias français.

Météo France confirme que l’on a bien affaire à une vague de chaleur car les températures nettement supérieures (souvent de 4 ou 5 degrés, voire plus) à la normale se sont installées durablement et concernent une large zone géographique.

Comme d’habitude, Météo France rechigne à inclure d’emblée la vague de chaleur actuelle dans le cadre plus global du réchauffement climatique. On nous parle d’une « poussée d’air chaud nord-africain », et même d’une « plume de chaleur » (!) qui serait à l’origine des canicules de l’été 2022. [NDLR :Je sens qu’on ne va pas tarder à nous parler de « duvet » pour faire référence au peu de neige qui va bientôt recouvrir nos montagnes!]

Météo France constate que des périodes de chaleur ont déjà été observées à l’automne, en septembre et en octobre, mais elles étaient généralement plus courtes et pas aussi tardives. En 2022, les prévisions la font s’étendre jusqu’à la fin du mois. Après, on ne sait pas.

Avec la vague de chaleur que nous connaissons, tout porte à croire qu’octobre 2022 sera le plus chaud jamais enregistré depuis le début des relevés en France. Une climatologue de Météo France reconnaît que « c’est un signal de l’emballement du changement climatique. » [NDLR: toujours pas de « réchauffement »!!]

Les données ne livreront une réponse définitive qu’en janvier 2023, mais l’année 2022 est bien partie pour figurer, une fois de plus, parmi les années les plus chaudes en France et ailleurs dans le monde. A moins que les mois de novembre et décembre ne soient particulièrement froids, mais les instituts météorologiques qui osent faire des prévisions à long terme ne vont pas dans ce sens. Toujours est-il qu’au vu des températures enregistrées entre le 1er janvier et le 24 octobre, l’année 2022 est bien, pour le moment, l’année la plus chaude jamais enregistrée dans le pays.

Un climatologue au CNRS explique que la situation soit-disant exceptionnelle de cette année « pourrait être la norme au cours du siècle. » et le réchauffement (enfin!!) climatique actuel, lié aux activités humaines, s’annonce pire que prévu en France. En 2100, la hausse de la température moyenne en France hexagonale risque d’atteindre ou même dépasser 3,8°C, soit un réchauffement potentiellement beaucoup plus important que prévu.

L’article paru sur le site de France Info n’en parle pas, mais les épisodes de sécheresse à répétition vont faire apparaître des problèmes d’alimentation en eau dans certaines régions. Sans parler de la réduction de la couche neigeuse, avec ses conséquences sur les glaciers qui, rappelons le, participent à notre approvisionnement en eau.

Source: Adapté d’un article paru sur le site de la radio France Info.

Photo: C. Grandpey

L’étude de la faille au pied de l’Etna // The study of the fault at the foot of Mt Etna

Dans une note publiée le 13 novembre 2020, j’expliquais que plusieurs instituts de recherche avaient lancé le projet «Focus» qui suppose l’installation d’un nouveau système de surveillance des failles sous-marines à 2000 mètres de profondeur au large de Catane. Le but de l’opération était.d’étudier l’évolution de la croûte terrestre dans la zone du complexe volcanique de l’Etna.

Le Journal du CNRS donne des détails sur cette mission sous-marine. La compréhension des processus à l’œuvre près de la faille sismique a été possible grâce à la technique de l’interférométrie laser qui n’avait pas encore été employée à ces fins.

La campagne océanographique « FocusX1 » a été menée à bord du navire de recherche Pourquoi Pas ? de la flotte océanographique française. Une technologie à base d’interférométrie laser a été installée au fond  de la mer Méditerranée, à 2 100 mètres de profondeur et à une trentaine de kilomètres de Catane.

La finalité de la mission était de surveiller et surtout mieux comprendre une faille sismique sous-marine, en l’occurrence la faille Alfeo Nord; à une dizaine de kilomètres du flanc est de l’Etna. Cette faille sous-marine mesure 80 km de long au fond de la mer Ionienne.

Par le passé, cette région du sud de l’Italie a déjà été secouée par plusieurs séismes meurtriers comme celui de 1693, d’une magnitude de M 7,5 au sud de Catane qui a déclenché un tsunami et tué 40 000 personnes, ou celui de Messine en 1908 et ses 72 000 victimes.

Le nouveau dispositif va permettre d’en savoir plus sur la faille Alfeo Nord qui constitue la partie nord d’un système de failles actives sur le flanc sud-est de l’Etna. D’une longueur de 150 km, ce système a été cartographié pour la première fois lors de deux campagnes océanographiques en 2013 et 2014 par les scientifiques français et allemands. La faille Alfeo Nord est dite « décrochante » car le bloc à l’est se déplace vers le sud-est, le long de la faille, en coulissant. C’est le même type de faille que la faille nord-anatolienne en Turquie ou que la faille de San Andreas en Californie. Dans la mesure ou la faille Alfeo Nord se situe à moins de 20 km de Catane et son million d’habitants, elle pose potentiellement un risque sismique majeur.

Les failles sismiques de ce type présentent plusieurs comportements possibles. Elles peuvent glisser lentement comme certaines sections de la faille de San Andreas. Elles peuvent aussi avoir de petits mouvements irréguliers, provoquant de faibles séismes. Dans le pire scénario, il peut se produire un blocage pendant une longue, voire très longue, période. Le jouroù les contraintes se relâchent brutalement, il se produit un séisme de grande ampleur. Cela ne semble pas être le cas en Sicile. En 2018, une équipe de scientifiques allemands a constaté un lent effondrement du flanc Est de l’Etna dans la mer Méditerranée, à raison de quatre centimètres d’avril 2016 à juillet 2017.

Le CNRS explique que jusqu’ici l’interférométrie laser servait à assurer le suivi précis de grands ouvrages tels que les ponts, les barrages ou les tunnels. Dans le cas présent, l’utilisation de la technique de réflectométrie laser par effet Brillouin (BOTDR) consiste à «  interroger » la fibre optique en y injectant des impulsions laser. En s’y diffusant, celles-ci donnent une « carte d’identité optique » de la fibre, sensible à la moindre perturbation mécanique ou thermique extérieure.

Ainsi, depuis le port de Catane, un opérateur peut localiser tout mouvement de l’ordre de 50 micromètres à une distance de plusieurs dizaines de kilomètres, avec une marge d’erreur d’un mètre. Cette technologie n’a jamais été appliquée à l’étude des failles sous-marines. D’ici les cinq prochaines années, le dispositif déployé va permettre d’observer la déformation du fond de la mer dans le cadre du projet ERC Focus financé par l’Europe à hauteur de 3,5 millions d’euros.

Deux années ont été nécessaires pour concevoir et rassembler l’ensemble du matériel et des instruments optiques et acoustiques. Le cable a nécessité la mise au point d’une connectique spéciale, adaptée à la pression des grands fonds et aussi à l’observatoire câblé sous-marin déjà existant, le Test Site South (TSS) de l’Institut de physique de Catane (INFN-LNS). Pour calibrer ce dispositif technologique et être capable d’interpréter les signaux laser en termes de déformation du sous-sol sous-marin, huit balises acoustiques Canopus ont aussi été déployées de part et d’autre de la faille. Pour être certains de la fiabilité des signaux reçus, les scientifiques ont aussi prévu des boucles de mesures.

Le déploiement de tout ce matériel au fond de la mer a été réalisé du 6 au 21 octobre 2020. Partie de Toulon (Var), l’équipe a piloté le robot sous-marin Victor 6000 de l’Ifremer, chargé d’enfouir le câble de près d’un centimètre de diamètre, dans 20 cm de profondeur de sédiments, et à l’aide d’une charrue spécialement mise au point (voir image ci-dessous).

La campagne est un succès. Drâce au matériel déposé au fond de la mer Méditerranée, l’observatoire du port de Catane reçoit désormais en temps réel les échos des signaux lumineux circulant dans la fibre. Les techniciens scrutent maintenant le moindre signal susceptible d’indiquer un mouvement de la faille (entre 1 et 2 cm) et son activité.

On espère maintenant pouvoir mener deux nouvelles campagnes océanographiques. 1) « Focus G1 », à l’horizon de l’été 2021, effectuera des levés géodésiques du fond. 2) « Focus X2 », au début de l’année 2022, déploiera un réseau de 25 sismomètres au fond de la Méditerranée. Sont également prévus le carottage de sédiments, de la sismique légère et de la paléosismologie, c’est-à-dire la caractérisation de la sismicité à long terme, ou bien encore l’image de la déformation enregistrée dans les sédiments des fonds marins peu profonds.

Si cette percée technologique au large de la Sicile se confirme dans les prochaines années, on pourrait imaginer mettre à profit les réseaux de câbles de télécommunication mondiaux en un réseau sismologique à l’échelle de la planète.

Source : Journal du CNRS.

———————————————-

In a post published on November 13th, 2020, I explained that several research institutes had launched the “Focus” project which involves the installation of a new system for monitoring underwater faults at 2000 metres deep off Catania. . The purpose of the operation was to study the evolution of the Earth’s crust in the area of ​​the Mt Etna volcanic complex.

The CNRS Journal gives details of this submarine mission. Understanding the processes at work near the seismic fault was made possible by the technique of laser interferometry which had not yet been used for these purposes. The “FocusX1” oceanographic campaign was carried out aboard the research vessel Pourquoi Pas? of the French oceanographic fleet. A technology based on laser interferometry has been installed at the bottom of the Mediterranean Sea, at a depth of 2,100 metres and about 30 kilometres from Catania.

The purpose of the mission was to monitor and above all better understand an underwater seismic fault, in this case the Alfeo Nord fault; about ten kilometeres from Mt Etna’s eastern flank. This submarine fault is 80 km long at the bottom of the Ionian Sea. In the past, this region of southern Italy was shaken by several deadly earthquakes like the one of 1693, with a magnitude of M 7.5 in the south of Catania, which triggered a tsunami and killed 40,000 people, or that of Messina in 1908 and its 72,000 victims. The new device will shed light on the Alfeo Nord fault, which forms the northern part of an active fault system on the southeast flank of MEtna. With a length of 150 km, this system was mapped for the first time during two oceanographic campaigns in 2013 and 2014 by French and German scientists. The Alfeo Nord fault is said to be « strike-slip » because the block to the east is sliding southeast along the fault. It is the same type of fault as the North Anatolian fault in Turkey or the San Andreas fault in California. As the Alfeo Nord fault is located less than 20 km from Catania and its million inhabitants, it potentially poses a major seismic risk.

Seismic faults of this type present several possible behaviours. They can slide slowly like some sections of the San Andreas Fault. They can also have small irregular movements, causing low intensity earthquakes. In the worst case scenario, a blockage can occur for a long or even a very long time. The day when the constraints are suddenly relaxed, there is a large-scale earthquake. This does not appear to be the case in Sicily. In 2018, a team of German scientists observed a slow collapse of Mt Etna’s eastern flank in the Mediterranean Sea, at a rate of four centimetres from April 2016 to July 2017.

CNRS explains that until now laser interferometry has been used for the precise monitoring of large structures such as bridges, dams or tunnels. In the case of the fault, the use of the Brillouin effect laser reflectometry (BOTDR) technique consists in « interrogating » the optical fiber by injecting laser pulses into it. By diffusing there, they give an « optical identity card » of the fiber, sensitive to the slightest external mechanical or thermal disturbance.

Thus, from the port of Catania, an operator can locate any movement of the order of 50 micrometres at a distance of several tens of kilometres, with a margin of error of one metre. This technology has never been applied to the study of underwater faults. Over the next five years, the device that has been deployed will make it possible to observe the deformation of the seabed as part of the3.5-million euro ERC Focus project funded by Europe.

It took two years to design and assemble all the optical and acoustic equipment and instruments. The cable required the development of a special connection, adapted to the pressure of the deep sea and also to the already existing underwater cable observatory, the Test Site South (TSS) of the Institute of Physics of Catania ( INFN-LNS). To calibrate this technological device and be able to interpret the laser signals in terms of deformation of the seabed, eight Canopus acoustic beacons were also deployed on either side of the fault. To be sure of the reliability of the received signals, the scientists have also planned measurement loops.

The deployment of all this equipment at the bottom of the sea was carried out from October 6th to 21st, 2020. Departing from Toulon (Var), the team piloted Ifremer’s Victor 6000 submarine robot, in charge of burying the cable – nearly one centimetre in diameter – in 20 cm depth of sediment, using a specially developed plow (see image below).

The campaign is a success. Thanks to the material installed at the bottom of the Mediterranean Sea, the observatory at the port of Catania now receives in real time the echoes of the light signals circulating in the fiber. Technicians are now scrutinizing the slightest signal likely to indicate movement of the fault (between 1 and 2 cm) and its activity. Scientists now hope to be able to conduct two new oceanographic cruises. 1) « Focus G1 », by summer 2021, will carry out geodetic surveys of the bottom. 2) « Focus X2 », at the start of 2022, will deploy a network of 25 seismometers at the bottom of the Mediterranean. Also planned are sediment coring, light seismic and paleoseismology, that is to say the characterization of long-term seismicity, or even the image of the deformation recorded in the sediments of the shallow seabed. If this technological breakthrough off the coast of Sicily is confirmed in the coming years, one could imagine harnessing the world’s telecommunication cable networks into a seismological network on a planet scale.

Source: CNRS Journal.

Le câble de six kilomètres de long a été déployé et ensouillé en utilisant une charrue conçue par l’Ifremer et déplacée par le ROV Victor 6000. (Source : IFREMER),

 

 

Plus d’informations sur l’éruption sous-marine à Mayotte // More information on the submarine eruption at Mayotte

Après une année d’attente, les scientifiques français ont fini par découvrir la cause de la sismicité qui angoissait les Mahorais : un nouveau volcan était en train de naître au fond de l’océan. Le CNRS vient de communiquer des informations sur les dernières recherches, notamment l’analyse des séismes qui a permis de retracer la formation du volcan.

Selon l’étude publiée le 6 janvier 2020 dans la revue Nature Geoscience, les scientifiques parviennent peu à peu à reconstruire les différentes étapes de la formation du volcan et la vidange d’un réservoir magmatique  très profond, localisé à une trentaine de kilomètres sous le niveau de la mer. C’est la plus grande éruption sous-marine enregistrée à ce jour avec un volume émis estimé à 3,4 km3.

Outre les séismes largement ressentis par la population de l’île, des centaines de signaux sismiques d’un type plus rare ont aussi été détectés bien avant la crise, dès janvier 2018, et la plupart à partir de juin 2018. Il s’agit d’ondes monochromatiques (autrement dit des ondes dont les oscillations sont toutes à une seule fréquence, ici 15.5 s), d’une durée de 20 à 30 minutes. Ce sont des signaux très longue période (VLP) généralement associés à la résonance de structures volcaniques. L’énergie générée par les principaux événements VLP est considérable car elle équivaut à l’énergie libérée par un séisme de magnitude M 5. Les ondes de surface ont été détectées partout sur Terre. C’est une observation inédite en sismologie. Ces éléments sont compatibles avec le déplacement de Mayotte vers l’est et son enfoncement dans le plancher océanique.

L’analyse des séismes a ainsi permis de retracer l’histoire de la naissance du volcan, parfaitement illustrée par la coupe ci-dessous, obtenue à l’issue des différentes missions MayObs.

La migration rapide et ascendante de la sismicité en mai-juin 2018 a révélé une propagation du magma depuis environ 30 km de profondeur jusqu’au plancher océanique où la campagne océanique MAYOBS 1 a permis de découvrir la création d’un nouvel édifice volcanique. Une fois le conduit formé, avec un passage permettant au magma d’atteindre la surface, l’éruption a commencé en juin 2018. On a alors observé une diminution de l’activité sismique et un affaissement du réservoir magmatique en profondeur, détecté à l’aide des stations GPS.

À partir de septembre 2018, une autre phase a commencé, avec un regain de sismicité en profondeur et plus proche de Mayotte. Celle-ci était due à la vidange et à l’effondrement du réservoir magmatique entre l’île et le volcan. Le nombre d’événements VLP a également augmenté. D’après l’équipe scientifique, ils constitueraient la manifestation du réservoir magmatique entrant en résonance lors de l’évacuation du magma. Tout au long de la crise, les propriétés de la résonance changent ; c’est probablement le signe d’une modification lente de la géométrie du réservoir qui s’amincit dans un premier temps, avant de se raccourcir sous l’effet de son effondrement, phénomène observé à partir de septembre 2018.

Selon lde CNRS, « l’étude démontre l’intérêt de l’analyse de signaux faibles enregistrés à partir de stations sismiques lointaines pour étudier des épisodes volcano-tectoniques de régions peu instrumentées. »

Source : CNRS, Journal de Mayotte.

————————————-

After a year of waiting, French scientists have finally discovered the cause of the seismicity which worried the population in Mayotte: a new volcano was born at the bottom of the ocean. CNRS has just released information on the latest research, in particular the analysis of earthquakes which made it possible to trace the formation of the volcano.
According to the study published on January 6th, 2020 in the journal Nature Geoscience, scientists are gradually  reconstructing the different stages of the formation of the volcano and the drainageof a very deep magmatic reservoir, located about thirty kilometers below the sea ​​level. It is the largest underwater eruption recorded to date with an estimated volume of 3.4 km3.

In addition to the earthquakes widely felt by the population of the island, hundreds of seismic signals of a rarer type were also detected well before the crisis, from January 2018, and mostly from June 2018. These are monochromatic waves (in other words waves whose oscillations are all at a single frequency, here 15.5 s), with a duration of 20 to 30 minutes. These are very long period signals (VLP) generally associated with the resonance of volcanic structures. The energy generated by the main VLP events is considerable because it is equivalent to the energy released by an earthquake with a magnitude M 5. Surface waves have been detected everywhere on Earth. This is an unprecedented observation in seismology.
These elements are compatible with Mayotte’s displacement to the east and its sinking into the ocean floor.
The analysis of the earthquakes thus made it possible to retrace the history of the birth of the volcano, perfectly illustrated by the cross-section below, obtained after the various MayObs missions.
The rapid and upward migration of seismicity in May-June 2018 revealed a spread of magma from about 30 km deep to the ocean floor where the MAYOBS 1 ocean campaign discovered the creation of a new volcanic structure. Once the conduit formed and a passage allowed magma to reach the surface, the eruption began in June 2018. Then, there was a decrease in seismic activity and a subsidence of the magmatic reservoir in depth, detected by GPS stations.

From September 2018, another phase began, with a new start of seismicity in depth and closer to Mayotte. This was due to the drainage and collapse of the magma reservoir between the island and the volcano. The number of VLP events also increased. According to the scientific team, they might be the indication of the magmatic reservoir entering into resonance during the evacuation of magma. Throughout the crisis, the properties of resonance change; it is probably a sign of a slow change in the geometry of the reservoir, which is thinner at first, before becoming shorter due to its collapse, a phenomenon observed from September 2018.

According to CNRS, “the study demonstrates the importance of analyzing weak signals recorded from distant seismic stations to study volcano-tectonic episodes from poorly instrumented regions.”

Source: CNRS, Journal de Mayotte.

 

Y a-t-il eu des glaciers sur Mars ? // Did glaciers exist on Mars ?

Une récente étude financée par le Programme National de Planétologie (CNRS, INSU) et le CNES a permis de mettre en évidence pour la première fois des vallées glaciaires et de cirques glaciaires datés de 3,6 milliards d’années sur Mars. Une approche morphométrique comparative entre la Terre et Mars a été utilisée  afin de caractériser l’origine des vallées anciennes. Ces paysages glaciaires anciens sur Mars sont similaires à ceux existant sur Terre. Ils ont pu être identifiés et préservés jusqu’à aujourd’hui par la forte empreinte morphologique qu’ils laissent dans le paysage martien.

L’étude explique que le climat primitif martien fait aujourd’hui débat parmi les chercheurs qui étudient cette planète. D’un côté, il y a la vision la plus acceptée, celle d’un Mars primitif chaud et humide, mis en avant par la géologie hydratée et les morphologies fluviatiles;  de l’autre côté, il y a le scénario d’un Mars primitif glacé et sec mis en avant par des modèles climatiques qui avancent l’idée d’un dépôt de glace à haute altitude.  Néanmoins cette vision est très souvent remise en question car aucun marqueur géomorphologique de ce supposé climat froid n’a été identifié jusqu’à ce jour.

C’est dans ce contexte que les géomorphologues Axel Bouquety, Antoine Séjourné, François Costard et Sylvain Bouley, du laboratoire Géosciences Paris Sud (GEOPS, CNRS/Université Paris-Saclay), et Denis Mercier, de l’Université de la Sorbonne, ont étudié les vallées présentes dans la région de Terra Sabaea dans l’hémisphère austral de Mars. (voir image ci-dessous).

C’est à partir d’une approche morphométrique innovante couplant les images de la caméra HRSC de la sonde Mars Express de l’ESA et les données topographiques qu’il a été possible de mettre en évidence la présence de morphologies glaciaires anciennes sur les hauts plateaux de l’hémisphère sud de Mars. En effet, les vallées martiennes étudiées présentent des caractéristiques morphométriques similaires aux vallées glaciaires alpines terrestres et sont différentes des vallées fluviatiles terrestres et martiennes. De plus, ces vallées glaciaires martiennes sont souvent surmontées par une tête de vallée, en forme d’amphithéâtre, qui présente des caractéristiques morphométriques très similaires aux cirques glaciaires terrestres. Les résultats de cette étude, publiée dans Geomorphology, démontrent pour la première fois, la présence d’un paysage glaciaire composé de vallées glaciaires associées à des cirques glaciaires daté d’il y a 3,6 milliards d’années.

Les auteurs suggèrent un climat froid aux hautes altitudes (supérieures à 1500 mètres) expliquerait la présence de la glace. Cette dernière a pu être stable et s’accumuler afin de former des glaciers qui ont façonné les paysages glaciaires observés dans cette étude. Un climat plus tempéré à des altitudes plus basses (moins de 1500 mètres) expliquerait la présence de l’eau liquide pour façonner les vallées ramifiées fluviatiles bien connue sur Mars. Sur Terre, il est fréquent de retrouver des endroits où la glace est stable à haute altitude mais instable à basse altitude pour former de l’eau liquide.

La découverte de formations glaciaires dans l’hémisphère sud de Mars va dans le sens de la thèse d’un climat primitif froid permettant à des glaciers d’exister à la surface de la planète il y a 3,6 milliards d’années.

Source : CNRS.

—————————————————

A recent study funded by the National Program of Planetology (CNRS, INSU) and CNES allowed to highlight for the first time glacial valleys and glacial cirques that existed 3.6 billion years ago on Mars. A comparative morphometric approach between the Earth and Mars has been used to characterize the origin of ancient valleys. These ancient glacial landscapes on Mars are similar to those existing on Earth. They have been identified and preserved until today by the strong morphological imprint that they leave in the Martian landscape.
The study explains that the primitive Martian climate is now debated among researchers studying the planet. On one side, there is the most accepted vision, that of a primitive warm and wet Mars, put forward by hydrated geology and fluvial morphologies; on the other side, there is the scenario of a primitive cold and dry Mars, put forward by climatic models that advance the idea of ​​a high altitude ice deposit. Nevertheless this vision is very often questioned because no geomorphological marker of this supposed cold climate has been identified until today.
It is in this context that geomorphologists Axel Bouquety, Antoine Séjourné, François Costard and Sylvain Bouley, of the Geosciences Paris Sud laboratory (GEOPS, CNRS / Paris-Saclay University), and Denis Mercier, of the Sorbonne University, studied the valleys in the region of Terra Sabaea in the southern hemisphere of Mars.(see image below).
An innovative morphometric approach coupling images from the HRSC camera of the ESA Mars Express probe and the topographic data allowed to highlight the presence of ancient glacial morphologies on the plateaus of the southern hemisphere of Mars. In fact, the Martian valleys studied have morphometric characteristics similar to the terrestrial alpine glacial valleys and are different from the terrestrial and Martian river valleys. In addition, these Martian glacial valleys are often surmounted by an amphitheater-shaped valley head, which has morphometric characteristics very similar to terrestrial glacial cirques. The results of this study, published in Geomorphology, demonstrate for the first time the presence of a glacial landscape composed of glacial valleys associated with glacial cirques dated 3.6 billion years ago.
The authors suggest a cold climate at high altitudes (above 1500 metres) would explain the presence of ice. The latter could be stable and accumulate to form glaciers that shaped the glacial landscapes observed in this study. A more temperate climate at lower altitudes (below 1500 metres) would explain the presence of liquid water to shape the well-known riverine branched valleys on Mars. On Earth, it is common to find places where the ice is stable at high altitude but unstable at low altitude to form liquid water.
The discovery of glacial formations in the southern hemisphere of Mars is in line with the thesis of a primitive cold climate allowing glaciers to exist on the surface of this planet 3.6 billion years ago.
Source: CNRS.

Image de la planète Mars il y a 4 milliards d’années, basée sur des données géologiques. Le rectangle indique la zone d’étude. (Source:  Ittiz)