Nouveau sismomètre sur La Soufrière de la Guadeloupe // A new seismometer at La Soufrière (Guadeloupe)

Une surveillance étroite de l’activité volcanique exige une expertise dans des domaines tels que la géophysique, la géologie et la géochimie. En particulier, la surveillance sismique en temps quasi réel est essentielle pour localiser et distinguer les premiers signaux parmi différentes sources d’ondes sismiques, en particulier celles liées au mouvement et à la surpression des fluides à l’intérieur de l’édifice volcanique.

Parmi les principaux indicateurs d’activité volcanique figurent les émissions de gaz et de vapeur, avec des bouches souvent situées près du sommet d’un volcan. Leur activité pourrait être surveillée par des sismomètres installés à proximité, mais les instruments utilisés aujourd’hui ne peuvent pas fonctionner très longtemps à  cause des températures élevées et des nuages ​​de gaz acides. De plus, il est parfois difficile d’accéder aux instruments classiques pour les repositionner ou pour assurer leur maintenance d’urgence, en particulier dans les phases pré-éruptives.

La Soufrière de la Guadeloupe est un exemple des défis auxquels sont confrontés les volcanologues. La dernière activité significative a consisté en une éruption phréatique en 1976 ; elle a provoqué une évacuation très controversée de la population.
Depuis le début de l’année 2018, le stratovolcan, qui culmine à 1467 mètres, montre des signes réels d’activité. Afin de mettre en place un système de surveillance robuste et de haute résolution, une équipe de scientifiques français dirigée par Romain Feron du Groupe ESEO et le laboratoire LAUM de l’Université du Mans a installé avec succès un sismomètre optique, le premier instrument haute résolution sur un volcan actif. Le sismomètre, utilisé pour surveiller les émissions de gaz et de vapeur, a survécu à l’environnement hostile de la zone sommitale du volcan, contrairement aux autres instruments utilisés précédemment qui ont été rapidement détruits.
Romain Feron et ses collègues ont gravi La Soufrière en septembre 2019 et installé le sismomètre optique à environ 10 mètres d’une fumerolle très active au sommet du volcan. Le capteur est un géophone opto-mécanique (interaction de la lumière avec des objets mécaniques à l’échelle des énergies faibles) qui est interrogé via un câble à fibre optique de 1,5 km par une télécommande, et un système opto-électronique beaucoup plus sûr sur le flanc du volcan.
La station sismique mesure les mouvements du sol et transmet les données en temps réel à l’Observatoire Volcanologique et Sismologique de la Guadeloupe (OVSG). Elle fonctionne mécaniquement et ne nécessite pas d’alimentation électrique qui devrait affronter l’environnement nocif du sommet. L’instrument est enveloppé de Téflon pour le protéger des gaz agressifs.
Le Groupe ESEO et l’Institut de Physique du Globe de Paris (IPGP) ont commencé la fabrication de ce nouveau sismomètre en 2008. Il a fallu 10 ans le mettre au point, mais son bon fonctionnement prouve qu’il pourrait être une bonne solution sismique dans d’autres environnements dangereux, comme les champs pétrolifères et gaziers, ou les centrales nucléaires où règnent des températures extrêmement élevées. Un tel sismomètre optique, ainsi qu’une variété d’autres capteurs géophysiques construits sur le même principe, pourraient être installés dans une grande variété de sites avec des fibres mesurant jusqu’à 50 km de long.
Le sismomètre optique, désormais opérationnel sur La Soufrière depuis neuf mois, collecte des données qui seront combinées avec d’autres observations de l’OVSG.

Reference : « First Optical Seismometer at the Top of La Soufrière Volcano, Guadeloupe » – Feron, R. et al. – Seismological Research Letters.

Source: The Watchers.

—————————————————

Accurate monitoring of volcanic activity demands expertise in fields including geophysics, geology, and geochemistry. In particular, seismic monitoring in near real time is essential to locating and discriminating early signs among different sources of seismic waves, especially those related to movement and overpressure in underground fluids.

Among the major indicators of volcanic restlessness are fumaroles, or gas and steam vents, often located near a volcanic summit. Their activity could be monitored by seismometers in their vicinity, but today’s standard instruments cannot last very long when exposed to the high temperatures and the clouds of sulfurous, acidic gases near a fumarole. Conventional gear may also not be accessible for emergency deployment, or repair, even in pre-eruptive phases.

La Soufrière de Guadeloupe Volcano in the Caribbean typifies such challenges. Its last significant event was a phreatic eruption in 1976 that prompted the much debated evacuation of the archipelago’s nearby capital.

Since early 2018, the 1467-metre-high stratovolcano has shown signs of increased activity. To provide a hardy, high-resolution monitoring system, a team of French scientists led by Romain Feron from the ESEO Group and the LAUM laboratory at the Le Mans University successfully installed an optical seismometer, the first high-resolution instrument placed on an active volcano. The seismometer, used to monitor gas and steam eruptions, survived the summit’s hostile environment, unlike other previous instruments that were quickly destroyed.

Feron and his colleagues climbed the Soufrière volcano in September 2019 and installed the optical seismometer just about 10 metres away from a vigorous summit fumarole. The sensor is a purely opto-mechanical geophone that is interrogated through a 1.5 km fiber-optic cable by a remote, and much safer optic-electronic system down the volcano’s flank.

The station measures the ground displacement and sends the records in real-time to the French Volcanological and Seismological Observatory of Guadeloupe (OVSG). It purely operates mechanically and does not require a power supply that would be prone to the dangers of the summit’s environment. The instrument is encased in Teflon to protect it from sulfuric gases.

The ESEO Group and the Institut de Physique du Globe de Paris (IPGP) started development of this novel seismometer in 2008. It took 10 years to develop the instrument, and its success indicates that it could be a good seismic solution in other dangerous environments, such as oil and gas production fields and nuclear power plants  with extremely high temperatures. Such an optical seismometer, as well as a variety of other geophysical sensors built on the same principle, can be installed in a wide variety of sites with fibers up to 50 km long.

The optical seismometer, now in operation on La Grande Soufrière for nine months, is gathering data that will be combined with other observations from the Guadeloupe observatory to better monitor the volcano.

Reference : « First Optical Seismometer at the Top of La Soufrière Volcano, Guadeloupe » – Feron, R. et al. – Seismological Research Letters.

Source: The Watchers.

Source : Wikipedia

Séismes volcaniques longue période et dégazage du magma // Long period volcanic earthquakes and magma degassing

En vue d’améliorer la compréhension des processus physiques conduisant à l’apparition de séismes longue période (LP) profonds parfois considérés comme des signes précurseurs d’éruptions, une équipe internationale impliquant des chercheurs de l’Institut des Sciences de la Terre (ISTerre/OSUG – CNRS / IRD / UGA / USMB / UGE) s’est penchée sur les séismes LP profonds sous le Klyuchevskoy (Kamtchatka).

Le nouveau modèle mis au point au cours de cette étude, publiée le 6 août 2020 dans la revue Nature Communications, devrait permettre d’améliorer la surveillance volcanique mais également de surveiller les effets de ce type de phénomène sur le changement climatique.

Sous certains volcans, des séismes LP sont observés à des profondeurs de plusieurs dizaines de kilomètres, ce qui correspond plus ou moins à la limite entre la croûte terrestre et le manteau. Cette sismicité profonde est particulièrement intéressante car elle peut avoir un lien avec l’activation des racines profondes des systèmes volcaniques. En conséquence, elle peut aussi servir à identifier d’éventuels signes précurseurs à moyen et long terme. Cependant, une compréhension des processus physiques conduisant à l’apparition de tels séismes profonds est nécessaire pour pouvoir les intégrer aux schémas de surveillance.

C’est pourquoi un groupe de chercheurs a décidé de mener une étude sur les séismes longue période profonds sous le Klyuchevskoy (Kamchatka). Pour cela, ils ont utilisé une modélisation mathématique contrainte par des données sur la composition géochimique des laves, et ont comparé leurs résultats avec des observations sismologiques. Cela leur a permis de proposer un nouveau modèle physique de l’origine des séismes profonds, générés par un dégazage rapide d’eau et de CO2. La modélisation a montré que dans les magmas ayant une concentration relativement élevée de ces composants volatiles, un dégazage suffisamment intense peut commencer à une profondeur d’environ 30 km et que la croissance de bulles de gaz peut être suffisamment rapide pour que les variations de pression associées puissent générer des ondes sismiques avec des amplitudes et fréquences comparables à celles observées.

Ce nouveau modèle devrait permettre d’améliorer la surveillance volcanique, mais il devrait également permettre de surveiller les effets de ce type de phénomène sur le changement climatique. En effet, l’activité sismique profonde intense sous des volcans comme le Klyuchevskoy  peut indiquer que les magmas qui les alimentent contiennent une concentration accrue de CO2 et, par conséquent, qu’un dégazage peut contribuer de façon importante aux émissions de gaz à effet de serre.

Source : Observatoire des Sciences de l’Univers de Grenoble (OSUG).

—————————————————-

In order to improve the understanding of the physical processes leading to the appearance of deep long-period (LP) earthquakes sometimes considered as precursor signs of eruptions, an international team involving researchers from the Institute of Earth Sciences (ISTerre / OSUG – CNRS / IRD / UGA / USMB / UGE) studied the deep LP earthquakes under Klyuchevskoy Volcano (Kamtchatka).
The new model developed during this study, published on August 6th, 2020 in the journal Nature Communications, should make it possible to improve volcanic monitoring but also to monitor the effects of this type of phenomenon on climate change.

Under some volcanoes, LP earthquakes are observed at depths of several tens of kilometres, which corresponds more or less to the limit between the Earth’s crust and the mantle. This deep seismicity is particularly interesting because it may have a link with the activation of the deep roots of volcanic systems. Consequently, it can also be used to identify possible warning signs in the medium and long term. However, an understanding of the physical processes leading to the emergence of these deep earthquakes is necessary in order to be able to integrate them into surveillance schemes.

This is why a group of researchers decided to conduct a study on long-period deep earthquakes under Klyuchevskoy (Kamchatka). For this, they used a mathematical modelling constrained by data on the geochemical composition of the lava, and compared their results with seismological observations. This enabled them to come up with a new physical model of the origin of deep earthquakes, generated by rapid degassing of water and CO2. Modelling has shown that in magmas with a relatively high concentration of these volatile components, sufficiently intense degassing can begin at a depth of about 30 km, and that the growth of gas bubbles can be rapid enough for the associated pressure changes to generate seismic waves with amplitudes and frequencies comparable to those observed.

This new model should make it possible to improve volcanic monitoring, but it should also make it possible to monitor the effects of this type of phenomenon on climate change. Indeed, the intense deep seismic activity beneath volcanoes like Klyuchevskoy may indicate that the magmas that feed them contain an increased concentration of CO2 and, therefore, that degassing may contribute significantly to greenhouse gas emissions.
Source: Observatoire des Sciences de l’Univers de Grenoble (OSUG).

Vue du Klyuchevskoy (Source : KVERT)

Une histoire d’eau // About water

Ce n’est pas de la volcanologie, mais il est intéressant de connaître les origines de notre planète. Une récente étude parue dans la revue Science explique comment l’EAU a pu apparaître sur Terre.

L’eau recouvre 70 % de la surface de la Terre et est essentielle à la vie. Toutefois, son apparition fait l’objet d’un vieux débat scientifique. Une équipe de chercheurs français du Centre de recherches pétrographiques et géochimiques (CNRS/Université de Lorraine) explique  que notre planète, dès son origine, était riche en eau, vraisemblablement contenue en abondance dans les roches qui l’ont constituée.

Les conclusions de l’étude vont à l’encontre de la thèse dominante selon laquelle l’eau aurait été apportée par des astéroïdes et comètes ayant bombardé une Terre initialement sèche. Au vu des anciennes modélisations scientifiques, les disques de gaz et de poussière qui entouraient le Soleil avaient des températures trop élevées pour que l’eau condense et s’agglomère aux autres solides sous forme de glace. C’est ce qui expliquerait les conditions désertiques sur des planètes comme Mercure, Vénus et Mars, mais pas sur Terre.

Les scientifiques ont alors imaginé que l’eau était venue sur Terre beaucoup plus tard et les premiers responsables étaient des météorites dont les chondrites carbonées qui sont riches en eau. Toutefois, leur composition chimique ne correspond pas étroitement aux roches de notre planète. Les chondrites carbonées se sont également formées dans le système solaire externe, et il est donc peu probable qu’elles aient pu bombarder la Terre primitive.

Un autre groupe de météorites, les chondrites à enstatite, a la particularité d’avoir une composition chimique proche de celle de la Terre car elles contiennent des isotopes semblables d’oxygène, titane et calcium. Cependant, s’étant formés à proximité du Soleil, ont pensait que ces roches étaient probablement trop sèches pour avoir apporté beaucoup d’eau à la Terre. .

Afin de vérifier cette hypothèse, les scientifiques français se sont appuyés sur la spectrométrie de masse pour mesurer la teneur en hydrogène de 13 chondrites à enstatite. Ils ont alors constaté que les roches primitives en décelaient suffisamment pour fournir à la Terre au moins trois fois la masse d’eau de ses océans, voire plus encore. Les chercheurs ont aussi découvert que la composition isotopique de l’hydrogène des chondrites à enstatite était semblable à celle de l’eau stockée dans le manteau terrestre.

La composition isotopique des océans est pour sa part compatible avec un mélange contenant 95 % d’eau de ces chondrites, ce qui vient étayer la thèse selon laquelle elles sont à l’origine de l’eau terrestre. Les auteurs ont également trouvé que les isotopes de l’azote de ces météorites sont similaires à ceux de l’azote de la Terre.

L’étude n’exclut pas un apport ultérieur en eau par d’autres sources, comme des comètes, mais insiste sur le fait que les chondrites à enstatite ont contribué de manière significative à l’apport d’eau sur Terre, dès la formation de la planète.

Source : Presse scientifique.

————————————————

This is not volcanology, but it is always interesting to know more about the origins of our planet. A recent article released in the journal Science explains how WATER may have appeared on Earth. Water covers 70 percent of the Earth’s surface and is crucial to life as we know it, but how it got here has been a longstanding scientific debate.

The puzzle was a step closer to being solved after a French team from the Centre de recherches pétrographiques et géochimiques (CNRS/Université de Lorraine) reported they had identified which space rocks were responsible, and suggested our planet has been wet ever since it formed. The findings of the study contradict the prevalent theory that water was brought to an initially dry Earth by far-reaching comets or asteroids.

According to early models for how the Solar System came to be, the large disks of gas and dust that swirled around the Sun and eventually formed the inner planets were too hot to sustain ice. This would explain the barren conditions on Mercury, Venus and Mars, but not our Earth.

Scientists therefore theorized that the water came along after, and the prime suspects were meteorites known as carbonaceous chondrites that are rich in hydrous minerals. The problem was that their chemical composition doesn’t closely match our planet’s rocks. The carbonaceous chondrites also formed in the outer Solar System, making it less likely they could have pelted the early Earth.

Another group of meteorites, called enstatite chondrites, are a much closer chemical match, containing similar isotopes of oxygen, titanium and calcium. However, because these rocks formed close to the Sun, they had been assumed to be too dry to account for Earth’s rich reservoirs of water.

To test whether this was really true, the French scientists used mass spectrometry to measure the hydrogen content in 13 enstatite chondrites. The team found that the rocks contained enough hydrogen in them to provide Earth with at least three times the water mass of its oceans, and possibly much more. The researchers found the hydrogen isotopic composition of enstatite chondrites was similar to the one of the water stored in the terrestrial mantle.

The isotopic composition of the oceans was found to be consistent with a mixture containing 95 percent of water from the enstatite chondrites, one more proof these were responsible for the bulk of Earth’s water. The authors further found that the nitrogen isotopes from the enstatite chondrites are similar to Earth’s. They proposed these rocks could also be the source of the most abundant component of our atmosphere.

The research doesn’t exclude later addition of water by other sources like comets, but indicates that enstatite chondrites contributed significantly to Earth’s water budget at the time it formed.

Source: Scientific press.

La Planète Bleue vue depuis la Lune (Source : NASA)

La glace fond et l’Arctique va devoir s’adapter // The ice s melting and the Arctic will have to adapt

Comme je l’ai écrit récemment, la glace fond à un rythme incroyable dans l’Arctique et le Groenland a atteint le point de non-retour. La situation est préoccupante pour les populations qui vivent dans la région. Les scientifiques du British Antarctic Survey (BAS) viennent de les informer que dans 15 ans à peine, la glace de mer arctique pourrait avoir disparu pendant l’été.

On peut lire dans l’étude du BAS, publiée début août 2020 dans la revue Nature Climate Change: «Nous aurons de moins en moins de temps pour nous y préparer,  mais aussi moins de temps pour agir, si nous voulons faire quelque chose».
La nouvelle étude est la dernière d’une série qui prévoit la disparition à très court terme de la glace de mer dans l’Arctique. La surface couverte par cette glace à la surface de l’Océan Arctique a diminué d’environ 13% par décennie depuis 1979. Les 13 années avec la plus faible étendue de glace se situent toutes au cours des 13 derniers étés, et l’été 2020 portera inévitablement le n° 14.
L’estimation de 2035 faite par le BAS se base sur ce que l’on sait des climats du passé. Les scientifiques au fil des ans ont rassemblé des données à partir de traces chimiques laissées dans la glace, les roches et les sédiments. La nouvelle étude porte plus spécifiquement sur le dernier Interglaciaire, il y a 130 000 ans. Cette période était de 4 degrés Celsius plus chaude que l’ère préindustrielle. Elle offre un aperçu très probable des conditions que l’Homme est en train de créer pour l’avenir. Le réchauffement actuel est déjà d’environ 1°C et l’Arctique se réchauffe plus de deux fois plus vite que le reste de la planète.
L’étude du BAS rejoint le débat au cœur du monde scientifique sur la vitesse du réchauffement climatique. Les derniers modèles climatiques montrent que le réchauffement se produira beaucoup, beaucoup plus rapidement qu’on ne le pensait auparavant. Certains chercheurs laissent toutefois ouverte la possibilité (peu probable) que la glace puisse rester présente  plus longtemps, mais la grande majorité de la communauté scientifique ne partage pas cet optimisme. Ainsi, des climatologues de l’Université de Caroline du Nord et de la NOAA ont utilisé début 2020 un modèle différent, mais qui arrive à l’année 2035 pour un été arctique dépourvu de glace. Par «dépourvu de glace», les scientifiques désignent une étendue de moins d’un million de kilomètres carrés. La superficie la plus faible jamais atteinte a été de 3,4 millions de km² en 2012. Les scientifiques expliquent que des événements inattendus comme une éruption volcanique majeure pourraient modifier cette prévision.
Quelle que soit l’année où la glace de mer disparaîtra, les scientifiques du BAS expliquent que les entreprises, les autorités locales et les habitants de l’Arctique doivent se préparer dès maintenant aux changements en géopolitique régionale, transports et disponibilité en denrées alimentaires.
Source: British Antarctic Survey.

——————————————

As I put it before, ice is melting at an incredible in the Arctic and Greenland has reached the point of no return. The situation is worrying for the populations living in the region. British Antarctic Survey scientists have just informed them that in just 15 years Arctic summer sea-ice could disappear.

One can read in the study, published early in August 2020 in the journal Nature Climate Change: « We will have less and less time to get ready for it, or less time to act upon it if we want to do something about it. »

The new research is the latest in a steady stream that has moved up the predicted timeframe for the ice-free Arctic milestone. The amount of sea-ice floating atop the Arctic Ocean at summer’s end has fallen about 13% per decade since 1979. The 13 years with the smallest ice extents on record have all happened over the previous 13 years, and the summer 2020 will inevitably be No.14.

The 2035 estimate made by the British Antarctic Survey (BAS) is based on what is known about past climates. Scientists over the years have assembled evidence about previous eras from chemical traces in ice, rocks, and sediment. The new Arctic study looks specifically at the Last Interglacial, a period 130,000 years ago. That period was 4 degrees Celsius hotter than than the pre-industrial era, a plausible preview of conditions humans are creating for the future. Current warming on average is already around 1°C, and the Arctic is warming more than twice as fast as the rest of the planet.

The research joins a debate about the pace of global heating that has drawn in climate scientists this year. Some newly updated models now suggest that warming will occur much, much faster than previously thought. There remains disagreement among scientists over modelling results that show accelerated warming. Some of them leave open the (unlikely) possibility that ice may stick around longer, but the great majority of the scientific community is pessimistic. Researchers from North Carolina State University and NOAA earlier this year used a different model to arrive at a similar 2035 target for the ice-free Arctic summer. By « ice-free, » scientists mean an extent of less than 1 million square-kilometres. The lowest it has reached is 3.4 million km² in 2012. Scientists explain that unexpected events like a major volcanic eruption could alter the timeline.

Whichever summer is the first to lose its sea ice, BAS scientists warn that businesses, governments, and people living in the Arctic need to prepare now for changes in regional geopolitics, transportation, and food availability.

Source : British Antarctic Survey.

Cette image fera bientôt partie des souvenirs (Photo : C. Grandpey)