Une histoire de lacs de lave sur Io, la lune de Jupiter // A story of lava lakes on Io, Jupiter’s moon

J’ai rédigé plusieurs notes sur Io, la lune de Jupiter, sur ce blog. Dans l’une d’elles parue le 23 avril 2024, j’expliquais qu’une nouvelle animation réalisée à partir des données de la sonde Juno de la NASA révélait un immense lac de lave à la surface d’Io. Juno a survolé la surface d’Io à moins de 1 500 kilomètres de distance entre décembre 2023 et janvier 2024. Ces survols ont permis d’observer la lune de Jupiter qui héberge des centaines de volcans actifs.

Selon la NASA, les éruptions de ces volcans sont parfois si puissantes qu’elles sont visibles avec des télescopes depuis la Terre. Les images fournies par Juno montrent Loki Patera, un lac de lave de 200 km de diamètre à la surface d’Io. Les scientifiques observent ce lac de lave depuis des décennies. Il se situe au-dessus des réservoirs de magma situés sous la surface d’Io. La lave en cours de refroidissement au centre du lac est entourée d’un cercle de magma possiblement en fusion sur les bords. Les données de la sonde Juno ont permis de créer une animation du lac de lave Loki Patera :
https://youtu.be/GsbEpYNVTFc

 

Image du lac de lave extraite de l’animation

Un article paru récemment sur le site space.com nous apprend que grâce aux données fournies par la sonde Juno, des scientifiques ont découvert que Io, le corps le plus volcanique du système solaire, est encore plus chaud qu’on le pensait. En effet, la lune de Jupiter semble émettre depuis sa surface une quantité de chaleur des centaines de fois supérieure aux estimations précédentes.
Cette sous-estimation n’est pas due à un manque de données, mais à une erreur d’interprétation des données transmises par la sonde Juno. De plus, on apprend qu’environ la moitié de la chaleur rayonnée par Io provient de seulement 17 des 266 sources volcaniques connues sur la lune.

Au vu de cette concentration apparente de chaleur, les chercheurs pensent qu’il n’existerait pas un immense lac de lave sous la surface de Io, contrairement aux hypothèses émises antérieurement. Le chef de l’équipe scientifique à l’Institut national d’astrophysique (INAF) a déclaré : « Ces dernières années, plusieurs études ont suggéré que la distribution de la chaleur émise par Io, mesurée dans le spectre infrarouge, pourrait nous permettre de savoir si un océan de magma existe sous la surface de Io. Cependant, en comparant ces résultats avec d’autres données fournies par Juno et des modèles thermiques plus détaillés, nous avons constaté une anomalie : les valeurs de la chaleur émise semblent trop faibles par rapport aux caractéristiques physiques des lacs de lave connus. »

Le chef de l’équipe scientifique a également expliqué que, jusqu’à présent, les études d’Io s’étaient principalement concentrées sur une bande spécifique de lumière infrarouge la bande M. Les données de la bande M recueillies par le JIRAM (Jovian InfraRed Auroral Mapper) à bord de Juno ont permis d’identifier les régions les plus chaudes d’Io et, par conséquent, de comprendre son volcanisme. Cependant, les mesures effectuées dans cette bande spectrale ont pu avoir influencé les estimations de chaleur précédentes. « Le problème est que cette bande n’est sensible qu’aux températures les plus élevées et tend donc à privilégier les zones les plus incandescentes des volcans, tout en négligeant les zones plus froides mais beaucoup plus étendues. »
En repensant leur approche des données fournies par le JIRAM de Juno, l’équipe scientifique a modifié sa vision de la structure des lacs de lave d’Io. Il en ressort que la plupart des volcans d’Io ne sont pas uniformément chauds, mais possèdent plutôt un anneau extérieur chaud et brillant avec une croûte centrale plus froide et solide (voir image ci-dessus). Cette dernière région est moins brillante dans la bande M de la lumière infrarouge, mais couvre une plus grande surface, ce qui lui permet d’émettre une quantité de chaleur considérable.

Source : space.com

——————————————

I have written several posts about Io, Jupiter’s moon, on this blog. In an article published on April 23rd, 2024, I explained that a new animation performed with NASA Juno spacecraft data revealed an enormous lava lake on the surface of Io. Juno swept within 1,500 kilometers of the volcanic surface of Io in December 2023 and January 2024. These flybys provided the closest look ever at Jupiter’s moon. Io hosts hundreds of active volcanoes. According to NASA, their eruptions are sometimes so powerful that they can be seen with telescopes on Earth. The new images showes Loki Patera, a 200-km-wide lava lake on Io’s surface. Scientists have been observing this lava lake for decades. It sits over the magma reservoirs under Io’s surface. The cooling lava at the center of the lake is ringed by possibly molten magma around the edges.

Juno spacecraft data has been used to create an animation of the lava lake Loki Patera :

https://youtu.be/GsbEpYNVTFc

An article recently published on the website space.com informs us that using data from NASA’s Juno spacecraft, scientists have discovered that io, the solar system’s most volcanic body, is even hotter than we thought. In fact, Jupiter’s moon Io could be emitting hundreds of times as much heat from its surface as was previously estimated.

The reason for this underestimate wasn’t due to a lack of data, but was a result of how Juno’s data was interpreted. The results also demonstrate that about half of the heat radiating from Io comes from just 17 of 266 the moon’s known volcanic sources.

The team behind this research thinks that this clear concentration of heat, rather than a global emission, could suggest that an Io-wide lava lake may not exist beneath the surface of this moon of Jupiter as has previously been theorized. « In recent years, several studies have proposed that the distribution of heat emitted by Io, measured in the infrared spectrum, could help us understand whether a global magma ocean existed beneath its surface, » the team leader of the National Institute for Astrophysics (INAF) said in a statement. « However, comparing these results with other Juno data and more detailed thermal models, we realized that something wasn’t right: the thermal output values ​​appeared too low compared to the physical characteristics of known lava lakes. »

The team leader also explained that until now, studies of Io have focused heavily on a specific band of infrared light known as the M-band. M-band data collected by the Jovian InfraRed Auroral Mapper (JIRAM) aboard Juno have allowed to identify the hottest regions of Io and thus understand its volcanism. However, but the measurements collected in this spectral band could have influenced previous heat estimates. « The problem is that this band is sensitive only to the highest temperatures, and therefore tends to favor the most incandescent areas of volcanoes, neglecting the colder but much more extensive ones. »

Reconsidering their approach to Juno’s JIRAM data changed the team’s view of the structure of Io’s lava lakes. They found that most of Io’s volcanoes are not uniformly hot but instead possess a hot and bright outer ring with a cooler, solid central crust (seeimage above). This latter region is less bright in the M-band of infrared light but covers a larger surface area, allowing it to emit an enormous amount of heat.

Source : space.com.

L’Antarctique révèle de l’air d’il y a 6 millions d’années // Antarctica reveals air 6 million years old

Des carottes de glace extraites des profondeurs de l’Antarctique viennent de livrer les plus anciens échantillons de glace et d’air glaciaires jamais découverts et datés à ce jour..
Sous des centaines de mètres de glace accumulée au fil des millénaires à Allan Hills, une équipe de scientifiques du Woods Hole Oceanographic Institute a recueilli des échantillons enfouis depuis environ 6 millions d’années.

 Source : Wikipedia

La Terre étant une planète géologiquement active et en constante évolution, reconstituer les climats du passé peut s’avérer complexe. L’Antarctique fait exception : l’accumulation constante de glace et de neige y emprisonne et fige la matière, créant ainsi une capsule temporelle témoignant de l’histoire climatique de la Terre. En étudiant la glace ancienne contenue dans des carottes verticales extraites de glace de plusieurs centaines de mètres d’épaisseur, les scientifiques peuvent, du moins en Antarctique, reconstituer les conditions environnementales passées de notre planète.

Carotte de glace sur la base scientifique Little Dome C, le 7 janvier 2025 en Antarctique. Longue de 2,8 kilomètres de long, elle remonte jusqu’à au moins 1,2 million d’années, (Source : PNRA/IPEV)

À Allan Hills, la concentration de glace bleue est particulièrement précieuse. Il s’agit d’une glace comprimée au fil du temps, ce qui a entraîné l’expulsion de bulles d’air plus importantes et l’agrandissement des cristaux de glace. La glace ainsi obtenue absorbe les longueurs d’onde plus rouges, lui conférant une teinte bleutée caractéristique. Comme la neige ne s’y accumule plus en raison de l’érosion et de la sublimation, la glace ancienne d’Allan Hills est plus proche de la surface que dans d’autres régions de l’Antarctique. Allan Hills est donc l’un des meilleurs endroits au monde pour trouver de la glace ancienne peu profonde, mais aussi l’un des plus difficiles d’accès pour les scientifiques.
Bien que cette glace ne présente pas de bulles d’air visibles, elle contient encore des poches d’air microscopiques, tellement compactées qu’elles occupent de minuscules espaces dans sa structure cristalline. Ces poches d’air comprimé sont très précieuses car elles offrent un aperçu du climat primitif de la Terre.

Glace bleue d’Allan Hills (Crédit photo : Woods Hole Oceanographic Institute)

Trois carottes de glace ont été forées à Allan Hills à des profondeurs de 150, 159 et 206 mètres. Dans ces carottes de glace, les chercheurs espéraient trouver de la glace suffisamment ancienne qui leur permettrait de pénétrer dans le Pliocène qui s’est achevé il y a environ 2,6 millions d’années. Initialement, ils espéraient trouver de la glace vieille de 3 millions d’années, voire un peu plus, mais leur carotte a dépassé leurs attentes.
Lorsque les scientifiques ont effectué une datation isotopique à l’argon sur leurs échantillons, ils ont constaté que la carotte la plus profonde des trois contenait de la glace vieille d’environ 6 millions d’années, datant de la fin du Miocène, il y a environ 5,3 millions d’années ! D’autres échantillons analysés étaient plus jeunes, ce qui offrait aux chercheurs une plage d’observation couvrant la fin du Miocène et la majeure partie du Pliocène.
Ensuite, les chercheurs ont réalisé une analyse isotopique de l’oxygène afin d’évaluer les conditions de température à chaque période révélée par la carotte de glace. Ils ont constaté qu’il y a 6 millions d’années, l’Antarctique était environ 12 degrés Celsius plus chaud qu’aujourd’hui, et que le refroidissement jusqu’à sa température actuelle a été un processus lent et progressif.

À l’avenir, les chercheurs espèrent reconstituer la composition de l’atmosphère terrestre à différentes époques afin de déterminer quels gaz à effet de serre étaient présents, à quelles concentrations et comment la situation climatique a pu évoluer au fil du temps. Compte tenu de la glace exceptionnellement ancienne qu’ils ont découverte à Allan Hills, les scientifiques du Woods Hole Oceanographic Institute ont également conçu une nouvelle étude exhaustive à plus long terme de cette région afin d’étendre encore davantage les données chronologiques. Ils espèrent la mener entre 2026 et 2031.
Ces travaux ont été publiés dans les Proceedings of the National Academy of Sciences (PNAS) qui ont servi de référence pour rédiger cette note.

————————————————-

Ice cores excavated from deep under the surface of Antarctica have just yielded humanity’s oldest directly dated samples of glacial ice and air ever found.

From beneath hundreds of meters of glacial ice that gradually accumulated over eons at Allan Hills in Antarctica, a team of scientists from the Woods Hole Oceanographic Institute has retrieved samples that have been buried for some 6 million years.

Because planet Earth is geologically active and changing, finding records of past climate can be challenging. However, Antarctica is one exception; there, the constant accumulation of ice and snow traps and freezes material, creating a time capsule record of Earth’s climate history. By studying ancient ice in vertical cores extracted from ice hundreds of meters thick, scientists can reconstruct our planet’s past environmental conditions, at least at Antarctica.

At Allan Hills, the concentration of blue ice is particularly valuable. This is ice that has been compressed over time, squeezing out larger air bubbles and enlarging the ice crystals, so that the resulting ice absorbs redder wavelengths, lending it a distinctly blueish hue. Because Allan Hills no longer accumulates snow due to weathering and sublimation processes, the older ice is closer to the surface than in other parts of Antarctica. Allan Hills is one of the best places in the world to find shallow old ice, and one of the toughest places for scientists to work.

Although this ice has no visible air bubbles, it still contains microscopic pockets of air, so densely packed that they occupy tiny spaces in the ice’s crystal structure. These compressed pockets of air are highly prized for the window they offer into Earth’s early climate.

Three ice cores were drilled at Allan Hills cores from depths of 150, 159, and 206 meters. In these cores, the researchers hoped to find ice old enough to help tap into the climate of the Pliocene which ended about 2.6 million years ago. Initially, the researchers had hoped to find ice up to 3 million years old, or maybe a little older, but this discovery has far exceeded their expectations.

When the scientists performed argon isotope dating of their samples, they found that the deepest of the three had ice up to about 6 million years old, towards the end of the Miocene epoch, about 5.3 million years ago. Other tested samples were younger, providing the researchers with a series of snapshots spanning the end of the Miocene and most of the Pliocene.

Next, the researchers performed oxygen isotope analysis to gauge temperature conditions at each of their ‘snapshots’. They found that 6 million years ago, Antarctica was about 12 degrees Celsius warmer than it is now, and that the cooling to its current temperature was a smooth, gradual process rather than a sudden one.

Going forward, the researchers hope to reconstruct the contents of Earth’s atmosphere at these different times to determine what greenhouse gases were present, in which concentrations, and how that profile may have changed over time.

Given the spectacularly old ice they have discovered at Allan Hills, the scientists at theWoods Hole Oceanographic Institute also have designed a comprehensive longer-term new study of this region to try to extend the records even further in time, which they hope to conduct between 2026 and 2031.

The research has been published in the Proceedings of the National Academy of Sciences (PNAS) that were used as a reference to write this post.

Nouvelles techniques pour mieux comprendre les volcans // New techniques to better understand volcanoes

Une étude publiée intégralement dans Communications Earth & Environment le 16 septembre 2024 nous apprend que des chercheurs ont mis au point un nouveau dispositif pour observer les entrailles des volcans

Des scientifiques français ont fait passer au volcan de la Soufrière en Guadeloupe une sorte d’échographie. Cette nouvelle technique d’imagerie matricielle repose sur un réseau de géophones, des capteurs qui enregistrent à la fois les séismes proprement dits et le bruit sismique plus discret généré par le vent, l’océan et les activités humaines.

En analysant la façon dont toutes ces ondes se propageaient à l’intérieur du volcan les chercheurs ont pu reconstituer sa structure interne en 3 dimensions jusqu’à 10 kilomètres de profondeur et avec une précision de l’ordre d’une centaine de mètres. Au final, ils ont obtenu avec une résolution jamais atteinte, le plan de toute la tuyauterie de la Soufrière (voir image ci-dessous). On peut voir une cheminée légèrement tortueuse de 5 kilomètres de long et en dessous un réseau de poches de magma connectées entre elles. Les auteurs de l’étude n’hésitent pas à parler d’un outil révolutionnaire qui pourrait permettre à l’avenir de mieux prévoir les éruptions volcaniques.

Image tridimensionnelle de la Soufrière vue de l’est et du nord,

Dans des notes publiées en février, mai et juillet 2016, j’avais attiré l’attention sur une nouvelle technique – la tomographie muonique – destinée à mieux comprendre l’intérieur de certains volcans. Il y a une dizaine d’années, les volcanologues pensaient que la radiographie par les muons (particules cosmiques) serait un outil qui pourrait permettre de percer les mystères qui entourent l’activité volcanique.
La tomographie muonique a été utilisée pour la première fois par les Japonais pour visualiser la structure interne de volcans comme l’Asama, l’Iwate ou encore le volcan Satsuma-Iojima dans la préfecture de Kagoshima. Les scientifiques savaient que ce volcan dissimulait un réservoir magmatique, mais la nouvelle technologie a révélé que la quantité de magma était beaucoup plus grande que prévu.

De leur côté, les scientifiques français ont eux aussi utilisé la tomographie muonique dans le cadre du projet DIAPHANE sur le volcan de la Soufrière à la Guadeloupe. Des équipes du CNRS ont installé un capteur de muons cosmiques sur le flanc du volcan. La technologie a permis de « suspecter la présence d’importantes cavités » à l’intérieur de l’édifice volcanique.

Image de la Soufrière avec le projet Diaphane

Une autre application de la tomographie muonique  a eu pour cadre le Puy de Dôme en Auvergne. Le but du projet TOMUVOL était « la connaissance de l’historique du volcan de par sa structure pour prédire le comportement futur. » Une image du Stromboli (Sicile) a également été obtenue grâce à la tomographie muonique.

Si la tomographie muonique permet d’obtenir une image intéressante de l’intérieur des volcans, elle ne permet pas de mieux connaître le comportement du magma à l’intérieur des édifices. La mise en place des capteurs muoniques est longue et compliquée et il me semble difficile d’obtenir des images en temps réel permettant de faire des prévisions fiables.

Reste à savoir si la nouvelle technique d’imagerie matricielle permettra de mieux prévoir les éruptions.

———————————————

A study published in full in Communications Earth & Environment on September 16, 2024, reveals that researchers have developed a new device for observing the depths of volcanoes.
French scientists have conducted a type of ultrasound scan of the Soufrière volcano in Guadeloupe. This new matrix imaging technique relies on a network of geophones, sensors that record both the earthquakes themselves and the more subtle seismic noise generated by wind, the ocean, and human activity.
By analyzing how all these waves propagate within the volcano, the researchers were able to reconstruct its internal structure in 3D down to 10 kilometers deep and with an accuracy of around 100 meters. Ultimately, they obtained, with unprecedented resolution, a map of the entire conducts of the Soufrière volcano (see image above). A slightly twisting, 5-kilometer-long duct can be seen, and beneath it, a network of interconnected magma pockets. The study’s authors point out this is a revolutionary tool that could help better predict volcanic eruptions in the future.

In several posts published in February, May, and July 2016, I drew attention to a new technique—muon tomography—designed to better understand the interior of certain volcanoes. About ten years ago, volcanologists believed that X-ray imaging using muons (cosmic particles) would be a tool that could unlock the mysteries surrounding volcanic activity. Muon tomography was first used by the Japanese to visualize the internal structure of volcanoes such as Asama, Iwate, and Satsuma-Iojima in Kagoshima Prefecture. Scientists knew that this volcano concealed a magma reservoir, but the new technology revealed that the quantity of magma was much greater than expected.
For their part, French scientists also used muon tomography as part of the DIAPHANE project on the Soufrière volcano in Guadeloupe. Teams from the CNRS installed a cosmic muon sensor on the flank of the volcano. The technology made it possible to « suspect the presence of significant cavities » within the volcanic edifice. (see image above).
Another application of muon tomography took place at the Puy de Dôme in Auvergne. The goal of the TOMUVOL project was « to understand the volcano’s history through its structure in order to predict future behavior. » On image of the interior of Stromboli (Sicily) was also obtianed thanks to the muon technology (see image above).

While muography provides an interesting image of the interior of volcanoes, it does not provide a better understanding of the behavior of magma within the structures. Installing muon sensors is long and complicated, and I think it will be difficult to obtain real-time images that would allow for reliable predictions.
It remains to be seen whether the new imaging technique will allow for better eruption prediction.

Deux éruptions jumelles au 15ème siècle ont déclenché des décennies de froid autour de la Terre // Twin 15th-century eruptions triggered decades of cold around Earth

Une nouvelle analyse de carottes de glace prélevées en Antarctique révèle qu’il y a près de 600 ans, vers 1458-1459, deux volcans sont entrés en éruption presque simultanément, enveloppant la planète d’un voile de cendres et de soufre. Ce phénomène a déclenché l’une des décennies les plus froides du dernier millénaire et modifié le climat dans les deux hémisphères.
De nouvelles preuves qui se dissimulaient dans la glace de l’Antarctique montrent aujourd’hui que l’événement, longtemps attribué à un seul volcan du Pacifique, était en réalité le résultat d’une double éruption. L’une provenait du Kuwae, un volcan sous-marin situé entre les îles Epi et Tongoa au Vanuatu, l’autre d’un volcan non identifié quelque part dans l’hémisphère sud.

 

Source : Oregon State University

L’étude, publiée dans Communications Earth & Environment en 2025, est le fruit d’une collaboration entre des scientifiques coréens et russes qui ont analysé du verre volcanique microscopique emprisonné au cœur de la glace antarctique. Ces fragments contiennent des indices chimiques qui révèlent à la fois la chronologie et l’origine des éruptions anciennes.
Les années 1450 comptaient déjà parmi les décennies les plus froides de notre ère. Les archives historiques décrivent de très mauvaises récoltes, l’avancée des glaciers et des gelées soudaines de l’Europe à l’Asie.

Pendant des décennies, ces anomalies ont été imputées à l’éruption du Kuwae dont l’éruption remonterait à 1452. Cependant, les carottes de glace de l’Antarctique et du Groenland révèlent deux pics de soufre bien distincts : l’un en 1452 et l’autre en 1458. Le signal le plus fort de 1458 laisse supposer que le refroidissement principal a commencé plusieurs années plus tard qu’on ne le pensait. Les scientifiques ont alors émis l’hypothèse qu’un autre volcan en était responsable.
La dernière étude confirme ces soupçons. Ses auteurs ont découvert que les éclats de verre présents dans la glace antarctique de 1458-1459 présentaient deux compositions chimiques distinctes : l’une dacitique, correspondant à Kuwae, et l’autre rhyolitique, donc d’origine différente. Cela signifie que deux grandes éruptions ont eu lieu sur la planète à quelques mois d’intervalle. Elles ont épaissi le voile d’aérosols qui recouvrait la Terre et amplifié le refroidissement qui a suivi.
Ensemble, ces deux panaches ont réduit les températures mondiales d’environ 0,4 °C pendant plusieurs années. Les cernes des arbres d’Asie, d’Europe et d’Amérique du Nord confirment une période de croissance raccourcie et des étés exceptionnellement froids qui a duré jusqu’à la fin des années 1460.
Les preuves de cette double éruption proviennent d’une carotte de 30,18 m prélevée près de la station Vostok, en Antarctique oriental, en 2021.

 Vue de la station Vostok (Crédit photo : Arctic and Antarctic Research Institute)

La glace à cette profondeur s’est formée il y a environ six siècles tout en capturant les empreintes chimiques de l’événement de 1458-1459. Les scientifiques ont extrait 14 éclats de verre volcanique de cette glace. Chaque particule étant trop petite pour être analysée avec les techniques de laboratoire conventionnelles, les chercheurs ont eu recours à la microscopie électronique avec spectrométrie de rayons X à dispersion d’énergie. Ils ont mesuré la composition chimique de chaque éclat de verre volcanique. La moitié des éclats présentait une composition dacitique typique de Kuwae, tandis que les autres étaient rhyolitiques, ce qui ne correspondait pas, non plus, aux échantillons du Reclus, un volcan chilien autrefois soupçonné d’être la deuxième source éruptive. Cela signifiait que les éclats rhyolitiques provenaient d’un volcan non répertorié, situé dans l’extrême sud. Les candidats probables se trouvent dans le sud de l’Amérique du Sud, dans les îles subantarctiques, voire dans la péninsule Antarctique proprement dite.
L’analyse des cendres et du dioxyde de soufre (SO2) émis dans l’atmosphère a révélé un schéma compatible avec deux éruptions distinctes. Au final, les preuves plaident en faveur d’un scénario d’éruptions quasi simultanées, où la charge atmosphérique combinée a intensifié le refroidissement au-delà de ce que chacune des éruptions aurait pu produire individuellement.

Concernant l’effet sur le climat, ces éruptions jumelles ont prolongé le refroidissement en bloquant simultanément la lumière du soleil dans les deux hémisphères. Cela explique pourquoi le refroidissement des années 1450 a été plus fort et plus durable. L’intégration du comportement du double panache dans les modèles climatiques pourrait améliorer les prévisions des variations de température et des délais de récupération de l’atmosphère après une éruption. L’étude montre également qu’il est important de combiner les données des deux régions polaires.
Source : The Watchers.

Références scientifiques :

1 Antarctic ice reveals two volcanoes erupting simultaneously may have caused 15th-century cooling – Phys.org – October 22, 2025

2 Origin of the 1458/59 CE volcanic eruption revealed through analysis of glass shards in the firn core from Antarctic Vostok station – Seokhyun Ro et al. – Nature – October 20, 2025 – https://doi.org/10.1038/s43247-025-02797-x – OPEN ACCESS.

——————————————–

A new analysis of Antarctic ice cores reveals that nearly 600 years ago, around 1458–1459 CE, two massive volcanoes erupted almost simultaneously, shrouding the planet in a veil of ash and sulfur that triggered one of the coldest decades of the last millennium and altered weather across both hemispheres.

New evidence preserved in Antarctic ice now shows that the event long attributed to a single volcano in the Pacific was in fact a dual eruption, one from Kuwae in Vanuatu and another from an unidentified volcano somewhere in the Southern Hemisphere.

The study, published in Communications Earth & Environment in 2025, was the result of a collaboration between Korean and Russian scientists who analyzed microscopic volcanic glass trapped deep inside Antarctic ice. These fragments hold chemical clues that reveal both the timing and origin of ancient eruptions.

The 1450s were already one of the coldest decades in the Common Era. Historical records describe failed harvests, advancing glaciers, and sudden frosts stretching from Europe to Asia. For decades, these anomalies were blamed on the eruption of Kuwae, a massive submarine volcano in the Pacific, believed to have erupted in 1452

However, Antarctic and Greenland ice cores reveal two distinct sulfur spikes: one in 1452 and another in 1458. The stronger signal in 1458 suggestd the main cooling began several years later than previously thought. Scientists began to believe that another volcano, was responsible.

The new study confirms that suspicion. It found that glass shards in the 1458–1459 layer of Antarctic ice have two distinct chemical compositions: one dacitic, matching Kuwae, and another rhyolitic, belonging to a different source.This means two large eruptions struck the planet within months of each other, thickening the global aerosol haze and amplifying the cooling that followed.

Together, the twin plumes reduced global temperatures by roughly 0.4°C for several years. Tree rings from Asia, Europe, and North America confirm a period of shortened growing seasons and unusually cold summers that lasted well into the late 1460s.

The evidence comes from a 30.18 m firn core drilled near Vostok Station in East Antarctica in 2021. The ice at that depth formed roughly six centuries ago, capturing the chemical fingerprints of the 1458/59 event. Scientists in their labs later extracted 14 volcanic glass shards from that layer. As each particle was too small to analyze using conventional laboratory techniques, the researchers resorted to electron microscopy with energy-dispersive X-ray spectrometry. They measured the chemical composition of each shard. Half of the shards showed a dacitic composition typical of Kuwae, while the rest were rhyolitic, inconsistent with samples from Reclus, a Chilean volcano once suspected of being the second source. This meant the rhyolitic shards came from an undocumented volcano somewhere in the far south. The likely candidates lie in southern South America, the sub-Antarctic islands, or even the Antarctic Peninsula itself.

The analysis of the ash and sulfur dioxide (SO2) sent into the atmosphere revealed a pattern consistent with two separate eruptions. In the end, the evidence strongly supports a near-simultaneous eruption scenario, where the combined atmospheric load intensified cooling beyond what either eruption could have achieved alone.

As far as the effect on the climate is concerned, such dual eruptions prolong cooling by keeping sunlight blocked from both hemispheres simultaneously. This helps explain why the 1450s cooling was stronger and longer-lasting than expected from Kuwae alone. Including dual-plume behavior in climate models could improve predictions of post-eruption temperature changes and recovery times. The research also shows the importance of combining data from both polar regions.

Source : The Watchers.

Scientific references:

1 Antarctic ice reveals two volcanoes erupting simultaneously may have caused 15th-century cooling – Phys.org – October 22, 2025

2 Origin of the 1458/59 CE volcanic eruption revealed through analysis of glass shards in the firn core from Antarctic Vostok station – Seokhyun Ro et al. – Nature – October 20, 2025 – https://doi.org/10.1038/s43247-025-02797-x – OPEN ACCESS.