Islande : résultats des analyses de la lave // Iceland : results of lava analysis

Les dernières analyses de la lave émise par l’éruption actuelle ont révélé que le magma est sensiblement différent de celui des éruptions précédentes. Il ressemble davantage au magma de l’éruption du Geldingadalir en mars 2021.

Deux échantillons de lave ont été analysés, un premier issu de téphras et un deuxième de lave, collectés à la surface au début de l’éruption, le 29 mai 2024. Ce qui a surpris les scientifiques, c’est le rapport dioxyde de potassium/dioxyde de titane. La lave des éruptions précédentes sur la chaîne de cratères de Sundhnúkagígar avait un rapport relativement élevé de dioxyde de potassium par rapport au dioxyde de titane, semblable à ce qui s’est produit lors de l’éruption de Litli-Hrútur en 2022 et de l’éruption dans la Meradalir en 2022. En revanche, au début de l’éruption dans la Geldingadalir en mars 2021, le magma a présenté un rapport potassium-titane très similaire à celui de l’éruption actuelle. Un scientifique a déclaré : « C’est comme si le magma qui est émis aujourd’hui avait la même source que celui qui est apparu pour la première fois dans la Geldingadalir.

Eruption dans la Meradalir en 2022 (image webcam)

Les similitudes entre les deux éruptions, survenues à trois ans d’intervalle, sont intéressantes pour plusieurs raisons. L’une d’elles est que l’éruption se produit dans deux systèmes volcaniques différents. Une autre raison est que le magma qui émis dans la chaîne de cratères de Sundhnúkagígar provient d’une chambre magmatique sous Svartsengi. Après une brève période d’accumulation, il remonte à la surface, mais il s’est refroidi et un peu cristallisé dans la chambre, et est donc plus avancé. Ce n’était pas le cas lors de l’éruption dans la Geldingadalir. Cependant, personne ne sait pourquoi le magma qui remonte maintenant à la surface semble avoir la même composition que celui qui est apparu dans la Geldingadalir en 2021. Un scientifique islandais a déclaré : « Il faudrait le demander au Diable !. » On pense que ce magma pourrait provenir d ‘une zone entre la croûte et le manteau. Des analyses supplémentaires seront nécessaires pour espérer obtenir une réponse.

Image webcam de l’éruption du 29 mai 2024

On peut lire sur le site Internet de l’Institut des Sciences de la Terre de l’Université d’Islande : « Des échantillons de téphras et de lave ont été collectés au nord de Fiskidalsfjall et à l’est de Sýlingarfell le 1er et le 4ème jour de l’éruption qui a débuté le 29 mai 2024. Le verre volcanique présent dans les échantillons a été analysé avec la microsonde électronique de l’Institut des Sciences de la Terre de l’Université d’Islande. La lave et les tephras sont composés de cristaux de plagioclase, d’olivine et de clinopyroxène. Le verre des tephras est exempt de microlites, tandis que les échantillons de lave en contiennent des quantités variables. Dans l’ensemble, les caractéristiques pétrographiques de la nouvelle lave sont assez semblables à celles des laves émises précédemment sur la fissure de Sundhnúksgígar depuis décembre 2023. »

Source  : Iceland Monitor..

Remarques personnelles à propos des dernières éruptions sur la péninsule de Reykjanes.

Les dernières analyses et celles effectuées lors des éruptions précédentes sont intéressantes car elles révèlent que le magma qui alimente les éruptions sur la péninsule de Reykjanes a sa source à grande profondeur, dans le manteau ou dans la zone entre le manteau et la croûte. La différence de composition chimique de la lave entre les différents échantillons prélevés est probablement liée au séjour – ou au non séjour – du magma dans une chambre magmatique comme celle sous Svartsengi.

Quelle que soit la zone source du magma, on peut remarquer que la composition chimique de la lave n’a guère d’influence sur le processus éruptif. Les événements observés sur la péninsule de Reykjanes ces dernières années se sont tous déroulés de la même façon. Ils sont d’ailleurs liés à la position de l’Islande sur le rift médio-atlantique.

Du fait de de la source profonde du magma, on a affaire à une lave à haute température, donc très fluide qui crée des intrusions en s’infiltrant dans les fractures qui tranchent l’Islande du nord-est au sud-ouest. Ces intrusions s’accompagnent généralement de fortes crises sismiques comme on l’a vu quand l’une d’elles a atteint Grindavik.

Une fois la surface atteinte, le magma ouvre des fractures et donne naissance à des éruptions fissurales. Telle une boutonnière, plusieurs bouches s’ouvrent le long de la fracture. Leur activité décline au fil des jours avec l’évacuation du magma et l’éruption se termine en général avec une seule bouche active, comme c’est le cas avec la dernière éruption.

Le Met Office islandais indique que la chambre magmatique sous Svartsengi est probablement à nouveau en cours de remplissage. Si c’est le cas, on peut s’attendre à de nouveaux événements éruptifs, à moins que le magma décide de séjourner dans la chambre et d’attendre un temps plus ou moins long avant de percer la surface. Ainsi va la vie volcanique dans cette partie de l’Islande…

——————————————–

The latest analyses of the lava emitted by the current eruption have revealed that the magma differs significantly from its predecessors. It is more similar to the magma from the Geldingadalir eruption in March 2021.

Two lava samples have been analyzed, a tephra deposit and secondly a lava deposit, which came to the surface when the eruption began on May 29th, 2024. What surprised the scientists was the ratio of potassium dioxide to titanium dioxide. The lava from previous eruptions on the Sundhnúkagígar crater row has had a relatively high ratio of potassium dioxide to titanium dioxide, similar to what came up in the Mt Litli-Hrútur eruption in 2022 and the Meradalur eruption in 2022. By contrast, at the beginning of the eruption in Geldingadalir in March 2021, magma came up with a very similar potassium-titan ratio as in the current eruption, One scientis said : “It’s like the magma that’s coming up now is of the same strain as the one that first appeared in Geldingadalir.”

The similarities between the two eruptions, which occurred three years apart, are interesting for several reasons. One reason is that the eruption occur in two different volcanic systems. Another reason is that magma that comes up at Sundhnúkagígar crater row is first collected in a magma chamber under Svartsengi. After a brief accumulation period there, it then pops onto the surface, but then the magma has cooled, crystallized a little, and is usually more advanced. This was not the case in the eruption in Geldingadalir. However, nobody knows why the magma that is now rising to the surface appears to be of the same strain as the one that came in Geldingadalir 2021. An Icelandic scientist said : “You have to ask the devil about that.” It is thought that this magma may come from the area between crust and mantle. More analyses will be necessary to hope to get some answer.

One can read on the website of the Institute of Earth Sciences of the University of Iceland : “Samples of tephra and quenched lava were collected north of Fiskidalsfjall and east of Sýlingarfell on the 1st day and 4th day of the eruption at Sundhnúksgígar that started on May 29th, 2024. The volcanic glass in the samples was analysed with the electron microprobe of the Institute of Earth Sciences, University of Iceland. The lava and tephra are composed of vesicular glass, plagioclase, olivine and clinopyroxene crystals. The tephra glass is microlite-free, whereas quenched lava samples contain variable amounts of microlites. Overall, the petrographic features of the new lava resemble those of previous lavas erupted at Sundhnúksgígar since December 2023 .”

Source : Iceland Monitor.

Personal remarks about the latest eruptions on the Reykjanes Peninsula.

The latest analyzes and those carried out during previous eruptions are interesting because they reveal that the magma which fuels the eruptions on the Reykjanes Peninsula has its source at great depth, in the mantle or in the zone between the mantle and the crust. The difference in chemical composition of the lava between the different samples is probably linked to the stay – or non-stay – of the magma in a magma chamber like the one under Svartsengi.

Whatever the source area of ​​the magma, it can be noted that the chemical composition of the lava has little influence on the eruptive process. The events witnessed on the Reykjanes Peninsula in recent years have all developed in the same way. They are also linked to Iceland’s position on the mid-Atlantic rift.

Due to the deep source of the magma, we are dealing with lava at high temperature, therefore very fluid, which creates intrusions by infiltrating the fractures which cut Iceland from the north-east to the south-west. These intrusions are generally accompanied by strong seismic crises as could be seen when one of them reached Grindavik.

Once it reaches the surface, the magma opens fractures and triggers fissure eruptions. Like a buttonhole, several vents open along the fracture. Their activity declines over the days as the magma evacuates and the eruption generally ends with only one active vent, as is the case with the current eruption. The Icelandic Met Office says the magma chamber beneath Svartsengi is likely filling again. If this is the case, we can expect new eruptive events, unless the magma decides to stay in the chamber and wait a longer or shorter time before breaking through the surface. Such is volcanic life in this part of Iceland…

Compréhension en profondeur des éruptions // Deep understanding of eruptions

Les derniers événements en Islande ont montré que les scientifiques savent qu’une éruption est susceptible de se produire, mais ils ne peuvent pas prédire le moment précis où elle débutera. Lorsqu’ils sont sur le point d’entrer en éruption, les volcans montrent des signes qui sont enregistrés par des instruments tels que des sismomètres, des inclinomètres ou même par les satellite. Ces paramètres concernent les couches les plus superficielles de la croûte terrestre.
De nouvelles recherches, menées par des équipes de l’Imperial College de Londres et de l’Université de Bristol, révèlent que nous devrions observer ce qui se passe plus profondément, jusqu’à 20 km sous terre. Certains indices annonciateurs d’éruptions pourraient nous aider à améliorer nos prévisions.

Les auteurs de l’étude se sont concentrés sur la compréhension des réservoirs magmatiques, là où une chaleur extrême fait fondre les roches solides et les transforme en magma à des profondeurs d’environ 10 à 20 kilomètres.
Après avoir collecté des données sur cette zone, l’équipe scientifique les a intégrées dans des modèles informatiques. Les chercheurs ont découvert que certaines conditions au sein des réservoirs magmatiques profonds pouvaient donner des indications sur la taille, la composition et la fréquence des éruptions volcaniques. En d’autres termes, en étudiant ce qui se passe en bas, nous pouvons mieux prévoir ce qui pourrait se passer en haut.
La flottabilité du magma est peut-être l’un des indicateurs les plus surprenants d’une éruption. Contrairement aux théories émises jusqu’à présent, la nouvelle étude montre que c’est la flottabilité du magma, plus que la proportion de roches solides et fondues, qui déclenche les éruptions. Une fois que la densité du magma lui permet de flotter, donc de s’élever, il crée des fractures dans la roche solide sus-jacente. ; il s’engouffre alors très rapidement dans ces fractures et provoque une éruption.
Un autre facteur est la taille du réservoir magmatique proprement dit. Un réservoir magmatique de grande taille ne signifie pas forcément que l’éruption sera plus importante. En effet, plus le réservoir est grand, plus la chaleur est dispersée, ce qui réduit la vitesse de fusion des roches et leur transformation en magma. De plus, plus le magma reste longtemps sous terre, plus l’éruption sera réduite.
Un auteur de l’étude affirme qu' »en améliorant notre compréhension des processus à l’origine de l’activité volcanique et en fournissant des modèles qui mettent en lumière les facteurs contrôlant les éruptions, la nouvelle étude constitue une étape cruciale vers une meilleure surveillance et prévision de ces puissants événements géologiques ».
Source : Science Advances.

Vous pourrez lire l’étude (en anglais) et découvrir les illustrations en plus grande taille en cliquant sur ce lien :

https://www.science.org/doi/10.1126/sciadv.add1595

——————————————————-

The recent events in Iceland have shown that scientissts know that an eruption is likely to erupt. However, they cannot predict the precise moment an eruption will begin. When tey are bout to erupt,volcanoes often show signs that are recorded by instruments suchas seismometers, tiltmetersor even satellite images. These parameters concern the topmost layers of Earth’s crust.

New research, led by teams from Imperial College London and the University of Bristol, suggests we should look deeper, down to 20 km underground, at different eruption clues that might help us improve our predictions.

The authors of the study focused on understanding magma source reservoirs deep beneath our feet, where extreme heat melts solid rocks into magma at depths of around 10 to 20 kilometers.

After collecting data from this part of the Earth’s crust, the team fed that data into computer models. What they found was that certain conditions within deep magma reservoirs could indicate the size, composition and frequency of volcanic eruptions. In other words, by studying what is going on below, we can better predict what might happen above.

Magma buoyancy is perhaps one of the most surprising indicators of an eruption. Contrary to previous beliefs, the new study suggests that the buoyancy of the magma, rather than the proportion of solid and molten rock, is what drives eruptions, Once the magma becomes buoyant enough to float, it rises and creates fractures in the overlying solid rock ; it then flows through these fractures very rapidly, causing an eruption.

Another factor is the size of the reservoir itself. While it is true that larger reservoirs hold more magma, that doesn’t always mean the eruption will be greater. The larger the reservoir, the more heat is dispersed, reducing the rate of melting rock into magma. Plus, the longer magma sits underground, the smaller the eruption will be.

One author of the study says that « by improving our understanding of the processes behind volcanic activity and providing models that shed light on the factors controlling eruptions, the new research is a crucial step towards better monitoring and forecasting of these powerful geological events. »

Source : Science Advances.

You can read the whole  study and discover the full-scale  illustrations by clicking on this link :

https://www.science.org/doi/10.1126/sciadv.add1595

Fonte des glaces et mesure du temps sur Terre // Melting ice and measuring time on Earth

Pendant des siècles, pour mesurer le temps, l’être humain s’est basé sur la rotation de la Terre. Une rotation complète correspond à une journée de 24 heures, chaque heure contient 60 minutes, et chaque minute 60 secondes. La seconde était ainsi définie jusqu’en 1967. Mais il existe depuis cette date un autre système pour mesurer le temps, basé sur l’heure donnée par les horloges atomiques. Des technologies telles qu’Internet, le GPS et les réseaux de téléphonie mobile dépendent des signaux horaires extraordinairement précis de ces horloges.
Ces horloges atomiques définissent la seconde en termes de fréquence de la lumière impliquée dans une transition spécifique dans le césium atomique. La définition a été choisie de telle sorte que 86 400 secondes atomiques correspondent très étroitement à la durée d’un jour sur Terre – ce qui est la définition traditionnelle de la seconde. Cependant, la correspondance n’est pas exacte. Entre 1970 et 2020, la durée moyenne d’une journée sur Terre (la période de rotation de la Terre) était d’environ 1 à 2 ms plus longue que 86 400 s. Cela signifie que toutes les quelques années, un écart d’une seconde se crée entre le temps mesuré par la rotation de la Terre et le temps mesuré par une horloge atomique.
Depuis 1972, cet écart a été corrigé par l’insertion de 27 secondes intercalaires dans le temps universel coordonné (UTC). Ce processus de correction est compliqué par le fait que divers facteurs font varier la période de la Terre sur plusieurs échelles de temps différentes. Ainsi, des secondes intercalaires sont insérées lorsque cela est nécessaire, et non selon un calendrier régulier comme les années bissextiles. Neuf secondes intercalaires ont été insérées entre 1972 et 1979, par exemple, mais aucune n’a été insérée depuis 2016.
Depuis 2020 environ, la période moyenne de la Terre est tombée en dessous de 86 400 s. En d’autres termes, la rotation de la Terre semble s’accélérer. Cela est dû à l’intensification de la fonte des glaces au Groenland et en Antarctique, qui diminue la vitesse angulaire de la Terre. En effet, l’eau des pôles est redistribuée dans les océans,ce qui modifie le moment d’inertie de notre planète. Le moment cinétique étant conservé, ce changement entraîne une diminution de la vitesse angulaire. Cela retardera de trois ans la nécessité d’une seconde intercalaire négative. Une seconde intercalaire négative pourrait être nécessaire en 2029, mais elle pourrait être l’une des dernières car les métrologues ont décidé de supprimer la correction de la seconde intercalaire en 2035.
Source  : Médias d’information scientifique comme physicsworld.

Glaciers au Groenland Photo: C. Grandpey

—————————————————

For centuries, to measure time, humans relied on the rotation of the Earth. A full rotation corresponds to a 24-hour day, each hour contains 60 minutes, and each minute 60 seconds. The second was thus defined until 1967. But since then there has been another system for measuring time, based on the time given by atomic clocks. Technologies such as the Internet, positioning systems and mobile-phone networks depend on the clocks’ extraordinarily  accurate time signals.

These atomic clocks define the second in terms of the frequency of light that is involved in a specific transition in atomic caesium. The definition was chosen so that 86,400 atomic seconds corresponds very closely to the length of a day on Earth – which is the traditional definition of the second. However, the correspondence is not exact. Between 1970 and 2020, the average length of a day on Earth (the period of Earth’s rotation) was about 1–2 ms longer than 86,400 s. This means that every few years, a second-long discrepancy builds up between time as measured by Earth’s rotation and time measured by an atomic clock.

Since 1972 this deviation has been corrected by the insertion of  27 leap seconds into co-ordinated universal time (UTC). This correction process is complicated by the fact that various factors cause Earth’s period to vary on a number of different time scales. So leap seconds are inserted when needed – not according to a regular schedule like leap years. Nine leap seconds were inserted in 1972–1979, for example, but none have been inserted since 2016.

Since about 2020 Earth’s average period has dipped below 86,400 s. In other words, Earth’s rotation appears to be speeding up. This is due to the increased melting of ice in Greenland and Antarctica which is decreasing the Earth’s angular velocity. This is because water from the poles is being redistributed throughout the oceans, thereby changing our planet’s moment of inertia. Because angular momentum is conserved, this change results in a decrease in angular velocity. This will postpone the need for a negative leap second by three years. A negative leap second could be needed in 2029, but it could be one of the last because metrologists have voted to get rid of the leap-second correction in 2035.

Source : Scientific news media like physics world.

https://physicsworld.com/

Vidéo du cratère Jezero sur la planète Mars // Video of the Jezero Creter on Mars

En combinant les données de sondes Mars Express et Mars Reconnaissance Orbiter, l’agence spatiale européenne (ESA) a reconstitué une vue aérienne 3D du cratère Jezero sur Mars, site où le rover Perseverance de la NASA s’est posé en février 2021 afin de rechercher des traces d’eau et de vie passée. Le site n’a pas été choisi au hasard puisqu’il a autrefois abrité un lac et que le delta qui s’y est formé présente des minéraux argileux attestant de la présence passée d’eau, et donc potentiellement de formes de vie.

Perseverance envoie depuis plus de deux ans de magnifiques vues de son lieu de travail. Il y a quelques mois, l’ESA a diffusé la vidéo d’un survol de l’ensemble du cratère Jezero :

https://youtu.be/czUkdFm-P2M

Image extraite de la vidéo

Jezero est un cratère d’impact de 49 km de diamètre situé dans un delta asséché à l’extrémité ouest d’Isidis Planitia, un bassin d’impact géant juste au nord de l’équateur martien. Sa formation remonte à environ 3,7 milliards d’années, ce qui en fait un site idéal pour la préservation de signes possibles de vie microbienne ancienne. Ce survol permet d’appréhender la topographie particulière de ce site et de mieux comprendre son intérêt scientifique.

La vidéo de l’ESA permet d’observer les trois vallées (Pliva Vallis, Neretva Vallis et Sava Vallis) qui traversent les parois du cratère et qui étaient autrefois des rivières. Le cratère est un « lac à bassin ouvert », c’est-à-dire que l’eau s’écoulait à l’intérieur et à l’extérieur du cratère.

Source : Science et Vie, space.com, ESA.

En compléments à cette note, vous pourrez lire l’article que j’ai écrit le 10 septembre 2022 sur ce blog à propos des roches découvertes par le robot Perseverance sur la Planète Rouge :

https://claudegrandpeyvolcansetglaciers.com/2022/09/10/roches-volcaniques-sur-la-planete-mars-volcanic-rocks-on-mars/

Roches volcaniques dans le cratère Jezero (Crédit photo: NASA)

——————————————————

By combining data from Mars Express and Mars Reconnaissance Orbiter probes, the European Space Agency (ESA) has reconstructed a 3D aerial view of the Jezero crater on Mars, the site where NASA’s Perseverance rover landed in February 2021 in order to look for traces of water and past life. The site was not chosen at random since it was once home to a lake and the delta that formed there presents clay minerals attesting to the past presence of water, and therefore potentially forms of life.
Perseverance has been sending great views of the site for over two years. A few months ago, ESA released the video of a flyover of the entire Jezero Crater:

https://youtu.be/czUkdFm-P2M

Jezero is a 49-km diameter impact crater located in a dry delta at the western edge of Isidis Planitia, a giant impact basin just north of the Martian equator. Its formation dates back approximately 3.7 billion years, making it an ideal site for preserving possible signs of ancient microbial life. This overview allows us to see the particular topography of this site and to better understand its scientific interest.
The ESA video allows to observe the three valleys (Pliva Vallis, Neretva Vallis and Sava Vallis) which cross the walls of the crater and which were once rivers. The crater is an “open basin lake,” meaning water flowed in and out of the crater.
Source: Science et Vie, space.com, ESA.

In addition to this post, you can read the article that I wrote on September 10th, 2022 on this blog about the rocks discovered by Perseverance on the Red Planet:

https://claudegrandpeyvolcansetglaciers.com/2022/09/10/roches-volcaniques-sur-la-planete-mars-volcanic-rocks-on-mars/