La source magmatique de l’Etna // Mount Etna’s magma source

Il se pourrait que la source d’alimentation magmatique de l’Etna ne se trouve pas à la verticale du volcan sicilien, mais beaucoup plus à l’est, dans une zone baptisée Escarpement de Malte. Par le passé, elle aurait donné naissance aux volcans des Monts Iblei, aujourd’hui éteints. C’est du moins ce que révèle une étude intitulée Etnean and Hyblean volcanism shifted away from the Masta Escarpment by crustal stresses, conduite par une équipe de chercheurs de l’INGV, du Centre allemand de géosciences (GFZ) de Potsdam, l’Université d’Etudes de Roma Tre et de Catane. Les résultats ont été publiés dans la revue Earth & Planetary Science Letters, Elsevier B.V.
Marco Neri, de l’Observatoire Etneo-INGV, rappelle que séismes et éruptions se produisent essentiellement en bordure des plaques tectoniques qui occupent à la surface de la Terre. Cependant, il y a des volcans qui ne suivent pas cette règle, car ils se développent à l’intérieur des plaques tectoniques et non sur les bords. C’est ce qu’on appelle le volcanisme «intraplaque.» C’est le cas des volcans qui entrent en éruption depuis des millions d’années le long de la Sicile orientale.
L’Etna est actif depuis cinq cent mille ans, mais bien avant lui, pendant des millions d’années, les Monts Iblei ont dominé la scène avec de nombreux volcans actifs entre Capo Passero et la Plaine de Catane et entre Syracuse et Grammichele.
Afin de déterminer la source magmatique qui a alimenté les Monts Iblei et donne aujourd’hui vie à l’Etna, les chercheurs ont simulé le parcours emprunté par le magma en dessous des Iblei et de l’Etna jusqu’à la limite entre la croûte et le manteau, à environ 30 km de profondeur. Ils ont intégré dans leurs calculs les différents régimes tectoniques qui se sont succédé dans l’est de la Sicile au cours des dix derniers millions d’années. Dans cette zone, la croûte terrestre a été comprimée ou s’est dilatée en différentes directions, ce qui a favorisé ou entravé l’ascension du magma en provenance du manteau. Le modèle a également mis en lumière l’évolution progressive des failles de l’Escarpement de Malte qui, au fil du temps, se sont approfondies, augmentant la pression lithostatique induite par les masses rocheuses en déformation.

Les scientifiques ont ainsi découvert que les trajectoires empruntées par le magma entre le manteau terrestre et la surface ne sont pas verticales. Elles convergent vers le bas, aussi bien pour l’Etna que pour les volcans des Monts Iblei, dans une même zone, au-dessous de l’Escarpement de Malte. Il s’agit d’une structure tectonique qui ouvre la croûte terrestre en Sicile orientale et permet l’ascension du magma à partir du manteau. L’Escarpement de Malte est aussi un important système de failles situé juste à côté des côtes orientales de la Sicile, sous la mer Ionienne, et capable de générer des séismes. Ces failles s’étendent sur plus de trois cents kilomètres en produisant, au fond de la mer, un escarpement pouvant atteindre trois mille mètres de profondeur.
Il se pourrait bien que ce soit l’Escarpement de Malte qui a généré, le 11 Janvier 1693, dans le Val di Noto, le séisme le plus violent observé au cours des mille dernières années en Italie avec une magnitude de M 7,4, cinquante-quatre mille morts et un tsunami dévastateur.
L’étude montre que, même en Sicile orientale, les volcans et les failles sismogéniques sont l’expression d’un seul contexte volcano-tectonique actif depuis des millions d’années et qui évolue au fil du temps, ce qui explique pourquoi les volcans des Monts Iblei sont éteints aujourd’hui, alors que l’Etna est encore très actif.

Source: Conoscere Geologia.

————————————————

Mount Etna’s magma source might not be located vertically beneath the Sicilian volcano, but much further east, in an area known as the Malta Escarpment. In the past, it probably gave birth to the volcanoes of the now extince Iblei Mountains. This is what is revealed by a study entitled Etnean and Hyblean volcanism shifted away from the Masta escarpment by crustal stresses, conducted by a team of researchers from INGV, the German Geosciences Center (GFZ) in Potsdam, the University Roma Tre and Catania. The results were published in Earth & Planetary Science Letters, Elsevier B.V.
Marco Neri, of the Etneo-INGV Observatory, reminds us that earthquakes and eruptions occur essentially along the edge of the tectonic plates that occupy the surface of the Earth. However, there are volcanoes that do not follow this rule because they grow inside the tectonic plates and not on the edges. This is called « intraplate » volcanism. This is the case of volcanoes that have been erupting for millions of years in eastern Sicily.
Etna has been active for five hundred thousand years, but long before, for millions of years, the Iblei Mountains dominated the scene with many active volcanoes between Capo Passero and the Plain of Catania and between Syracuse and Grammichele.
In order to determine the magmatic source that fed the Iblei Mountains and gives life to Mt Etna today, the researchers simulated the path taken by magma below the Iblei and Etna to the limit between the crust and the mantle, about 30 km deep. They integrated in their calculations the different tectonic regimes in the eastern part of Sicily during the last ten million years. In this zone, the Earth’s crust has been compressed or expanded in different directions, which has favoured or hindered the rise of magma from the mantle. The model also highlighted the gradual evolution of the Malta Escarpment faults which, over time, have deepened, increasing the lithostatic pressure induced by the deformed rock masses.
Scientists have discovered that the routes taken by magma between the Earth’s mantle and the surface are not vertical. They converge downwards, as well for Etna as for the volcanoes of the Iblei Mountains, in the same zone, below the Malta Escarpment. It is a tectonic structure that opens the earth’s crust in eastern Sicily and allows the rise of magma from the mantle. The Malta Escarpment is also an important fault system located just off the eastern coast of Sicily, under the Ionian Sea, and capable of generating earthquakes. These faults extend for more than three hundred kilometres and produce, at the bottom of the sea, an escarpment up to three thousand metres deep.
The Malta Escarpment may have triggered, on January 11th, 1693, in the Val di Noto, the most violent earthquake observed over the last thousand years in Italy, with a magnitude of M 7.4, fifty-four thousand dead and a devastating tsunami.
The study shows that, even in eastern Sicily, volcanoes and seismogenic faults are the expression of a single volcano-tectonic context that has been active for millions of years and has evolved over time, which explains why the volcanoes of the Iblei Mountains are extinct today, while Etna is still very active.
Source: Conoscere Geologia.

Photo: C. Grandpey

La source de Lusi, le volcan de boue ? // The source of the Lusi mud volcano ?

On en parle très peu aujourd’hui, mais plus de dix ans après le début de la catastrophe, le volcan de boue indonésien Lusi déverse toujours des flots de boue sur l’île indonésienne de Java. Au pire moment, Lusi vomissait 170 000 mètres cubes de boue par jour. Certains villages ont été ensevelis sous 40 mètres de fange. Quelque 60 000 personnes ont dû abandonner leurs maisons et 13 ont été tuées.
Une étude publiée dans le Journal of Geophysical Research de l’American Geophysical Union affirme que la source de ce déversement incessant de boue a été trouvée. Une équipe de chercheurs norvégiens, suisses et indonésiens explique que le volcan de boue n’a pas cessé son activité parce qu’il est relié à un système volcanique qui se trouve à proximité.
La compréhension du fonctionnement de Lusi serait d’un grand intérêt pour les volcanologues. En effet, d’un point de vue géologique, Lusi est un phénomène très récent qui peut permettre de comprendre comment évoluent les volcans, les systèmes hydrothermaux et les geysers.
Les volcans de boue et ceux qui émettent de la lave se trouvent souvent dans les zones de subduction, et l’Indonésie en fait partie. S’agissant des volcans qui émettent de la lave, le magma à très haute température monte constamment vers la surface et permet aux volcans de la région de demeurer actifs. Inversement, les volcans de boue se forment généralement lorsque des gaz tels que le méthane et le dioxyde de carbone s’accumulent en créant une pression qui se libère violemment. Selon la nouvelle étude, Lusi est à la fois un volcan de boue et un système hydrothermal, autrement dit une formation géologique qui libère du gaz.

Les chercheurs pensent que le complexe volcanique d’Arjuno-Welirang, une chaîne volcanique à l’est de Java, est responsable de la naissance de Lusi. En effet, les échantillons de gaz expulsés par ce dernier sont similaires aux éléments chimiques que l’on observe généralement dans le magma. L’étude explique que pendant des années avant l’éruption, le magma du complexe volcanique Arjuno-Welirang a «cuit» les sédiments sous Lusi en générant une pression continue.
Le lien entre Lusi et Arjuno-Welirang a également été démontré par l’utilisation de la tomographie qui permet d’imager des structures tridimensionnelles. Les chercheurs ont disposé 31 sismomètres et ont découvert que, dans la chambre magmatique la plus au nord du complexe Arjuno-Welirang, il y a un tunnel qui alimente le bassin sédimentaire de Lusi.
La nouvelle étude a toutefois été critiquée par d’autres chercheurs qui pensent que les données ne montrent pas suffisamment que le tunnel d’Arjuno-Welirang est lié à Lusi. Ils font également remarquer que l’étude ne compare pas ses résultats aux images à résolution beaucoup plus élevée proposées par les analyses sismiques en 2D de l’industrie pétrolière. Ils ajoutent que des études supplémentaires auraient pu être effectuées pour comparer et valider les résultats, ce qui est recommandé en tomographie car cette technologie est fréquemment source d’erreurs.
La cause de la coulée de boue dévastatrice a été l’objet de nombreux débats au cours de la dernière décennie. Les scientifiques sont assez d’accord pour dire que toute cette pression a été générée par l’activité sismique, mais il n’y a pas de consensus sur l’origine exacte de cette activité. Une étude publiée en 2007 a prétendu que l’éruption du volcan de boue a été causée par un puits de gaz exploratoire qui a perforé des roches à 2 800 mètres sous la surface. Une autre étude indique qu’un séisme de magnitude M 6.3 survenu à plusieurs kilomètres de là, quelques jours avant Lusi, près de la ville de Yogykarta, a provoqué la catastrophe.
Quelle que soit la cause exacte, de nombreuses études montrent que le volcan de boue Lusi a encore de beaux jours devant lui.

Source: Presse scientifique américaine.

——————————————-

Very little is said today about it, but more than ten years after the disaster started, Indonesian mud volcano Lusi is still spewing rivers of mud on the Indonesian island of Java. At its peak, the region was churning out over 170,000 cubic metres of mud every day. Some villages have been buried in as much as 40 metres of mud. Some 60,000 people have had to abandon their homes, and 13 people have been killed.

A study, published in the American Geophysical Union’s Journal of Geophysical Research, affirms that the source of this relentless flow of mud has been found. A team of researchers from Norway, Switzerland, and Indonesia say the mud volcano has not stopped oozing because it is connected to a nearby volcanic system.

Understanding how Lusi happened can tell volcanologists quite a lot. In terms of geological formations, Lusi is a new-born phenomenon, and thus allows scientists to understand how systems like volcanoes, hydrothermal vents, and geysers evolve.

Mud volcanoes and igneous volcanoes often both appear in subduction zones and Indonesia is one of them. As a consequence, hot magma is constantly rising to the surface and keeping the region’s volcanoes active. Conversely, mud volcanoes typically form when gases such as methane and carbon dioxide build up pressure that is released violently. According to the new study, Lusi is both a mud volcano and a hydrothermal vent, a geological formation that releases gas.

Researchers say the Arjuno-Welirang volcanic complex, a string of volcanoes in East Java, is to blame. Indeed, samples of the gas expelled by Lusi were similar to chemicals typically found in magma. The study explains that for years before the eruption, magma from Arjuno-Welirang had been « baking » the sediment lying under Lusi and continuously building pressure.

Connections between Lusi and Arjuno-Welirang were also made by the researchers’ use of tomography which allows to image three dimensional structures. Researchers laid out 31 seismometers and found that in the northernmost magma chamber of Arjuno-Welirang, there is a tunnel that feeds Lusi’s sediment basin.

The new study has criticisms from researchers who do not believe the data sufficiently shows the Arjuno-Welirang tunnel is linked to Lusi. These say the study does not compare its results to the far higher resolution images available from 2D petroleum industry reflection seismic surveys. They add that the additional surveys could have been used to compare and validate results, which is a useful tool in tomography because it can frequently produce errors.

Exactly how the dangerous mudflow began has been debated heavily in the past decade. Scientists are pretty united in saying all this pressure was generated by seismic activity, but there is not a consensus on the exact origin of this activity.

One study released in 2007 claimed the deadly eruption was caused by an exploratory gas well that punctured rock 2,800 metres below the surface. Another study suggests that an M 6.3 earthquake that occurred several days prior kilometres away from Lusi near the city of Yogykarta triggered the mud disaster.

Regardless of the exact cause, many studies show that Lusi shows no indication of stopping any time soon.

Source : U.S. scientific press.

Lusi: un désastre environnemental  (Crédit photo: Wikipedia)