L’analyse de la lave émise peut aider à comprendre les mécanismes qui gèrent les éruptions volcaniques. Les échantillons de lave peuvent aider à « voir » ce qui se passe à l’intérieur d’un volcan. Ainsi, l’étude de la lave produite par l’éruption du Mauna Loa en 2022 a offert aux géologues du HVO, pour la première fois depuis près de 40 ans, une fenêtre sur le système d’alimentation du volcan.
Le Mauna Loa est entré en éruption le 27 novembre 2022, pour la première fois depuis 1984. L’éruption a commencé dans la caldeira sommitale. Puis une fissure de 500 mètres de long s’est propagée vers le sud-ouest, tout en restant majoritairement à l’intérieur du sommet. Au matin du 28 novembre, l’activité éruptive avait migré du sommet vers la zone de rift nord-est où quatre fissures se sont ouvertes pour finalement donner naissance à une bouche éruptive sur la Fissure 3 le 2 décembre. Un réseau de chenaux a alimenté des coulées de lave ‘a‘ā qui ont parcouru le flanc nord du volcan sur une vingtaine de kilomètres. L’éruption s’est terminée le 10 décembre 2022.
Le réseau de surveillance mis en place par le Hawaiian Volcano Observatory (HVO) a collecté des données qui ont été analysées en temps réel afin de mieux comprendre l’éruption. Des observations directes et des mesures ont également été effectuées sur le terrain. Elles ont permis d’évaluer la vitesse de progression des coulées de lave et les dangers associés. Les géologues du HVO ont collecté des échantillons de lave dans des coulées actives et solidifiées presque tous les jours pour procéder à une analyse en laboratoire en temps quasi réel.
Depuis l’éruption du Mauna Loa en 1984, les domaines de la pétrologie et de la géochimie ont fait de grands progrès. De nouveaux instruments et de nouvelles techniques sont maintenant disponibles. Ils ont permis d’obtenir rapidement plus d’informations qu’en 1984.
Des analyses de fluorescence X à dispersion d’énergie ((EDXRF) effectuées en temps quasi réel avec la collaboration de l’Université d’Hawaii à Hilo ont révélé la composition du magma ainsi que son origine. Ces analyses, effectuées dans les 24 heures suivant le prélèvement de l’échantillon, ont été suivies d’une micro-analyse électronique secondaire et d’une micro-analyse par sonde électronique. Cela a permis de mesurer des compositions de minéraux et de verre à de très petites échelles (quelques microns). Ce type d’analyse rapide n’était pas possible en 1984.
Les géologues du HVO ont ainsi appris que les laves émises par l’éruption de 2022 étaient semblables à d’autres éruptions du Mauna Loa depuis 1843. La teneur moyenne en MgO (oxyde de magnésium) des échantillons de lave était de 6,2 % en poids, donc légèrement inférieure aux autres éruptions du Mauna Loa au cours des 200 dernières années. Ces données peuvent être utilisées pour calculer la température des laves émises. Elle a été estimée à environ 1 155 degrés Celsius.
Les échantillons prélevés au niveau de la bouche éruptive ne montrent pas de cristaux visibles à l’œil nu, bien que les minéraux comme le plagioclase, le clinopyroxène, l’olivine et les oxydes (tous rencontrés habituellement sur le Mauna Loa) deviennent plus abondants et plus gros en s’éloignant de la bouche éruptive, au fur et à mesure que les coulées de lave se refroidissent et se cristallisent.
Toute la lave produite pendant l’éruption de 2022 a présenté la même composition sur une distance de 17 kilomètres, que ce soit au sommet ou sur la partie supérieure du rift nord-est. Cela montre que toute l’éruption a été alimentée par un magma homogène. La lave émise par cette éruption ne présente pratiquement pas de cristaux et elle a une faible teneur en MgO. Elle n’a donc pas été influencée par le magma résiduel laissé par l’éruption de 1984. On a une situation différente de l’éruption du Kilauea en 2018, qui a initialement produit des laves mélangées à du magma refroidi stocké dans la Lower East Rift Zone. Au lieu de cela, la composition de la lave de l’éruption du Mauna Loa en 2022 révèle une nouvelle intrusion magmatique qui va de pair avec l’activité sismique que le HVO a observée 2 à 4 km sous le sommet dans les mois qui ont précédé l’éruption.
Source : USGS/HVO.
——————————————
The analysis of emitted lavas can help understand volcanic eruptions. The lava samples can help “see” inside a volcano. In this way, the analysis of the lava produced by the 2022 eruption of Mauna Loa gave HVO geologists a window into the volcano’s plumbing system for the first time in almost 40 years.
Mauna Loa began erupting on November 27th, 2022, for the first time since 1984. The eruption began within the summit caldera. Then a 500-mrter-long fissure propagated towards the southwest but remained mostly within the summit. In the morning of the following day, eruptive activity had migrated from the summit into the Northeast Rift Zone where four fissures opened and finally gave birth to one vent on December 2nd. A network of lava channels fed ‘a‘ā flows that extended about 20 km down the volcano’s north flank. The eruption ended on December 10th.
The Hawaiian Volcano Observatory (HVO)’s network of monitoring instruments collected data that were analyzed in real-time to better understand the eruption. Direct observations and measurements were also performed on the field. They allowed to that aided in assess lava flow advance rates and the accompanying hazards. HVO geologists collected molten and solidified lava samples almost every day for near-real-time lab analysis.
Since Mauna Loa’s eruption in 1984, the fields of petrology and geochemistry have made great advances. New instruments and techniques are available now. They allowed to learn more and faster about the last eruption than in 1984.
Energy-dispersive X-ray fluorescence analyses done in near-real-time with the collaboration of the University of Hawai‘i at Hilo revealed the composition of the erupting magma and where it was coming from. These analyses, done within 24 hours of sample collection, were later followed by secondary electron micro-analysis and electron probe micro-analysis. This allowed to measure compositions of minerals and glass on very small scales (a few microns). This type of rapid analysis was not possible in 1984.
HVO geologists learned that the 2022 erupted lavas were similar to other Mauna Loa compositions since 1843. The average MgO (magnesium oxide) content of the lava samples was 6.2 wt% (weight percent), slightly lower than any other Mauna Loa eruption over the past 200 years. This data can be used to calculate the temperature at which the lavas erupted and was estimated at about 1,155 degrees Celsius.
Samples collected at the vent(s) have no crystals visible to the naked eye, although minerals like plagioclase, clinopyroxene, olivine and oxides (all common at Mauna Loa) increase in abundance and size with distance from the vent as lava flows cooled and crystallized downslope.
All of the lava produced over the duration of the 2022 eruption and from all vents spanning 17 kilometers across the summit and upper Northeast Rift Zone have the same composition. This shows that the entire eruption was fed by a homogenous magma, and that this nearly crystal-free, low-MgO eruption was not influenced by rift-stored magma left over from 1984. This is different from the Kīiauea 2018 eruption, which initially produced lavas mixed with cooler stored magma from the Lower East Rift Zone. Instead, the composition of the 2022 Mauna Loa eruption reflects a new intrusion of magma, consistent with earthquake activity that the observatory monitored 2 to 4 km beneath the summit in the months prior to eruption.
Source : USGS / HVO.
Les échantillons de lave collectés près de la bouche éruptive de la Fissure 3 sont vitreux et contiennent des bulles et de très petits minéraux (200 microns de long) comme le plagioclase et le pyroxène, comme le montre l’image au microscope à échelle de gris en médaillon. (Source : USGS)
Lava samples collected near Fissure 3 vent are glassy and contain bubbles and some very small (200 microns long) minerals like plagioclase and pyroxene, as shown in the grey-scale microscope image inset. (Source: USGS)