Santorin (Grèce) : personne ne sait comment la situation va évoluer // Santorini (Greece) : Nobody knows what will happen next

Des séismes secouent toujours l’île de Santorin toutes les quelques minutes. Les autorités ont renforcé les plans d’urgence au cas où les secousses de ces derniers jours seraient le signe avant-coureur d’un séisme plus important. Un navire des garde-côtes et une embarcation de débarquement militaire se trouvent dans la zone en cas d’évacuation.

Le problème avec la situation actuelle est que personne ne sait comment elle va évoluer. Le responsable de la Protection civile a déclaré : « Nous sommes obligés d’élaborer des scénarios pour le meilleur et pour le pire en ce qui concerne l’activité sismique. » La prévision sismique est au niveau zéro, et les scientifiques sont incapables de dire avec certitude si l’activité sismique entre les îles de Santorin et d’Amorgos est susceptible d’être le précurseur d’un séisme beaucoup plus puissant, ou si elle fait partie d’un essaim qui pourrait continuer à secouer la région avec des événements d’intensité faible ou modérée pendant des semaines ou des mois.

Les autorités locales demandent aux habitants de rester calmes et de suivre les instructions officielles. Elles ont interdit l’accès à plusieurs zones côtières et ordonné la fermeture des écoles de plusieurs îles pendant une semaine. Les événements publics à Santorin ont été annulés et les autorités locales limitent l’accès aux zones sommitales des falaises qui sont les plus fréquentées par les touristes sur l’ile. Des milliers d’habitants et de touristes ont déjà quitté Santorin, effrayés par les centaines de séismes avec des magnitudes entre M3.0 et M5.0 qui ont secoué la région au cours des derniers jours. Les compagnies de ferry et les compagnies aériennes ont ajouté des vols et des traversées pour répondre à la hausse de la demande.

Les séismes, qui ont tous des épicentres sous le plancher marin entre Santorin et Amorgos, n’ont jusqu’à présent causé aucune victime ni aucun dégât majeur, bien que de petits glissements de terrain et des fissures dans certains bâtiments plus anciens aient été signalés à Santorin. La semaine dernière, les autorités ont déclaré qu’une hausse de l’activité volcanique avait été observée dans la caldeira de Santorin, mais les scientifiques expliquent que cela n’est pas lié à la sismicité actuelle. Ils ont également déclaré que l’activité sismique au nord-est de l’île ne devrait pas déclencher d’éruption sur l’un des deux volcans de la région.

Source : Médias grecs et internationaux.

Source : Euro-Med Seismological Centre (EMSC)

———————————————-

Earthquakes keep rattling the island of Santorini every few minutes. Authorities have bolstered their emergency plans in case the hundreds of tremors over the past few days are a harbinger of a larger quake to come. A coast guard vessel and a military landing craft are in the wider area as a contingency should an evacuation be required.

The problem with the current situation is that nobody knows what will happen next. The Civil Protection minister said : “We are obliged to draw up scenarios for better and for worse regarding the prolonged seismic activity.” Predicting earthquakes is not scientifically possible, and experts cannot yet determine definitively whether the seismic activity between the islands of Santorini and Amorgos could be a precursor to a significantly larger earthquake, or is part of an earthquake swarm that could continue shaking the area with small or moderate intensity quakes for weeks or months.

Local authorities are asking residents to remain calm and follow the official instructions. Authorities have banned access to several coastal areas and ordered schools on several islands to shut for the week. Public events on Santorini have been banned, and local authorities are restricting access to clifftop areas that are among the biggest tourist draws to the island.

Thousands of residents and visitors have already left Santorini, frightened by the hundreds of earthquakes measuring between M3.0 and M5.0 that have struck the area over the past few days. Ferry lines and commercial airlines have added flights and ships to their schedules to accommodate the increased demand.

The quakes, which all have epicenters beneath the seabed between Santorini and the Amorgos, have so far caused no injuries or major damage, although limited rockslides and cracks in some older buildings have been reported on Santorini.

Last week, authorities said monitors had picked up increased volcanic activity within Santorini’s caldera, or flooded crater, but scientists say this is unrelated to the current quakes. They have also said the seismic activity northeast of the island is unlikely to trigger either of the two volcanoes in the area.

Source : Greek ans international news media.

La formation de la faille de Denali (Amérique du Nord) // Formation of the Denali Fault (North America)

Impossible de le rater – sauf si le temps est bouché – lorsque l’on voyage en Alaska. Le Denali, autrefois appelé mont McKinley, est la plus haute montagne du continent nord-américain. Il culmine à 6 190 m d’altitude.

 

Photos: C. Grandpey

Ces dernières années, de nombreuses questions se sont posées sur la formation de la montagne. Il semble qu’une nouvelle étude apporte une réponse définitive. Nous savons enfin comment s’est formée la faille qui a donné naissance au Denali.
Baptisée faille de Denali, elle s’étire dans la moitié sud de l’Alaska, dans la Chaîne de l’Alaska. Elle mesure plus de 2 000 kilomètres de long et traverse le sud de l’Alaska, le sud-ouest du Yukon et revient vers le sud-est de l’Alaska. La face nord du Denali, connue sous le nom de Wickersham Wall, s’élève à 4 500 mètres de sa base et est le résultat d’un mouvement vertical relativement récent le long de la faille.

Source : USGS

Selon une nouvelle étude publiée en octobre 2024 dans la revue Geology, la faille de Denali est en fait une ancienne suture où deux masses terrestres se sont autrefois jointes (En géologie, une suture désigne la zone de contact consécutive à la fermeture d’un domaine océanique entre deux domaines tectoniques). Il y a 72 à 56 millions d’années, une plaque océanique appelée Terrane Composite de Wrangellia est entré en contact avec la bordure occidentale de l’Amérique du Nord et s’y est amarrée.
Selon l’auteur principal de l’étude, « notre compréhension de la croissance lithosphérique, ou croissance des plaques, le long de la marge occidentale de l’Amérique du Nord devient plus claire ».
La faille de Denali est une faille décrochante – ou coulissante – un endroit où deux morceaux de croûte continentale glissent l’un sur l’autre. Le 3 novembre 2002, la faille a bougé et déclenché un séisme de magnitude M7,9 qui a fait rompre les amarres d’embarcations à Seattle, à plus de 2 400 kilomètres de là.

 La conception de l’oléoduc trans-Alaska qui a tenu compte de la faille de Denali a permis d’éviter la rupture de la structure lors du séisme de M7,9 du 3 novembre 2002 (Source : USGS)

Les chercheurs ont étudié trois sections de la faille : les Clearwater Mountains du sud-est de l’Alaska, le lac Kluane dans le territoire canadien du Yukon et les montagnes côtières près de Juneau. Ces sites sont distants de plusieurs centaines de kilomètres le long de la ligne de faille. Les sites sont répartis sur environ 1 000 kilomètres.
Des recherches menées dans les années 1990 avaient laissé entendre que, malgré cette distance, ces trois sections de faille se sont formées au même moment et au même endroit, pour ensuite se séparer plus tard lorsque les deux côtés de la faille ont glissé l’un contre l’autre. Toutefois, personne n’avait confirmé cette hypothèse.
Pour avoir la confirmation de cette hypothèse, l’auteur principal de l’étude a analysé un minéral appelé monazite dans les trois sections de la faille. Ce minéral, qui est composé d’éléments de terres rares, se modifie lorsque la roche qui l’héberge se transforme sous une pression ou une température élevée, ce qui permet de comprendre l’histoire de la roche.
Les auteurs de l’étude ont montré que chacune de ces trois ceintures métamorphiques inversées indépendantes s’est formée en même temps, dans des conditions similaires. De plus, toutes occupent un cadre structural très similaire. Non seulement elles ont le même âge, mais elles se sont toutes comportées de manière similaire. Leur âge diminue, structurellement.
Cette diminution d’âge est la conséquence d’un phénomène appelé métamorphisme inversé, par lequel les roches formées sous des températures et des pressions élevées se trouvent au-dessus des roches formées sous des températures et des pressions plus basses. C’est le contraire du schéma habituel, étant donné que plus on descend dans la croûte terrestre, plus la température et la pression sont élevées. Le métamorphisme inversé se rencontre dans les endroits où les forces tectoniques ont déformé la croûte et repoussé des roches plus profondes sur des roches moins profondes.
L’étude révèle que ces trois régions se sont formées au même endroit et au même moment. Cet endroit est la zone de suture terminale entre la plaque nord-américaine et la sous-plaque de Wrangell, une mini-plaque tectonique qui fait partie du puzzle complexe de la côte nord du Pacifique.
Source : Live Science via Yahoo News.

——————————————————-

You can’t miss it when travelling across Alaska. Denali – formerly called Mount Mc Kinley – is the highest mountain of the North American continent. It culminayes 6,190 m above sea level.

In the past years, many questions were asked about the formation of the mountain. It looks as if a new study is providing an answer. We finally know how a fault that gave rise to Denali first formed.

Called the Denali Fault, it is located in the southern half of Alaska in the Alaska Range. It is more than 2,000 kilometers long, arcing through southern Alaska, southwestern Yukon, and back into southeastern Alaska. The steep north face of Denali, known as the Wickersham Wall, rises 4,500 meters from its base, and is a result of relatively recent vertical movement along the fault

According to a new study published in October 2024 in the journal Geology, the Denali Fault is actually an ancient suture mark where two land masses once joined together. Between 72 million and 56 million years ago, an oceanic plate called the Wrangellia Composite Terrane bumped into the western edge of North America and stuck there.

According to the lead author of the research, « our understanding of lithospheric growth, or plate growth, along the western margin in North America is becoming clearer. »

The Denali Fault is a strike-slip fault, a place where two chunks of continental crust slide past each other. On November 3rd,, 2002, the fault jolted, triggering an M7.9 earthquake that knocked houseboats off their moorings more than 2,400 kilometers away in Seattle.

The researchers studied three sections of the fault: The Clearwater Mountains of southeastern Alaska, Kluane Lake in Canada’s Yukon Territory, and the Coast Mountains near Juneau. These sites are hundreds of kilometers apart along the faultline. The sites are spread across about 1,000 kilometers.

Research in the 1990s had suggested that despite this distance, these three fault sections were formed at the same time and place, only to be torn apart later as the two sides of the fault slid against one another. But no one had confirmed that finding.

In an attempt to do so, the lead author of the study analysed a mineral called monazite at all three locations. This mineral, which is made of rare-Earth elements, changes as the rock hosting it is transformed under pressure or high temperature, giving a way to understand the rock’s history.

The authors of the study showed that each of these three independent inverted metamorphic belts all formed at the same time under similar conditions. Moreover, all occupy a very similar structural setting. Not only are they the same age, they all behaved in a similar fashion. They decrease in age, structurally, downward.

This decrease in age is an effect of a phenomenon called inverted metamorphism, whereby rocks formed under high temperatures and pressures are found above rocks formed under lower temperatures and pressures. This is the opposite of the usual pattern, given that the deeper you go in the Earth’s crust, the hotter and more pressurized it is. Inverted metamorphism is found in places where tectonic forces have warped the crust and pushed deeper rocks over shallower ones.

The study reveals that these three regions formed at the same place and time. That place was the terminal suture zone between the North American plate and the Wrangell subplate, a mini tectonic plate that makes up part of the complex jigsaw of the northern Pacific coast.

Source : Live Science via Yahoo News.

Un essaim sismique en Islande n’annonce pas toujours une éruption! // A seismic swarm in Iceland does not always herald an eruption!

Un essaim sismique en Islande n’est pas toujours le signe d’une éruption imminente ! La sismicité peut également avoir une origine tectonique car l’île se situe à la frontière entre les plaques nord-américaine et eurasienne.
Cependant, il semble que l’événement de magnitude M 3.7 enregistré dans la région de Húsafell, dans l’ouest de l’Islande, à 00h05 le 1er février 2022 n’appartienne à aucune des deux catégories.
La source du séisme a été localisée à 18,5 km au sud-ouest de Húsafell, à une profondeur de 3 km. Plus d’une douzaine de répliques ont suivi, avec un événement atteignant M 3.0.
Un essaim sismique est observé dans la région depuis le début de 2022 et les événements les plus significatifs avaient des magnitudes de M 3,3 et M 3,1. Le dernier séisme de M3.7 a été ressenti à Borgarfjörður, ainsi que dans la région de la capitale et à Akranes.
Le Met Office islandais explique qu’il s’agit du plus puissant séisme à avoir frappé cette région depuis des décennies et du plus grand essaim sismique dans la région depuis que le Met Office a commencé ses observations dans les années 1990. L’activité sismique est principalement concentrée à l’ouest d’Ok, le glacier qui a perdu sa classification en tant que tel en 2019. Le nombre de séisme dans cette zone a environ doublé chaque semaine depuis la fin décembre, pour atteindre 171 événements entre le 17 et le 23 janvier.
Les géologues islandais confirment que la zone n’est pas une zone d’activité volcanique et « il n’y a aucune raison de croire que l’activité sismique est liée à des mouvements de magma ». Ils pensent qu’il s’agit probablement « d’un de ces essaims sismiques intraplaques qui se produisent de temps en temps. Ils se produisent à l’intérieur d’une plaque tectonique, pas à la limite de plaques, ni dans la zone volcanique de la péninsule de Snæfellsnes. Donc, ceux qui voient des éruptions partout en Islande doivent se calmer !
Source : Iceland Monitor.

———————————————-

An earthquake qwarm in Iceland is not always the sign of an impending eruption! Seismicity can also have a tectonic origin as the island lies at the border between the North American and Eurasian plates.

However, it looks as if the M 3.7 event that was recorded in the Húsafell area, West Iceland, five minutes past midnight on February 1st did not belong to any of the two categories.

The source of the quake was 18.5 km southwest of Húsafell, at a depth of 3 km. More than a dozen aftershocks followed, with one event reaching M 3.0.

A seismic swarm has been observed in the area since the beginning of 2022 and the most significant events measured 3.3 and 3.1. The latest M3.7 quake was felt in Borgarfjörður, as well as in the capital area and in Akranes.

The Icelandic Met Office says it is the largest earthquake to hit this area in decades and the largest seismic swarm in the area since the Met Office started monitoring in the 1990s. Seismic activity was mainly concentrated west of Ok, the former glacier which lost its classification as such in 2019. The earthquake rate in this area has approximately doubled every week since late December, with 171 events between January 17th and 23rd.

Icelandic geologists confirm that the area is not one of volcanic activity and « there is no reason to believe that this is connected to magma movements.” They think it is likely « one of those occasional intraplate earthquake swarms. This is occurring inside a tectonic plate, not at a tectonic plate boundary, nor is it in the volcanic zone of the Snæfellsnes peninsula. So, those who see eruptions everywhere in Iceland should calm down!

Source: Iceland Monitor.

Source: IMO

 

Le dernier séisme en Islande probablement d’origine tectonique // Last earthquake in Iceland likely tectonic

Un séisme de M 5,6 a été enregistré à 13h43 le 20 octobre 2020 à Núpshlíðarháls, à environ 5 km à l’ouest de la zone géothermale de Seltún sur la Péninsule de Reykjanes. La secousse a été largement ressenti dans une grande partie du pays, en particulier dans le sud de la Péninsule de Reykjanes et dans la région de Reykjavik, à environ 25 km de l’épicentre. Plus de 250 répliques ont été détectées, les plus importantes entre 15h27 et 15h32.
Selon le Met Office islandais (IMO) certaines personnes ont remarqué une plus forte odeur de gaz près du lac Grænavatn. A noter que ce phénomène est parfois signalé dans les zones où se produisent de puissants séismes. Si c’est le cas l’IMO pense qu’il pourrait s’agir de mouvements de magma dans la croûte, mais cet information doit être vérifiée avant d’être confirmée. Pour l’instant, il n’y a aucun signe d’activité volcanique dans la région. Il n’y a eu aucun changement dans le comportement du tremor harmonique sur les stations de mesure à proximité.
Le dernier séisme est le plus significatif dans la Péninsule de Reykjanes depuis 2003.
Une grande partie de l’activité sismique est observée dans la Péninsule en 2020. Des secousses de M 5,0 ont été enregistrés en juillet de cette année à proximité de Fagradalsfjall, juste à l’ouest de l’épicentre du dernier événement.
L’origine de l’activité actuelle est difficile à déterminer car l’activité sismique et l’activité volcanique a déjà animé cette partie du pays.
Source: OMI.

———————————————–

An M 5.6 earthquake was recorded at 13:43 on October 20th, 2020in Núpshlíðarháls, about 5 km west of the geothermal area in Seltún on the Reykjanes peninsula. The earthquake was felt widely around the country, especially the southern part of the Reykjanes Peninsula and in the capital area, which is some 25 km from the epicentre. More than 250 aftershocks have been detected, the largest ones between 15:27 and 15:32.

It was reported by the Icelandic Met Office (IMO) that people had been noticing more gas smell close to Grænavatn. This phenomenon is sometimes reported in areas where large earthquakes are reported. IMO says this would suggest that magma might be on the move in the crust, but the news needs to be checked before being confirmed. For the time being, there are no signs of volcanic unrest in the area. There has not been any change in harmonic tremor on nearby measuring stations.

The last earthquake is the largest event measured in the Reykjanes Peninsula since 2003.

A great deal of earthquake activity has been ongoing in the peninsula in 2020. M 5.0 earthquakes were recorded in July this year, by Fagradalsfjall, just west of where the epicentre of the last event.

The origin of this activity is difficult to determine as both seismic and volcanic activity has already caused unrest in that part of the country.

 Source : IMO.

L’activité sismique sur la Péninsule de Reykjanes, avec l’événement du 20 octobre 2020 et ses nombreuses répliques (Source : IMO)