Islande : beaucoup de questions // Iceland : so many questions

Après les trois dernières éruptions qui viennent de se dérouler sur la péninsule de Reykjanes, les Islandais se posent la même question  : que va-t-il se passer maintenant ? Les trois éruptions ont été courtes mais proches les unes des autres. Celle du 8 février était la sixième sur la péninsule depuis 2021. Les scientifiques islandais pensent que ces éruptions appartiennent à un nouveau cycle éruptif qui pourrait durer des années, des décennies, voire des siècles.

 

Vue de l’éruption du 8 février 2024 (image webcam)

Les éruptions volcaniques en Islande sont dues à la position de l’île au-dessus d’un point chaud où des panaches de matière à haute température en provenance des profondeurs de la Terre s’élèvent vers la surface. Le pays se situe également à la frontière entre les plaques tectoniques eurasienne et nord-américaine. Ces plaques s’écartent très lentement l’une de l’autre en créant un espace qui permet au magma de remonter à la surface où il donne naissance à des coulées de lave.

Source: Wikipedia

La péninsule de Reykjanes a été volcaniquement active pour la dernière fois il y a plusieurs siècles. L’activité a peut-être commencé dès le 8ème ou 9ème siècle et s’est poursuivie jusqu’en 1240. Il y a ensuite eu une pause de 800 ans. Les volcanologues ont tenté de l’expliquer en observant les roches de la région. Elles montrent un schéma de périodes de calme d’environ 1 000 ans, suivies d’éruptions qui se poursuivent pendant quelques siècles. La situation évolue donc en suivant un tel schéma actuellement, et il pourrait y avoir une série d’éruptions relativement brèves et d’intensité modérée au cours des années et décennies à venir.
Il serait important de pouvoir prévoir ces éruptions car la ville de Grindavik et la centrale géothermique de Svartsengi se trouvent dans la zone de danger. Avec la répétition des éruptions, les scientifiques comprennent mieux ce qui se passe. Ils ont analysé la façon dont le sol se soulève sous la pression du magma. En conséquence, ils peuvent déterminer avec plus de certitude qu’auparavant le moment où le magma percera la surface, mais il est beaucoup plus difficile de prévoir exactement le lieu où se produira une éruption.

La centrale de Svartsengi sous la menace de la lave? (photo: C. Grandpey)

Comme le sol est fracturé de la péninsule de Reykjanes, le magma circule plus facilement et sur une zone plus vaste que sur des volcans conventionnels comme l’ Etna en Sicile. Les éruptions se produisent le long de fissures pouvant atteindre des kilomètres de long. Celle qui s’est ouverte le 8 février mesurait trois kilomètres.

 

Fissure éruptive du 8 janvier 2024 (image webcam)

Comme elles ne savent pas où aura lieu une éruption, les autorités islandaises ont construit des digues de terre autour de Grindavik et de la centrale électrique de Svartsengi. Ces remparts ont assez bien fonctionné lors de l’éruption du 14 janvier, même si une fracture s’est ouverte au-delà des digues et la lave a détruit trois maisons à Grindavik.

 

L’éruption du 14 janvier : digue de terre et fissure éruptive aux abors de Grindavik (image webcam)

Le sud-ouest est la région avec la plus forte concentration de population en Islande. 70 % de la population vit sur un rayon de 40 km. C’est là que se trouvent toutes les infrastructures clés : l’aéroport international, les grandes centrales géothermiques et de nombreuses infrastructures touristiques ; elles représentent une grande partie de l’économie islandaise. Les scientifiques préviennent que Reykjavik, la capitale, pourrait être impactée par l’activité volcanique. La situation deviendrait réellement préoccupante si les éruptions se déplaçaient plus à l’est le long de la péninsule. Il ne faudrait pas oublier que des coulées de lave datant du dernier cycle éruptif il y a 1 000 ans ont été recensées là même où se trouve Reykjavik. La lave pourrait faire sa réapparition lors de futures éruptions.

Photo: C. Grandpey

Afin d’essayer de prévoir ce qui pourrait arriver dans les prochaines années, les scientifiques étudient les différents systèmes volcaniques sur la péninsule de Reykjanes. Ils ont remarqué qu’au cours du dernier cycle, les premières éruptions ont débuté dans les systèmes situés à l’est et ont migré vers l’ouest. Plus récemment, les premières éruptions de 2021 se sont produites dans un système volcanique situé plutôt au milieu de la péninsule. Ce système semble maintenant complètement à l’arrêt car il ne semble plus y avoir de magma pour l’alimenter. « Semble » est le mot important car personne ne sait si cette situation est temporaire ou permanente.

Image webcam de l’éruption de 2021

Les éruptions les plus récentes, qui ont débuté en décembre 2023, se situent désormais dans un système un peu plus à l’ouest que le précédent. Grâce aux instruments, les scientifiques peuvent avoir une idée de la quantité de magma accumulé sous terre et ils peuvent savoir si ce magma est susceptible de s’éloigner de Grindavik et de la centrale électrique en direction d’un système volcanique voisin. Par exemple, s’ils constatent que l’alimentation magmatique diminue, cela peut signifier que l’activité commence à décliner et va cesser complètement, ce qui peut prendre quelques mois. La question sera alors de savoir s’il s’agit d’une accalmie temporaire ou de la fin définitive de cette phase d’activité. Actuellement, personne n’est en mesure de répondre à cette question.
Les scientifiques accumulent des connaissances à chaque éruption, mais il reste encore beaucoup d’incertitude en Islande au moment où un nouveau cycle volcanique est en train de commencer sur la péninsule de Reykjanes.
Inspiré d’un article publié par la BBC.

———————————————————-

After the last three eruptions on the Reykjanes Penisnula, Icelanders are asking the question : what will happen next ? The three eruptions were short ones but occurred close to one another. The 8 February eruption was also the sixth on the peninsula since 2021. Icelandic scientists think they belong to a new eruptive cycle that could last years, decades or even centuries.

Volcanic eruptions in Iceland are dur to the position of the island above a geological hotspot, where plumes of hot material deep within the Earth rise towards the surface. The country also sits on the boundary between the Eurasian and North America tectonic plates. These plates are very slowly pulling apart from each other, creating a space for magma eo rise to the surface where it gives birth to lava flows. .

The last time the Reykjanes peninsula was volcanically active was hundreds of years ago. Activity may have started as early as the 8th or 9th century and continued until 1240. Then, there was an 800-year gap. Volcanologists have tried to explain it by looking at the rocks in the region which show a pattern of periods of quiet lasting around 1,000 years, followed by eruptions that continue for a few centuries. So, the situation is proceeding as expected at the moment, and there might be a series of these relatively small, relatively short-lived eruptions over the coming years and decades.

Trying to predict when the eruptions will happen is a key concern for Iceland right now, especially as the town of Grindavik and the Svartsengi geothermal power plant are in the danger zone.

With the repetition of eruptions, scientists have a better idea of what is happening. They have been tracking how the ground is inflating with magma pressure. As a result, they can tell with more certainty than before when magma will break the surface. However, predicting exactly where an eruption will happen is much harder.

In the Reykjanes Peninsula, magma is held more loosely under a larger area than on conventional volcanoes like Mount Etna in Sicily, and it erupts through cracks fissures that can be kilometers long. The fissure that opened on February 8th was three kilometers long.

As they don’t know where an eruption will occur, Icelandic authorities are building earth barriers around Grindavik and the Svartsengi power plant. They worked fairly well during the 14 January eruption, although a fissure opened up ibeyond the barriers and lava destroyed three houses in Grindavik. –

The south-west is the most densely populated part of Iceland. 70% of the population lives within 40 km or so. This also includes all of the key infrastructure : the main international airport, big geothermal power plants, and a lot of tourist infrastructure too, which is a big part of Iceland’s economy. Reykjavik, the capital, might be impacted by volcanic activity. The situation would really become hazardous if the eruptions moved further east along the peninsula. One should not forget that there are lava flows from 1,000 years ago from the last eruptive cycle in what is now Reykjavik. Scientists say it is not unfeasible that the lava could flow there in future eruptions.

In order to try and predict what might happen in the future, scientists are looking at the different volcanic systems that sit across the Reykjanes Peninsula. They have noticed that in the last cycle, the first eruptions started in the systems to the east and migrated to the west.

More recently, the first eruptions of 2021 happened in a system that sits more in the middle of the peninsula. That system now seems to have completely switched off as it does not seem magma is gargering beneath it. Is this temporary or permanent ? No one knows.

The most recent eruptions, which began in December 2023, are now in a neighbouring system a little further west. Scientists can get an idea of how much magma is held underground and whether it is likely to shift away from Grindavik and the power station to another neighbouring volcanic system. For instance, if they see the rate of magma inflow declining, then that may be an indication that it is starting to switch off and completely die down, which may take a few months.The question would then be to know if it is just a temporary lull or the actual end of this phase of activity, and nobody is able to gave an answer to this question.

Scientists are learning more with every eruption, but there is still a great deal of uncertainty for Iceland as a new volcanic era begins.

Adapted from an article released by the BBC.

Kilauea (Hawaii): les empreintes de l’éruption de 1790 // The footprints of the 1790 eruption

La dernière rubrique « Volcano Watch » publiée par l’Observatoire des Volcans d’Hawaii est consacrée à un événement qui s’est produit sur le Kilauea en 1790. Selon le HVO, il « a probablement tué à lui seul plus de personnes que toute autre éruption dans ce qui est maintenant les États-Unis. » Plusieurs centaines d’hommes, de femmes et d’enfants ont péri lors d’explosions au sommet du Kilauea.
La tragédie s’est apparemment produite le long d’un sentier traversant le flanc nord-ouest du Kilauea près de Namakanipaio, au moment où une déferlante de vapeur très chaude et de roches a balayé le sol à grande vitesse. Des cendres volcaniques humides sont tombées juste avant la déferlante mortelle et plusieurs centaines de personnes ont laissé des empreintes de pas dans cette cendre.

Il n’existe aucune relation contemporaine de cet événement. De brefs écrits rédigés dans les années 1820 ont été suivis en 1843 par une description beaucoup plus longue basée sur des souvenirs d’anciens collectés par des étudiants de l’école Lahainaluna. Ces récits ont, depuis cette date, été l’objet de nombreuses questions et ont été sujets à de multiples interprétations.
Une étude de terrain a été réalisée il y a plusieurs années et les résultats ont été publiés en 2015. Cette étude a identifié la plupart des dépôts laissés par l’éruption de 1790 et interprété les différents types d’explosions responsables des dépôts. Des incertitudes subsistent, mais l’étude dans son ensemble concorde assez bien avec les premiers récits et répond à certaines des questions les plus importantes.
Trois explosions ont eu lieu à quelques heures, voire quelques minutes d’intervalle, et il semble qu’elles aient été précédées de plusieurs jours d’explosions plus petites.

La première des trois explosions majeures a projeté des cendres humides qui ont été transportées vers le sud-ouest par les alizés. Ces cendres contiennent aujourd’hui les empreintes de pas, principalement de femmes et d’enfants, qui se trouvaient dans la zone au sud-ouest du sommet. Environ la moitié des empreintes de pas sont orientées vers le sommet. Les cendres étaient encore humides lorsque les deux explosions suivantes se sont produites.

L’explosion suivante fut la plus importante. Elle a émis une colonne de cendres qui s’est élevée à 12 – 15 km au-dessus du volcan. Les cendres ont atteint le jet-stream qui les a entraînées vers le sud-est au moins jusqu’à Kaimu, à plus de 30 km de distance. Autour du sommet, les matériaux émis par l’éruption se présentent sous forme de sable et de gravier et sont beaucoup plus grossiers que les cendres.

La troisième explosion a déclenché la déferlante mortelle qui a balayé le flanc ouest de la zone sommitale. Cette explosion était peut-être une phase tardive de l’explosion précédente car la colonne éruptive très dense s’est effondrée sous son propre poids. Tout de suite après avoir touché le sol, les débris à haute température ont dévalé la pente et piégé les gens sur le sentier. La mort a probablement été rapide, mais certaines victimes ont eu le temps de s’accrocher les unes aux autres pour éviter d’être emportées par la déferlante.

Pendant des années, les géologues ont supposé que la vaporisation des eaux souterraines avait déclenché les explosions, mais cette interprétation manque de preuves irréfutables. La nature humide de la cendre émise par la première explosion confirme cette idée. Une autre possibilité est que les gaz issus du magma aient été brièvement piégés sous terre, mis sous pression avant d’exploser. Un tel processus a provoqué une explosion mineure dans l’Halema’uma’u en 2008. Là encore, les preuves manquent pour confirmer cette hypothèse.

Les dépôts laissés par les explosions se composent principalement de roches solides arrachées à la paroi du conduit éruptif. Aucune pierre ponce ou cendre vitreuse bien vacuolée n’a été trouvée. Le verre relativement dense forme quelques petits morceaux et adhère à certains gros blocs. Un verre aussi dense indique la présence de magma, mais ce dernier avait probablement déjà perdu une partie de son gaz avant l’éruption.
De nombreux géologues pensent qu’une partie de la caldeira s’est effondrée en 1790, mais les travaux sur le terrain n’ont révélé aucune véritable preuve de l’effondrement. C’est une interprétation plausible, mais qui demande à être démontrée.

Certains géologues pensent qu’une coulée de lave dans la partie basse du district de Puna a été émise en 1790, mais c’est une interprétation, pas une observation. Si la coulée a bien été émise en 1790, alors, par analogie avec l’éruption de 2018, on pourrait émettre l’hypothèse qu’elle provient de la vidange du réservoir magmatique sommital, ce qui aurait provoqué l’effondrement du sommet et déclenché des éruptions explosives.
Les hypothèses mentionnées ci-dessus montrent qu’il reste beaucoup à faire pour comprendre l’éruption la plus meurtrière du Kilauea. La principale leçon de l’événement de 1790 est que de puissantes explosions peuvent se produire à nouveau sur le volcan.
Source : USGS/HVO. .

—————————————–

The latest « Volcano Watch » released by the Hawaiian Volcano Observatory (HVO) is dedicated to an event that occured on Kilauea in 1790. It « probably killed more people than any other eruption in what is now the United States. »Several hundred men, women, and children perished during explosions at the summit of the volcano.

The deaths apparently occurred along a trail crossing the northwest flank of Kilauea near Namakanipaio, when a surge of hot steam and rocks swept across the ground at high speed. Wet volcanic ash fell just before the lethal surge, and several hundred people left footprints in the ash.

No contemporary accounts exist. Brief summaries written in the 1820s were supplanted in 1843 by a much longer description based on memories of old-timers that were assembled by students at Lahainaluna School. These accounts have posed many volcanic questions subject to multiple interpretations ever since.

A field study to understand better the tragic events was made several years ago, and the results were published in 2015. This study identified most of the deposits left by the 1790 eruption and interpreted the kinds of explosions responsible for the deposits. Uncertainties remain, but the general picture mostly agrees with the sketchy early accounts and answers some of the important questions.

Three main explosions took place within hours, perhaps minutes, of each other, though they were apparently preceded by several days of smaller explosions. The first main explosion ejected wet ash that was transported southwestward by the trade wind. This ash deposit now contains the footprints of mainly women and children who were mostly in the area southwest of the summit. About half of the footprints point back toward the summit. The ash remained wet when the following two explosions occurred.

The next explosion was the largest. Its column of ash rose 12–15 km above the volcano. The ash rose high into the jet stream and spread southeastward at least to Kaimu, more than 30 km away. Around the summit, the erupted material is of sand and gravel size, much coarser than the ash.

The third explosion produced the lethal surge that sped across the summit’s western flank. This explosion may actually be a late stage of the preceding explosion, as the towering eruption column collapsed under its own weight. The falling hot debris hit the ground and surged downslope, trapping people on the trail. Death was probably quick, but not before some victims grabbed onto one another to keep from being blown away by the hurricane-force surge.

For years geologists assumed that groundwater heated to steam triggered the explosions, but this interpretation lacks definitive evidence. The wet nature of the first explosive ash supports this idea. Another possibility is that gas leaving magma was trapped underground briefly, pressurizing and finally bursting out. Such a process drove a small explosion in Halemaʻumaʻu in 2008. But again, definitive evidence is missing.

The explosive deposits consist mostly of solid rocks broken from the wall of the eruptive conduit. No pumice or bubble-rich glassy ash has been found. Relatively dense glass forms a few small chunks and sticks to the sides of some large blocks. Such dense glass indicates the presence of magma, but it was not bubbling and so may have already lost some of its gas before eruption.

Many geologists assume that part of the caldera collapsed in 1790, but field work has found no clear evidence for collapse. It is a reasonable interpretation, but it cannot be demonstrated yet.

Some geologists assign an age of 1790 to a lava flow in lower Puna, but that is an interpretation, not an observation. If the flow were indeed erupted in 1790, then, by analogy with the 2018 eruption, one could hypothesize that its eruption drained the summit magma reservoir, causing the summit to collapse and triggering explosive eruptions.

The above mentioned hypotheses show that there is a long way to go to understand completely Kilauea’s most lethal eruption. The main lesson is that large explosions can happen again on the volcano.

Source : USGS / HVO.

Empreintes laissées dans la cendre lors de l’éruption de 1790 (Crédit photo : D. Swanson / USGS)

White Island (Nouvelle Zélande): Et maintenant? // What next ?

Si les conditions météo le permettent, les plongeurs tenteront une nouvelle fois de rechercher les deux personnes disparues qui sont probablement quelque part dans l’océan au large de White Island.
Il convient de noter que le niveau d’alerte volcanique de White Island est actuellement à 2, sur une échelle de 5. Il s’agit du même niveau que le jour de l’éruption. Un visiteur de mon blog m’a demandé si une autre éruption similaire pourrait avoir lieu. Bien sûr, je ne sais pas. Les observations de différents volcans où des éruptions phréatiques se sont produites ont tendance à montrer que de nouvelles éruptions aussi violentes ne se produisent pas dans le court terme. Un peu comme des répliques des séismes, si d’autres événements interviennent, leur intensité est inférieure à la première explosion. Le plus grand risque réside dans les nuages ​​de gaz toxiques que le volcan continue d’émettre après l’éruption. C’est la raison pour laquelle les sauveteurs qui ont opéré sur White Island sont soumis à une décontamination une fois leur travail terminé.

Comme je l’ai indiqué précédemment, maintenant que l’émotion de la catastrophe s’estompe, une triple question se pose: 1) Des touristes auraient-ils dû être autorisés à pénétrer sur l’un des volcans les plus actifs de Nouvelle-Zélande ? 2) Les touristes doivent-ils être autorisés à pénétrer de nouveau sur ce volcan? 3) Y a-t-il eu une omission dans la gestion de l’événement qui a fait obstacle à la sécurité des victimes?
L’enquête décidera si des accusations doivent être portées contre des personnes qui auraient enfreint la loi néo-zélandaise sur la santé et la sécurité au travail (voir ma note du 14 décembre). De la même façon, les voyagistes qui ont conduit les touristes sur ce volcan actif lors de son éruption, mais aussi les compagnies de croisière et les propriétaires du site pourraient également faire l’objet d’une enquête. En effet, beaucoup de touristes étaient des passagers du paquebot Ovation of the Seas et l’île appartient à une famille d’Auckland qui vend des autorisations d’accès au volcan à quatre agences de voyages.

Cinq millions de dollars néo-zélandais ont été provisionnés pour venir en aide aux commerces de la région de Whakatane, ainsi que celles de la côte ouest de l’Ile du Sud qui ont été affectées par des inondations il y a quelques jours. Whakatane se trouve dans la région économiquement pauvre de la Bay of Plenty. La ville a longtemps été tributaire de l’activité touristique  à White Island pour survivre.

La Première Ministre néo-zélandaise a déclaré qu’il ne lui appartenait pas de dire si White Island serait rouverte au tourisme tant que l’enquête ne serait pas terminée. Cependant, on peut raisonnablement penser que les visiteurs n’entreront pas de si tôt dans le cratère, même si le tourisme de masse apporte des revenus considérables.  Comme je l’ai déjà écrit, l’enquête sera longue et rien ne pourra probablement être décidé tant qu’elle ne sera pas close.

Source: presse néo-zélandaise et britannique.

———————————————-

Weather permitting, divers will perform more attempts to look for the remaining two persons who are believed to be in the ocean off White Island.

It should be noted that White Island’s volcanic alert level is currently at 2, on a scale of 5. This is the same level of risk as the day it erupted. A visitor of my blog asked me if another similar eruption might take place. Of course, I do not know. Observations at different volcanoes where phreatic eruptions occurred tend to show that other powerful eruptions do not happen in the short term. A bit like aftershocks with earthquakes, if other events do take place, their intensity is lower than the first explosion. The greatest risk lies with the noxious gas clouds the volcano keeps emitting after the eruption. This is the reason why the rescuers at White Island undergo a decontaminating operation once their job is over.

As I put is before, now that the emotion of the disaster is fading, a triple question is being asked :  1) Should tourists have been allowed on one of New Zealand’s most active volcanoes. 2) Should tourists be allowed again on the volcano?  3) Did anyone fail to do anything that could have kept the victims safe?

The inquiry will decide whether charges should be brought against any individuals who are found to have violated New Zealand’s workplace health and safety laws (see my post of December 14th). As well as the tour operators who took the visitors to the active volcano when it erupted, cruise ship companies and landowners could also come under scrutiny. Indeed, many of the tourists were passengers on the cruise ship Ovation of the Seas. The island is owned privately by a family from Auckland, who sold leases to four tourism operators.

Five million NZ dollars have been set aside to help support small businesses in the Whakatane area, as well as those on the West Coast of the South Island who were cut off by flooding a few days ago. Whakatane lies in a poor region of the Bay of Plenty from an economic point of view. It has long been reliant on the tourist draw of White Island as an anchor for its economic survival.

The NZ prime minister said it was not for her to say whether White Island would be reopened for tour groups in the year that the inquiry would take to complete. However, it is likely that tourists will not enter soon the White Island crater, despite the revenues brought by mass tourism. As I put it before, the investigation will be long and nothing can be decide as long as it is not over.

Source: New Zealand and British press.

Source: Helicopter Rescue Trust