Eruption islandaise : Et maintenant ? (suite) // Icelandic eruption: what next ? (continued)

Dans une note publiée le 23 mars 2021 et intitulée «Et maintenant?», je faisais référence à un article publié sur le site web Reykjavik Grapevine qui posait les questions habituelles auxquelles personne ne peut répondre quand se produit une éruption : combien de temps cette éruption va-t-elle durer? Quelle forme pourrait-elle prendre? L’écrivais que de telles prévisions étaient extrêmement hasardeuses.

Pourtant, il est une question beaucoup plus pratique que l’on est en droit de se poser alors que  l’éruption se poursuit dans la Geldingadalur : peut-elle devenir une menace pour les zones habitées?

S’agissant de l’éruption proprement dite, il est possible que les deux spatter cones (voir capture d’écran ci-dessous) qui laissent échapper la lave fusionnent pour n’en former qu’un seul si l’activité intense persiste dans l’un d’eux. En ce moment, le débit d‘émission de la lave est d’environ 5 mètres cubes par seconde. À ce rythme, les volcanologues islandais pensent que la lave pourrait commencer à sortir de la Geldingadalur d’ici 8 à 18 jours. Cependant, si le débit augmente, ce temps pourrait être raccourci.

Si la lave commence à sortir de la Geldingadalur, elle se dirigera probablement vers la vallée voisine de Meradalir, puis vers Nátthagi au sud. Si elle s’échappe de Nátthagi, elle continuera probablement sa course vers le sud, et il se pourrait même qu’elle atteigne la route côtière, sans toutefois menacer des zones habitées.

Ces projections dépendent, bien sûr, du débit à la source, mais aussi de la durée de l’éruption. Pour le moment, il n’y a aucun signe que la lave ralentisse. Je garde à l’esprit qu’au début de l’éruption, les scientifiques islandais pensaient qu’elle ne durerait que quelques jours. Cependant, de nouvelles données les ont fait changer d’avis !! Errare humanum est ! Ces mêmes scientifiques pensent maintenant que le magma provient d’une profondeur de 15 à 20 kilomètres. Comme il n’y a pas eu d’éruption sur la péninsule de Reykjanes depuis des lustres, ils pensent qu’une grande quantité de magma est peut-être stockée sous la surface. Si c’est le cas, l’éruption pourrait durer un temps considérable. Mais personne ne le sait!

Source: Reykjavik Grapevine.

————————————————

In a post released on March 23rd 2021 and entitled “What next?”, I referred to an article published on the Reykjavik Grapevine website that asked the usual questions that nobody is able to answer: how long will this eruption go on? What shape could it take? I wrote that making predictions about the future of the current eruption is quite hazardous.

A more practical question is being asked now the eruption is going on: Can it become a threat to populated areas?

As far as the eruption is concerned, the possibility exists that the two spatter cones (see screenshot below) through which lava is flowing could merge into one due to increased activity in one of the craters. The current lava output is about 5 cubic metres per second. At this rate, Icelandic volcanologists think lava could begin making its way out of the valley in anywhere from eight to 18 days. However, should the output increase, this time could be reduced.

If lava starts travelling out of Geldingadalur, it will probably begin flowing into the neighbouring valley of Meradalir, and from there, to Nátthagi to the south.

If it begins to flow from Nátthagi, it will likely make its way south, where it might even reach the south coastal highway of Reykjanes but would not reach populated areas.

These projections obviously depend on the lava output, but also on how long the eruption will last. For the time being, there is no sign lava is slowing. I keep in mind that at the start of the eruption scientists believed that it would only last a few days. However,  new data has made them change their minds!! Scientists now believe that the magma comes from a depth of 15-20 kilometres. AS there has been no eruption on the Reykjanes Peninsula for a very long time, there could be a great deal of magma in store beneath the surface, and this eruption might last a considerable amount of time. But nobody knows!

Source : Reykjavik Grapevine.

L’aide des satellites dans la prévision éruptive // The help of satellites in eruptive prediction

Lorsque le Mont Ontake au Japon est entré en éruption sans prévenir en 2014 et a tué plus de 60 personnes, les volcanologues japonais ont réalisé que la surveillance du volcan était loin d’être parfaite.

Un article publié sur le site Internet «Wired» explique que des techniques modernes de surveillance volcanique sont apparues ces dernières années. Par exemple, les satellites sont susceptibles de participer à la prévision éruptive. La chaleur est un important paramètre à prendre en compte. Au lieu de mesurer la température en des endroits précis avec des thermomètres, les satellites permettent une approche thermique plus globale. C’est la raison pour laquelle une équipe scientifique du Jet Propulsion Laboratory (JPL) de Pasadena (Californie) s’est tournée vers les données de rayonnement thermique fournies par les satellites Terra et Aqua de la NASA. En survolant les zones potentiellement actives deux fois par jour, ces deux satellites fournissent des mesures précises intégrées sur des pixels de 1 kilomètre au carré.

Cinq volcans ont connu des éruptions importantes depuis 2002: Ontake au Japon, Ruapehu en Nouvelle-Zélande, Calbuco au Chili, Redoubt en Alaska et Fogo au Cap-Vert. Des hausses de température avaient été observées au cours des deux à quatre ans précédant chaque éruption, y compris l’éruption surprise de l’Ontake en 2014. La température n’avait augmenté que de 1 degré Celsius ou moins avant chaque événement, mais il s’agissait de tendances statistiquement significatives et pas seulement de bruit de fond.

Selon les chercheurs, la hausse de température observée par les satellites peut s’expliquer par la combinaison de deux processus. D’une part, le magma pendant son ascension vers la surface peut stimuler la circulation hydrothermale, ce qui génère une migration de la chaleur vers la surface. D’autre part, cet apport d’humidité peut émettre un rayonnement thermique facilement capté par les satellites. Ces variations subtiles sont facilement détectables dans les données satellitaires.

Source: Wired.

S’agissant des satellites, il faut ajouter que les paramètres InSAR sont d’une grande aide pour mesurer la déformation de surface, comme on l’a vu récemment sur la Péninsule de Reykjanes en Islande.

Cependant, ne considérer que la chaleur de surface d’un volcan comme le fait l’article ci-dessus n’est pas suffisant pour tenter de prévoir une éruption. Le regretté Maurice Krafft comparait un volcan sur le point d’entrer en éruption avec une personne malade ou blessée: la fièvre monte; la personne a des frissons, une mauvaise haleine et la zone autour de la blessure enfle. C’est la même chose pour un volcan. Il est très utile de mesurer la température, mais la sismicité, les émissions de gaz et l’inflation doivent également être prises en compte. Le seul paramètre thermique n’est pas suffisant.

———————————————-

When Japan’s Mount Ontake erupted in 2014 without warning, killing more than 60 people, Japanese volcanologists realised that the monitoring of the volcano was far from perfect.

An article published on the website “Wired” explains that modern techniques for volcano surveillance have appared these last years. For instance, satellites could provide an entirely new way to warn of eruptions.

Heat is a relevant parameter for volcanic activity. Instead of measuring it at individual spots with thermometers, satellites allow to get a more global thermal view. This is the reason why a scientificteam at the Jet Propulsion Laboratory (JPL) in Pasadena (California) turned to thermal radiation data from NASA’s Terra and Aqua satellites. Combined, these two provide twice-daily passes with global coverage, and each measurement is integrated over a 1 kilometre by 1 kilometre pixel.

Five volcanoes have had significant eruptions since 2002 : Ontake in Japan, Ruapehu in New Zealand, Calbuco in Chile, Redoubt in Alaska, and Fogo in Cape Verde.

Increasing temperature trends were observed over the two- to four-year periods preceding each eruption—including Ontake’s surprise 2014 eruption. Temperatures only increased by 1 degree Celsius or less in the lead-up to each event, but these were statistically significant trends and not just noise. The peak temperatures in each record were associated with an eruption.

The researchers say this might represent a combination of two processes. First, magma progressing closer to the surface could stimulate hydrothermal circulation, carrying heat to warm the surface from below. Second, if this pushes more moisture into the soil layer, the ground could emit thermal radiation more efficiently and so appear “brighter” to the satellites. Either way, these subtle changes seem easily detectable in the satellite data.

Source : Wired.

As far as satellites are concerned, id should be addes that InSAR parameters are of a great help to measure surface deformation, as could recently be seen on the Reykjanes Peninsula in Iceland.

However, considering only the surface heat of a volcano is not a sufficient parameter to try and predict an eruption. The late Maurice Krafft compared a volcano about to erupt with an ill or injured person: the fever goes up; the person has shivers, bad breath and the area around the injury inflates. It is the same with a volcano. It is very useful to measure the temperature, but seismicity, gas emissions and inflation should also be taken into account. The sole heat parameter is far from sufficient.

Image InSaR fournie le 1er mars 2021 par le satellite Sentinel-1. L’image montrait alors une intensification des déformations dans la zone la plus active d’un point de vue sismique.

Péninsule de Reykjanes (Islande) : on patauge dans les prévisions !

La sismicité sur la Péninsule de Reykjanes affole les volcanologues islandais et les réseaux sociaux. Chacun y va de ses pronostics. Eruption ? Pas éruption ? Sur le terrain, ça vibre et sa secoue mais le magma joue les timides et il n’y a aucune lave à se mettre sous les yeux.

Si je consulte mes notes des derniers mois, je me rends compte que ces pronostics en tout genre ne sont pas chose nouvelle.

Il suffit de relire ma note du 30 janvier 2021 qui résumait la situation sur les Péninsule de Reykjanes en 2020. Les questions posées sur la possibilité d’une éruption étaient déjà nombreuses, sans qu’une réponse puisse leur être apportée.

En 2020, 22 000 secousses ont été enregistrées sur la Péninsule de Reykjanes. La plupart d’entre elles avaient des magnitudes inférieures à M 3,0. Il s’agit toutefois de la plus importante activité sismique depuis le début des mesures numériques en 1991.

L’activité sismique a commencé dans la ville de Grindavík le 26 janvier 2020. Elle a été suivie d’une inflation de la surface, d’abord de quelques centimètres, puis davantage. Les géologues islandais pensent que le phénomène était dû à l’accumulation de magma sous la surface. Cependant, curieusement, il n’y a pas eu d’émissions de gaz détectables pour confirmer cette hypothèse. Au moment du pic de sismicité, les scientifiques ont rappelé que la région est très complexe, avec la cohabitation d’une activité volcanique et tectonique potentielle.

Au début, l’activité sismique en 2020 est restée en grande partie concentrée dans une zone allant de la pointe sud-ouest de Reykjanes au lac Kleifarvatn à l’est. Cependant, au cours des mois suivants, la source des événements sismiques s’est déplacée vers l’est, en direction de Krýsuvík.

Le 20 octobre 2020, l’épicentre d’un séisme de M 5,6 a été localisé à proximité du lac Djúpavatn. La limite entre les plaques tectoniques sur la Dorsale de Reykjanes s’étire d’ouest en est à travers la Péninsule de Reykjanes. C’est là que la plaque tectonique nord-américaine fait face à la plaque eurasienne, parfaitement visible au niveau du «Pont entre les Continents» près de Sandvík, un endroit très prisé des touristes.

En moyenne, les plaques tectoniques sur la Dorsale de Reykjanes s’écartent l’une de l’autre d’environ un centimètre par an, mais au cours des derniers semestres, l’accrétion dans certains secteurs de Reykjanes a atteint 16 cm.

Il semble que la pression s’accumule sous terre entre le lac Kleifarvatn et les montagnes de Bláfjöll, et cette pression s’évacue par l’intermédiaire d’un ou plusieurs puissants séismes. Deux d’entre eux se sont produits en 1929 et 1968, avec respectivement des magnitudes de M 6,3 et M 6,0. Leurs épicentres étaient situés près des montagnes de Brennisteinsfjöll, à l’est du lac Kleifarvatn.

Même si la sismicité a diminué dans la Péninsule de Reykjanes, la région est constamment sous surveillance. Une phase d’ « incertitude » (le niveau d’alerte le plus bas) restera en place tant que l’activité sismique restera au-dessus de la normale.

+++++

Les dernières notes du mois de mars 2021 confirment les incertitudes de 2020. Il suffit de parcourir les dernières informations diffusées par l’IMO.

Le 5 mars 2021, les volcanologues islandais indiquent que la probabilité d’une éruption dans les prochaines heures est en train de s’éloigner. Le Met Office islandais a imaginé cinq scénarios possibles (voir la note sur mon blog), dont l’un était une éruption qui ne menacerait pas les zones habitées ou le trafic aérien.

Après avoir analysé les dernières données, les volcanologues islandais estiment que rien n’indique qu’une éruption se produira dans les prochaines heures. Les images satellite InSAR sur la période du 25 février au 3 mars montrent la formation d’un dyke dans la zone située entre Fagradalsfjall et Keilir, mais le magma ne semble pas se déplacer.

Un nouveau modèle de prévision des coulées de lave, élaboré par des scientifiques de l’Université d’Islande, propose quatre sites éruptifs potentiels sur la péninsule, Leur prévision ne se limite plus à la zone située entre les montagnes Keilir et Fagradalsfjall car l’activité sismique n’est plus concentrée uniquement dans cette zone.

11 mars 2021 Les scientifiques surveillent de près le dyke dont l’extrémité sud, près de Fagradalsfjall, se trouve à une profondeur de seulement un kilomètre. Páll Einarsson explique que si le magma présente une pression et des conditions suffisantes pour atteindre la surface, il peut parcourir le kilomètre restant en peu de temps. Il fait remarquer qu’avant l’éruption dans l’Holuhraun en 2014, le dyke magmatique a continué de se déplacer pendant deux semaines avant que la lave perce la surface.

Cela fait beaucoup plus de deux semaines que l’on parle d’intrusion magmatique et de la présence possible d’un dyke qui se déplacerait sous la Péninsule de Reykjanes. Heureusement, aucune population n’est vraiment sous la menace d’une éruption. Imaginons un scénario identique dans une région fortement peuplée. Aurait-il fallu appliquer le principe de précaution et procéder à une évacuation des habitants ? A mes yeux, c’est la véritable finalité de la prévision éruptive.

°°°°°°°°°°

En attendant, ça cogne toujours aussi fort sur la péninsule. Ce dimanche 14 mars 2021, on a enregistré à 14h15 une nouvelle secousse de M 5,4 au SO de Fagradalsfjall, avec un hypocentre à 3,1 km de profondeur. Elle a été suivie de plusieurs autres événements d’une magnitude supérieure à M 3.0.

Source : IMO

Péninsule de Reykjanes (Islande) : la sismicité reste intense // Seismicity is still intense

La sismicité est incroyablement intense ces jours-ci sur la Péninsule islandaise de Reykjanes. De nombreux événements sont au-dessus de M 3.0. Le 10 mars 2021, à 3h14, un séisme a atteint M 5.1. Son épicentre était situé à 2,4 km au SSO de Fagradalsfjall à une profondeur de 5,8 km.

Il semble bien qu’un dyke magmatique soit en train de se frayer un chemin sous la péninsule mais la lave ne perce pas la surface.

Comme je l’ai déjà écrit, le contexte géologique de la région est très complexe avec un mélange de tectonique, de sismicité et de volcanisme, un phénomène pouvant être la cause ou la conséquence de l’autre.

Plusieurs scénarios possibles ont été imaginés par des volcanologues islandais qui ne peuvent faire aucune prévision.

Le point positif est que la région compte peu d’habitants qui seront rapidement évacués en cas d’urgence.

La situation dans la Péninsule de Reykjanes confirme que la prévision volcanique aura encore un long chemin à parcourir avant de devenir fiable.

——————————————–

Seismicity is incredibly intense these days on Iceland’s Reykjanes Peninsula. Many events are above M 3.0. On March 10th, 2021, at 3.14 am, a quake reached M 5.1. Its epicentre was located 2.4 km SSW of Fagradalsfjall at a depth of 5.8 km.

It seems a magmatic dyke is working its way beneath the Peninsula but lava is not piercing the surface. As I put it before, the geological context of the region is very complex with a mixture of tectonics, seismicity and volcanism, the one being the cause or the consequence of the other.

Several possible scenarios have been imagined by Icelandic volcanologists who are at a loss to make any prediction. The good point is that the region has few residents who will be rapidly evacuated in case of emergency. However, the situation in the Reykjanes Peninsula confirms that volcanic prediction still has a long way to go ro become reliable.

Source : IMO