Au cas où le mont Fuji entrerait en éruption… // In case Mount Fuji erupts…

Au Japon, il n’y a actuellement aucun signe d’une éruption imminente du mont Fuji. L’événement redouté après le séisme de Tohoku en 2011 n’a jamais eu lieu. Cependant, les Japonais craignent toujours que leur montagne sacrée ne se réveille soudainement.
Dans le cadre d’une campagne de prévention, les autorités japonaises ont diffusé une vidéo de l’éruption du mont Fuji générée par l’Intelligence Artificielle (AI) afin d’encourager les Tokyoïtes à se préparer. Officiellement, « le gouvernement japonais souhaite avertir les 20 millions d’habitants de Tokyo de ce qui les attend si le mont Fuji, ce volcan d’une beauté à couper le souffle qui domine leur ville, entre en éruption.» Cette campagne de prévention s’inscrit dans le cadre des mesures prises dans ce pays pour anticiper les catastrophes naturelles. Ainsi, à Kagoshima, des exercices d’évacuation sont régulièrement organisés pour anticiper une éruption majeure du volcan Sakurajima.
Bien qu’aucune éruption ne soit imminente, le mont Fuji est un volcan actif. Sa dernière éruption remonte à 1707, lors de l’éruption dite de Hoei. La vidéo, réalisée par IA, montre une femme dans une rue animée. Elle reçoit soudainement un message d’alerte sur son téléphone l’informant de l’éruption du volcan. « Un tel événement peut arriver sans prévenir », indique la narration, avant que la vidéo ne laisse place à des images saisissantes montrant d’importants nuages ​​de fumée s’échappant du mont Fuji.

https://youtu.be/o_ditkWMElM

La vidéo prévient que les cendres volcaniques pourraient atteindre Tokyo en moins de deux heures, entraînant des problèmes sanitaires ainsi que des perturbations dans l’approvisionnement en électricité, la circulation et la distribution alimentaire.
Le gouvernement a publié une autre vidéo de simulation le 26 août, Journée de prévention des catastrophes volcaniques au Japon. Elle demande avec insistance à la population de « visualiser des scénarios spécifiques » afin de mieux se préparer.
Les autorités japonaises ont intensifié la diffusion des messages d’alerte en 2024 dans l’espoir d’accroître la vigilance des citoyens. Les craintes d’un puissant séisme se sont accrues depuis que le gouvernement japonais a averti en janvier qu’il y avait 80 % de risque qu’un violent tremblement de terre soit déclenché par la Fosse de Nankai, au sud du pays, d’ici 30 ans.

Certains sismologues ont critiqué ces alertes, s’interrogeant sur leur exactitude. Certains habitants jugent l’approche des autorités japonaises trop alarmiste et les messages pourraient dissuader les touristes de se rendre au Japon.
Ce n’est pas la première fois que les autorités rappellent aux habitants des villes autour du mont Fuji de se préparer. En mars, le gouvernement a publié des directives recommandant aux habitants de conserver un stock de produits de première nécessité pour deux semaines en cas d’éruption majeure.
Selon le gouvernement, une éruption de grande ampleur produirait environ 1,7 milliard de mètres cubes de cendres, dont environ 490 millions de mètres cubes pourraient s’accumuler sur les routes, les bâtiments et d’autres surfaces. L’accumulation de cendres pourrait provoquer l’effondrement de maisons en bois plus fragiles. Les zones urbaines seraient plongées dans l’obscurité, même en plein jour. Les pertes économiques liées à une éruption du mont Fuji sont estimées à 2 500 milliards de yens (16,6 milliards de dollars). Même une petite quantité de cendres volcaniques pourrait empêcher la circulation des trains, et en cas de pluie, une accumulation de cendres de plus de 3 centimètres pourrait rendre les routes impraticables. La logistique serait perturbée, rendant difficile l’approvisionnement en biens essentiels, et les lignes électriques pourraient se rompre sous le poids des cendres, entraînant des pannes de courant.
Source : CNN via Yahoo News.

L’une des Trente-Six Vues du Mont Fuji de Katsushika Hokusai.

———————————————-

In Japan, there are currently no signs of an impenfing eruption of Mount Fuji. The eruption that was feared following the 2011 Tohoku earthquake never happened. However, the Japanese still fear their sacred mountain may wake up suddenly.

In a preventive campaign, Japanese authorities have relrased an AI-generated Mount Fuji eruption video to encourage Tokyo residents to be prepared. Officially, « Japan’s government wants to warn Tokyo’s 20 million residents what to expect if Mount Fuji, the breathtakingly beautiful volcano that looms over their city, ever erupts. » This prevention campaign is part of the ountry’s measures to anticipate natural disasters. For instance, in Kagoshima, evacuation drills are regularly organised to anticipate a major eruption of Sakurajima volcano.

While there is no suggestion that an eruption is imminent, Fuji is an active volcano. It last erupted 318 years ago, in what is known as the Hoei eruption. The AI-video shows a woman in a bustling street suddenly receiving a warning on her phone informing her the volcano has erupted. “The moment may arrive without any warning,” says the narration, before the video cuts to dramatic visuals of large clouds of smoke emitting from Fuji.

The video warns that volcanic ash could reach Tokyo within two hours, causing health hazards as well as disruptions on to power supplies, traffic and food distribution.

The government’s cabinet office released a separate simulation video on August 26th – Japan’s Volcano Disaster Prevention Day – urging people to “visualize specific scenarios” so that they could be better prepared.

Japanese authorities have stepped up their cautionary tone in the past year in the hope of raising citizens’ alertness levels. Fears of a “big one” have been mounting since the Japanese government warned in January that there was an 80% chance of a severe earthquake hitting the country’s southern Nankai Trough within 30 years. Some seismologists have been critical of these warnings, questioning whether they can ever be accurate. Some residents viewed the Japanese authorities’ approach as alarmist, with well-intended warnings turning into deterrents for some tourists in the past few months.

This is not the first time authorities have reminded residents in cities around Fuji to be prepared. In March, the government issued guidelines recommending residents maintain a two-week supply of essentials in the event of a large eruption.

According to the government, a large-scale eruption would produce an estimated 1.7 billion cubic meters of volcanic ash, of which around 490 million cubic meters is expected to accumulate on roads, buildings, and other land areas. Piled-up ash could cause wooden houses to collapse. Urban areas would be plunged into darkness, even during the day. The economic loss from a Mount Fuji eruption is estimated to be up to 2.5 trillion yen (16.6 billion dollars). Even a small amount of accumulated volcanic ash could stop trains from running, and if it rains, ash that accumulates to a depth of more than 3 centimeters could make roads impassable for vehicles. Logistics would be disrupted, making it difficult to obtain essential goods, and power lines could be cut by the weight of the ash, leading to power outages.

Sourse : CNN via Yahoo News.

Réchauffement climatique : laves torrentielles de plus en plus fréquentes

Avec le réchauffement climatique, une expression est en train de devenir à la mode : lave torrentielle.

Pour le volcanophile (parfois volcanologue) qui sommeille en moi, elle évoque inévitablement les lahars, ces coulées de boue qui, au moment des fortes pluies de la mousson, remobilisent les matériaux déposés par les éruptions volcaniques. Ces lahars se produisent essentiellement dans les pays comme l’Indonésie ou les Philippines où entrent en éruption des volcans explosifs qui vomissent d’énormes panaches de cendres.

Aujourd’hui, parmi les événements extrêmes – ceux qui font dire aux habitants « Du jamais vu ! » – provoqués par le réchauffement climatique figurent des phénomènes qui ressemblent fortement aux lahars asiatiques. Déclenchés par de violents orages, des torrents de boue charrient des blocs, des arbres et toutes sortes de matériaux, et dévalent les pentes à des vitesses relativement élevées. En France, on les a baptisés « laves torrentielles ». Je trouve l’expression assez bien choisie car elle évoque tout de suite quelque chose de concret.

Les géologues nous expliquent que les laves torrentielles se forment généralement dans les lits de cours d’eau ou les ravins dont la pente est supérieure à 25%. Cependant, il est pratiquement impossible de savoir à l’avance où elles se produiront. Dans les Alpes, elles peuvent charrier jusqu’à un demi-million de mètres cubes de matériaux. Chaque année, elles causent des dégâts importants et coûteux..

Avec l’accélération du réchauffement climatique, les laves torrentielles sont de plus en plus fréquentes. Des mesures de protection de la population et des infrastructures sont donc indispensables, en particulier dans les zones déjà impactées ou considérées comme à risque. Selon les scientifiques, il existe deux solutions : les systèmes d’alerte et les ouvrages de défense architecturale. S’agissant des systèmes d’alerte, l’un d’eux reconnaît une lave torrentielle en cours grâce à des instruments installés dans le lit du cours d’eau ou sur les berges. Des cordes métalliques se rompent au passage des matériaux, tandis que des capteurs enregistrent les ondes qui se propagent dans le sol. Toutefois, ces systèmes présentent parfois des failles et demandent à être améliorés. Le problème réside souvent dans le laps de temps très bref entre le moment où le signal d’alerte est envoyé et le moment où le torrent de boue arrive dans la vallée.

La dernière lave torrentielle a été observée dans la vallée de la Maurienne le 2 juillet 2025. Un violent orage a provoqué le débordement du torrent du Charmaix et un flot de boue a envahi les rues de Modane, causant de gros dégâts matériels, mais heureusement aucune victime.

Au cours des dernières années, les violents orages en montagne ont déclenché des coulées de boue. Il suffit de mentionner celle qui, dans la nuit du 20 au 21 juin 2024, a ravagé le hameau de la Bérarde (Isère). Elle est décrite dans mes notes du 10 juillet et 12 octobre 2024.

En Suisse, plusieurs laves torrentielles ont frappé les Grisons, le Tessin et le Valais entre la mi-juin et le début du mois de juillet 2024. Mais c’est le 23 août 2017 que s’est produite l’une des laves torrentielles les plus meurtrières. Environ 3,1 millions de mètres cubes de roche se sont abattus depuis le Pizzo Cengalo dans le Val Bondasca (Grisons). L’éboulement a emporté huit randonneurs qui n’ont jamais été retrouvés. Les laves torrentielles qui ont suivi l’éboulement dans le Val Bondasca ont endommagé de nombreux bâtiments et infrastructures dans la localité de Bondo. On estime que la lave torrentielle a transporté au total environ 500 000 mètres cubes de matériaux vers Bondo où aucune perte humaine n’a été déplorée.

Effondrement au Pizzo Cengalo (source: presse suisse)

Lave torrentielle à Bondo (Source: presse suisse)

Voici un document qui explique parfaitement le déclenchement, le déroulement et les risques générés par les laves torrentielles dans nos montagnes :

https://www.savoie.gouv.fr/contenu/telechargement/26993/204436/file/10+Annexe+5.pdf

Conséquences d’un séisme majeur sur la côte ouest des États Unis // Consequences of a major quake on the U.S. West Coast

J’ai attiré l’attention à plusieurs reprises sur ce blog sur le risque d’un séisme majeur sur la côte ouest des États-Unis. Un tel séisme au large de la Californie, de l’Oregon et de l’État de Washington pourrait provoquer un affaissement de plus de 1,80 mètre de certaines zones côtières, augmentant considérablement le risque d’inondation et transformant radicalement la région.
Ce sont les conclusions d’une nouvelle étude publiée fin avril dans les Proceedings de l’Académie Nationale des Sciences. Les auteurs ont examiné les répercussions d’un séisme de grande ampleur sur la zone de subduction de Cascadia, qui s’étend du nord de la Californie jusqu’à l’île de Vancouver, au Canada.

Source: USGS

L’étude conclut qu’en cas de séisme accompagné d’un affaissement de grande ampleur, la zone inondable s’étendrait sur 300 kilomètres carrés. Selon l’étude, un tel scénario ferait plus que doubler l’exposition des habitants, des bâtiments et des routes aux inondations, et les autorités devraient faire face à de sérieux problèmes avec les infrastructures vitales qui seraient plus fréquemment inondées, voire de manière permanente.

En d’autres termes, l’étude précise qu’un puissant séisme dans cette région risquerait de « modifier radicalement le littoral et d’avoir des conséquences profondes et durables sur les populations, les infrastructures et les écosystèmes côtiers ». Contrairement à l’élévation relative du niveau de la mer, provoquée progressivement par le réchauffement climatique, une élévation résultant d’un séisme majeur se produira en quelques minutes, ne laissant aucun temps d’adaptation.
Le dernier méga-séisme survenu dans la zone de subduction de Cascadia, d’une magnitude de M9,0, s’est produit en 1700. D’après les archives archéologiques, des villages ont été engloutis et ont dû être abandonnés. De la côte nord de la Californie à l’État de Washington, les scientifiques estiment que le prochain puissant séisme pourrait provoquer un affaissement des terres de 0,5 à 2 mètres, soit la même ampleur que celle observée lors du séisme de 1700.
Actuellement, plus de 8 000 personnes vivent dans les plaines inondables le long des estuaires de la zone côtière de Cascadia. Toutefois, en cas d’affaissement important après un séisme, ce chiffre pourrait presque tripler et atteindre plus de 22 000. Près de 36 000 structures seraient également menacées.
La datation au radiocarbone révèle que plus de 11 puissants séismes se sont produits au large de la côte nord de la Californie, de l’Oregon et de l’État de Washington au cours des 6 000 à 7 000 dernières années, avec une répétition tous les 200 à 800 ans.
Selon une estimation publiée par Federal Emergency Management Agency (FEMA) qui gère les situations d’urgence, un séisme de magnitude M9,0 sur toute la longueur de la zone de faille de 1 280 kilomètres ferait 5 800 morts. Le tsunami qui en résulterait, avec une hauteur potentielle de 2,40 mètres et un préavis de 10 minutes pour les zones côtières, ferait 8 000 morts. Les pertes économiques pourraient atteindre 134 milliards de dollars.
Lors du méga-séisme de Cascadia en 1700, des récits oraux ont parlé de tsunamis de plus de 3 mètres de haut qui ont détruit des villages côtiers. À Anacla, un village situé sur ce qui est aujourd’hui l’île de Vancouver, seule une personne sur plus de 600 a survécu. Le tsunami était si violent qu’il a déraciné des arbres. Les résultats de la dernière étude devraient donc alerter les habitants et les autorités gouvernementales. Certains tronçons de la route 101 sont déjà régulièrement inondés lors des grandes marées. Les autorités devraient également se demander si des infrastructures essentielles, comme les aéroports, se trouveraient dans la zone inondable agrandie par le séisme. Les autorités pourraient également éviter de construire des infrastructures telles que des écoles, les casernes de pompiers et les stations d’épuration dans les zones à risque.
L’étude explique que la négligence du rôle des séismes côtiers majeurs serait une erreur. Des exemples sont là pour le prouver. Le séisme de magnitude M9,1 survenu au large de la côte est du Japon en 2011a provoqué un affaissement de terrain allant jusqu’à 1,80 mètre. Un autre séisme de magnitude M9,1 survenu près de Sumatra, en Indonésie, en 2004 a provoqué un affaissement de terrain allant jusqu’à 1,80 mètre. Les zones utilisées pour l’aquaculture ont depuis subi des inondations chroniques dues aux marées, avec à la clé une sursalinisation des sols. Le séisme de magnitude M9,2 survenu en Alaska en 1964 a provoqué un affaissement de plus de 1,80 mètre le long de la côte, rendant des routes, des quais et des zones littorales inhabitables. Enfin, un séisme de magnitude M9,5 au Chili en 1960 a provoqué jusqu’à 2,40 mètres d’affaissement côtier.
Source : The Los Angeles Times via Yahoo News.

Sur le site du séisme du Vendredi Saint 1964 à Anchorage, des panneaux explicatifs rappellent les dégâts subis par la région (Photo: C. Grandpey)

Anchorage a été sévèrement impactée par le séisme du 22 mars 1964 (Source: USGS)

°°°°°°°°°°

Dans le même temps, l’Axial Seamount, un volcan sous-marin au large de la côte nord-ouest des États Unis, pourrait bientôt entrer en éruption pour la première fois depuis dix ans. Des scientifiques de l’Université de Washington ont détecté une forte augmentation des petits séismes sous-marins et une inflation du plancher océanique (plus de 20 cm), signes d’une accumulation de magma sous le volcan. Malgré cette activité, les scientifiques affirment qu’il n’y a aucune menace pour les zones habitées le long de la côte. L’Axial se trouve en effet à environ 480 km à l’ouest de Cannon Beach, dans l’Oregon, à environ 1 410 m sous la surface de l’océan. Il se trouve directement sur la dorsale Juan de Fuca, là où les plaques tectoniques divergent (voir carte ci-dessus). J’ai écrit plusieurs notes sur ce blog à propos de l’Axial Seamount : 3 mai et 16 septembre 2015, 17 décembre 2016 et 18 juillet 2024.

Source : Médias américains.

Source : University of Washington

———————————————-

I have several times drawn attention on this blog to the risk of a major earthquake on the U.S. West Coast. A monster earthquake off California, Oregon and Washington could cause some coastal areas to sink by more than 1.80 meters, dramatically heightening the risk of flooding and radically reshaping the region with little to no warning.

Those are the findings of a new study published late April in the journal Proceedings of the National Academy of Sciences. It examines the repercussions of a massive earthquake on the Cascadia subduction zone, which stretches from Northern California up to Canada’s Vancouver Island. The study concludes that in an earthquake scenario with the highest level of subsidence, the area at risk of flooding would expand by 300 square kilometers. According to the study, such a scenario would more than double the flooding exposure of residents, structures and roads, and officials would need to contend with a future of infrastructure that are either more frequently flooded or permanently inundated.

In other words, a powerful earthquake in this area would risk « drastically altering shorelines and causing profound, lasting impacts to coastal populations, infrastructure, and ecosystems. » Unlike relative sea-level rise that’s driven more gradually by global warming, a rise resulting from a major earthquake will happen within minutes, leaving no time for adaptation or mitigation.

The last megaquake on the Cascadia subduction zone, registering a magnitude M9.0, occurred in 1700. Based on archaeological evidence, villages sank and had to be abandoned. From California’s North Coast to Washington state, scientists say that the next great earthquake could cause land to sink by 0.5 to 2 meters, the same range seen during the 1700 earthquake.

Currently, more than 8,000 people live in flood plain areas along estuaries in the Cascadia coastal region. But in the event of a high level of subsidence after an earthquake, that figure would nearly triple to more than 22,000. Nearly 36,000 structures would be threatened.

Radiocarbon dating suggests there have been more than 11 great earthquakes off the shore of California’s North Coast, Oregon and Washington state over the last 6,000 to 7,000 years, recurring every 200 to 800 years.

One estimate published by the Federal Emergency Management Agency (FEMA) is that an M9.0 earthquake along the full length of the 1,280-kilometer fault zone would leave 5,800 dead from the earthquake alone. An additional 8,000 would die from the resulting tsunami that could rise as high as 2.40 meters and offer coastal areas as few as 10 minutes of warning. Total economic losses could hit $134 billion.

In the 1700 Cascadia megaquake, oral histories describe tsunamis more than 3 meters high wiping out coastal villages. In Anacla, a village on what is now called Vancouver Island, only 1 out of more than 600 people survived. The tsunami was so strong that it uprooted trees.

The results of the latest study should be a wake-up call to residents and government officials. There already are parts of U.S. Route 101 that routinely flood during exceptionally high king tides. Another factor officials should consider is whether crucial infrastructure, such as airports, would fall within the quake-expanded flood plain. Authorities may also want to consider avoiding building infrastructure such as schools, fire stations and wastewater treatment plants in areas at risk.

The study insists that neglecting the role of major coastal earthquakes would be shortsighted. One example was the M9.1 earthquake off Japan’s east coast in 2011, which caused some land to sink by up to 1.80 meters. Another M9.1 earthquake that struck near Sumatra, Indonesia, in 2004 caused land subsidence of up to 1.80 meters. Areas used for aquaculture have since suffered chronic tidal flooding, leading to oversalinization. The M9.2 earthquake in Alaska in1964 caused land to sink by more than 1.80 meters along the coast, rendering roads, docks and waterfront areas uninhabitable. At last, an M9.5 earthquake in Chile in 1960 caused up to 2.40 meters of coastal subsidence.

Source : The Los Angeles Times via Yahoo News.

°°°°°°°°°°

Meantime, Axial Seamount, an underwater volcano off the Pacific Northwest coast, could erupt soon for the first time in a decade. Scientists at the University of Washington have detected a sharp increase in small undersea earthquakes and seafloor inflation (more tha 20 cm), signs of magma buildup within the volcano. Despite the activity, experts say there is no threat to coastal communities. Indeed, Axial Seamount is located about 480 km west of Cannon Beach, Oregon. It lies submerged at a depth of roughly 1 410 m beneath the ocean’s surface. It sits directly on the Juan de Fuca Ridge, an underwater boundary where tectonic plates are diverging (see map above). Il have written several posts on this blog about Axial Seamount : May 3 and September 16, 2015, December 17, 2016 and July 18, 2024.

Source : U.S. news media.

Glaciers et prévision volcanique // Glaciers and volcanic prediction

Voici une information qui justifie le titre de mon blog et le lien entre Volcans et Glaciers. Une nouvelle étude menée par des scientifiques des universités d’Aberdeen, Birmingham et Manchester, publiée dans Communications Earth & Environment, montre que les glaciers proches de volcans actifs avancent plus vite que les autres. Cette constatation montre que l’on pourrait prévoir certaines éruptions volcaniques en fonction de la vitesse des glaciers.
Les auteurs de l’étude affirment que les glaciers pourraient fournir « des informations utiles aux autorités locales pour planifier l’évacuation éventuelle d’une ville voisine, ou imposer une zone d’exclusion aérienne, sans dépendre de décisions prises à la dernière minute ».
Pour leur étude, les chercheurs ont analysé des données satellitaires sur la vitesse de près de 180 000 glaciers dans le monde. Parmi eux figurent des glaciers associés à certains des volcans les plus emblématiques et parfois les plus dangereux au monde, comme le mont Rainier et Glacier Peak dans l’État de Washington, le Redoubt et le Veniaminof en Alaska, et l’Eyjafjallajokull en Islande. En prenant en compte le climat local, l’épaisseur de la glace et la pente des montagnes, les chercheurs ont découvert que les glaciers situés à moins de 5 kilomètres d’un volcan actif avancent 46 % plus vite, en moyenne, que les autres glaciers.

Mont Rainier (Photo: C. Grandpey)

Les auteurs de l’étude pensent que la chaleur sous les volcans actifs fait fondre la partie inférieure des glaciers situés à proximité. Cette accélération de la fonte réduit le frottement entre le glacier et la roche sous-jacente, et ces glaciers avancent donc plus rapidement. À la lumière de leurs découvertes, les chercheurs préviennent que l’activité volcanique en Antarctique pourrait déstabiliser encore davantage l’immense calotte glaciaire de l’Antarctique occidental, déjà soumise aux effets du réchauffement climatique
Ces découvertes par les universitaires britanniques pourraient permettre aux volcanologues de développer un nouveau système d’alerte précoce pour les éruptions sur des sites tels que Eyjafjallajokull en observant et en analysant les changements de vitesse des glaciers. Elles pourraient révéler une augmentation de l’activité volcanique plusieurs mois avant une éruption.

Éruption de l’Eyjafjoll en 2010 (Crédit photo: Wikipedia)

L’un des auteurs de l’étude a déclaré : « Notre travail a des implications significatives en matière de prévention des risques volcaniques. Les volcans recouverts de glace sont parmi les plus dangereux au monde car l’eau de fonte des glaciers libérée lors des éruptions peut déclencher des inondations soudaines et des coulées de débris capables de submerger rapidement les zones habitées voisines. […] La couverture de glace limite également l’utilisation des techniques permettant de surveiller l’activité volcanique. Des études récentes ont montré que la taille, la forme et l’altitude des glaciers peuvent influer sur l’activité volcanique, mais la relation entre le volcanisme et la vitesse de progression des glaciers reste inconnue. Nos résultats montrent que les observations par satellite de la vitesse des glaciers pourraient constituer une aide précieuse pour la surveillance de l’activité volcanique et la prévision des éruptions. »
Source : Médias d’information internationaux.

Volcan Redoubt en Alaska (Photo: C. Grandpey)

——————————————————-

Here is a piece of information that justifies the title of my weblog and the link between volcanoes and glaciers. New research by scientists at University of Aberdeen, University of Birmingham and Manchester Metropolitan University, published in Communications Earth & Environment, shows that glaciers near active volcanoes flow faster than other glaciers. The findings suggest it would be possible to predict volcanic eruptions by tracking the speed of glaciers.

The authors of the study say that glaciers could provide “much needed forewarning to local authorities to plan the possible evacuation of a nearby city, or impose a no-fly zone, without relying on last-minute decisions.”

For the study, researchers analyzed satellite data on the speed of close to 180,000 glaciers worldwide. Those in the study include those associated with some of the most iconic volcanoes in the world, such as Mt Rainier and Glacier Peak in Washington, Mt Redoubt and Mt Veniaminof in Alaska, and Eyjafjallajokull in Iceland. Controlling for the local climate, the thickness of ice, and the slope of mountains, they found that glaciers that lie within 5 kilometers of an active volcano flow 46 percent faster, on average, than other glaciers.

The authors of the study believe that underground heat from active volcanoes is melting the undersides of nearby glaciers. The enhanced melt reduces friction between the glacier and the underlying rock, causing those glaciers to flow more quickly. In light of their findings, authors warn that volcanic activity in Antarctica could further destabilize the massive West Antarctic Ice Sheet.

The findings could enable volcanologists to develop a new early warning system for potential eruptions at sites such as Eyjafjallajokull by tracking changes in glacier velocities that could reveal increases in volcanic activity several months ahead of an eruption.

One of the authors of the study said : « Our research has notable implications for the mitigation of volcanic hazards. Ice-covered volcanoes are among the most dangerous globally because glacial meltwater released during eruptions can trigger outburst floods and debris flows capable of rapidly submerging nearby settlements. […] Ice cover also limits the use of established techniques for monitoring volcanic activity. Recent studies have shown that the size, shape and elevation of glaciers can respond to volcanic activity, but the relationship between volcanism and glacier flow remained unknown. Our results suggest that satellite observations of glacier velocity could be a valuable new technique for monitoring volcanic activity and predicting eruptions. »

Source : International news media.