L’intelligence artificielle (IA) au service de la prévision sismique // Artificial Intelligence (AI) to help seismic prediction

La prévision sismique reste aujourd’hui l’un des maillons faibles de la science. Force est de constater que nous ne savons pas prévoir les séismes. Chaque fois que de puissantes secousses se produisent, le nombre de victimes est très élevé et les dégâts matériels sont souvent considérables.

Nous connaissons la plupart des zones où les séismes les plus puissants sont susceptibles de se produire, mais notre connaissance sismique s’arrête là. Pourtant, une zone sensible comme la Californie avec la Faille de San Andreas est truffée de sismographes qui fournissent une foule d’informations, mais nous ne savons pas suffisamment les interpréter pour éviter des catastrophes.

Il se pourrait qu’avec l’avènement de l’Intelligence Artificielle (IA) des progrès soient accomplis rapidement en matière de prévision. Le numéro de novembre 2024 du National Geographic raconte l’histoire de Zachary Ross, professeur adjoint de géophysique à l’Institut de Technologie (Caltech) de Californie.

Zachary Ross a cherché une nouvelle approche d’interprétation des signaux sismiques californiens. Il avait remarqué que la majorité des failles dans cet État génèrent de minuscules secousses et des ondes sismiques tellement faibles qu’elles sont difficilement décelables par l’Homme.

En 2017, le scientifique eut l’idée de transposer à la sismologie la technique du machine learning ou apprentiisage automatique utilisée pour l’IA, en particulier pour la gestion de grandes quantités de photos. Il s’est proposé de l’appliquer aux innombrables microséismes, parfois difficilement détectables, mais probablement révélateurs au niveau des failles, enregistrés en Californie.

Avec ses collègues, Zachary Ross a collecté tous les sismogrammes obtenus dans le sud de l’État. Il a ensuite établi des modèles d’ondes sismiques pour chacun d’entre eux et passé ces données au crible d’un algorithme pour qu’il recherche des secousses imperceptibles correspondant à ces modèles. Le résultat a révélé que près de deux millions de séismes survenus entre 2008 et 2017 – et non détectés – ont été identifiés par l’algorithme. Cela a permis de mettre en évidence un réseau complexe de failles qui n’avait pas été décelé jusqu’alors. Toutefois, l’algorithme n’a pu discerner des séismes que dans les données qu’il avait appris à reconnaître.

Zachary Ross s’est alors tourné vers des programmes de self-learning – ou auto-apprentissage – autrement dit des programmes se servant d’informations existantes pour prédire l’avenir, c’est à dire les ondes que pourrait émettre une plus grande variété de séismes. Ces outils ont effectivement repéré une foule de séismes méconnus, mais confirmés par les scientifiques.

Ces programmes d’auto-apprentissage ne se contentent pas d’identifier les séismes indétectables par l’Homme et les failles cachées. Une fois déployés à travers la Californie, ils ont révélé une nouvelle catégorie d’essaims sismiques à propagation lente.

On peut raisonnablement penser que ces programmes de machine learning, de plus en plus précis, donneront bientôt un aperçu plus précis de la croûte terrestre. Peut-être permettront ils d’améliorer la rapidité et l’exactitude des systèmes d’alerte précoce. Ils rejoindront inévitablement une gamme de plus en plus fournie d’outils reposant sur l’IA pour que les catastrophes sismiques soient moins destructrices.

Il reste toutefois un long chemin à parcourir avant que les humains et l’IA parviennent ensemble à une prévision sismique digne de ce nom.

Adapté d’un article paru dans le National Geographic France.

Région tourmentée de la Faille de San Andreas (Photos: C. Grandpey)

————————————————-

Earthquake prediction remains one of the weak points in science today. Indeed, we are not able to predict earthquakes. Every time powerful tremors occur, the number of victims is very high and the material damage is often considerable.
We know most of the areas where the most powerful earthquakes are likely to occur, but our seismic knowledge does not go any further. A sensitive area like California with the San Andreas Fault is full of seismographs that provide a wealth of information, but we do not know how to interpret them to avoid disasters.
It is possible that with the advent of Artificial Intelligence (AI), progress will be made quickly in terms of prediction. The November 2024 issue of National Geographic tells the story of Zachary Ross, an assistant professor of geophysics at the California Institute of Technology (Caltech).
Zachary Ross was looking for a new approach to interpreting Californian seismic signals. He had noticed that most of the faults in this State generate tiny tremors and seismic waves so weak that they are difficult to detect by humans.
In 2017, the scientist had the idea of ​​transposing to seismology the machine learning technique used for AI, in particular for the management of large quantities of photos. He proposed to apply it to the countless microseisms, sometimes difficult to detect, but probably revealing at the level of the faults, recorded in California.
With his colleagues, Zachary Ross collected all the seismograms recorded in the southern part of the State. He then established seismic wave patterns for each of them and ran the data through an algorithm to look for imperceptible tremors that matched those patterns. The result was that nearly two million earthquakes that had occurred between 2008 and 2017—and had not been detected—were identified by the algorithm. This revealed a complex network of faults that had previously gone undetected. However, the algorithm could only discern earthquakes in data that it had learned to recognize.
Zachary Ross then turned to self-learning programs – programs that use existing information to predict the future, that is, the waves that a wider variety of earthquakes might emit. These tools did indeed detect a host of unknown earthquakes, but that scientists confirmed.
These self-learning programs don’t just identify earthquakes that humans can’t detect and hidden faults. When deployed across California, they revealed a new class of slow-moving seismic swarms.
It’s reasonable to assume that these increasingly accurate machine learning programs will soon provide a more precise view of the Earth’s crust. Perhaps they will help improve the speed and accuracy of early warning systems. They will inevitably join a growing range of AI-powered tools to make seismic disasters less destructive.
However, there’s still a long way to go before humans and AI can work together to predict earthquakes.
Adapted from an article in National Geographic France.

Islande : vers la fin de l’éruption ? // Iceland : the eruption may be coming to an end

Comme je l’ai écrit dans ma note précédente sur l’éruption, l’activité au niveau de bouches actives sur la fissure éruptive diminue considérablement et la lave coule plus lentement vers l’ouest. Un volcanologue islandais pense que nous nous dirigeons vers la fin de l’activité volcanique le long de la chaîne de cratères de Sundhnúksgígaröð. Il a peut-être raison, mais nous devons attendre encore un peu pour voir s’il a raison. Ces derniers jours, de semblables prévisions sur le début de l’éruption se sont révélées fausses !
Les ouvriers travaillent 24 heures sur 24 sur les barrages en terre et avec des canons à eau pour empêcher la lave de déborder sur le Blue Lagoon et les autres infrastructures vitales de la région.

De nombreux scientifiques s’accordent à dire que la péninsule de Reykjanes est entrée dans une nouvelle phase d’activité volcanique. L’un d’eux au Met Office a déclaré : « Nous pouvons nous attendre à de nouvelles éruptions à Reykjanes au cours des prochaines décennies. » Là encore, il faut être très prudent avec les prévisions à long terme alors que celles à court terme restent très aléatoires.
Source : Médias d’information islandais.

Les webcams montrent le déclin de l’activité éruptive

°°°°°°°°°°

La lutte contre la lave.

Même si l’activité est en baisse sur la fracture éruptive aujourd’hui et si le débit de la coulée de lave vers l’ouest s’est réduit, il va être urgent que cette éruption se termine. Les vidéos diffusées sur les réseaux sociaux montrent que les digues de terre autour du Blue Lagoon sont saturées et que la lave a tendance à déborder. C’est pour cela que des canons à eau arrosent le débordement de lave 24 heures sur 24 et que les bulldozers essayent de rehausse au maximum les remparts de terre. Cette fois-ci, la stratégie devrait bien fonctionner, sauf si une recrudescence d’activité se produisait. C’est toutefois peu probable si on se réfère aux dernières éruptions sur la péninsule de Reykjanes. On peut raisonnablement penser que de nouvelles éruptions se produiront dans la région au cours des prochains mois. Les digues de terre pourront elles faire face aux assauts de la lave ?

Débordement de lave et canon à eau (images extraites de vidéos sur les réseaux sociaux)

———————————————

As I put it in my previous post about the eruption, activity at the active vents on the fissure is declining significantly and lava flowing more slowly westwards. An Icelandic volcaologist sais that he believes that we could be witnessing the end of volcanic activity in the Sundhnúksgígaröð craters area. He may be right, but we need to wait if this is true. In the past days, similar predictions about the start of the eruption proved wrong !

Operators have been working around the clock with both earthen dams and water cannons to keep lava from encroaching upon the Blue Lagoon and vital area infrastructure

Many scientists agree that the Reykjanes Peninsula has entered a new phase of volcanic activity. One of them at tha Met Office said : “We can expect that there will be later eruptions in Reykjanes over the next few decades.”.Here again, one needs to be very cautious with long terms predictions when short-term ones are still very uncertain.

Source : Icelandic news media.

°°°°°°°°°°

Fighting against lava.

Even though activity is decreasing on the eruptive fissure today and the lava flow to the west has slowed, it will be urgent for this eruption to end. Videos posted on social media show that the defensive walls around the Blue Lagoon are saturated and lava tends to overflow. That is why water cannons are spraying the overflow 24 hours a day and bulldozers are trying to raise the earthen ramparts as much as possible. This time, the strategy should work well, unless there is a new outbreak of activity. However, this is unlikely if we refer to the recent eruptions on the Reykjanes peninsula. It is reasonable to assume that new eruptions will occur in the region in the coming months. Will the defensive walls be able to cope with the assault of lava?

Glaciers et prévision volcanique // Glaciers and volcanic prediction

Voici une information qui justifie le titre de mon blog et le lien entre Volcans et Glaciers. Une nouvelle étude menée par des scientifiques des universités d’Aberdeen, Birmingham et Manchester, publiée dans Communications Earth & Environment, montre que les glaciers proches de volcans actifs avancent plus vite que les autres. Cette constatation montre que l’on pourrait prévoir certaines éruptions volcaniques en fonction de la vitesse des glaciers.
Les auteurs de l’étude affirment que les glaciers pourraient fournir « des informations utiles aux autorités locales pour planifier l’évacuation éventuelle d’une ville voisine, ou imposer une zone d’exclusion aérienne, sans dépendre de décisions prises à la dernière minute ».
Pour leur étude, les chercheurs ont analysé des données satellitaires sur la vitesse de près de 180 000 glaciers dans le monde. Parmi eux figurent des glaciers associés à certains des volcans les plus emblématiques et parfois les plus dangereux au monde, comme le mont Rainier et Glacier Peak dans l’État de Washington, le Redoubt et le Veniaminof en Alaska, et l’Eyjafjallajokull en Islande. En prenant en compte le climat local, l’épaisseur de la glace et la pente des montagnes, les chercheurs ont découvert que les glaciers situés à moins de 5 kilomètres d’un volcan actif avancent 46 % plus vite, en moyenne, que les autres glaciers.

Mont Rainier (Photo: C. Grandpey)

Les auteurs de l’étude pensent que la chaleur sous les volcans actifs fait fondre la partie inférieure des glaciers situés à proximité. Cette accélération de la fonte réduit le frottement entre le glacier et la roche sous-jacente, et ces glaciers avancent donc plus rapidement. À la lumière de leurs découvertes, les chercheurs préviennent que l’activité volcanique en Antarctique pourrait déstabiliser encore davantage l’immense calotte glaciaire de l’Antarctique occidental, déjà soumise aux effets du réchauffement climatique
Ces découvertes par les universitaires britanniques pourraient permettre aux volcanologues de développer un nouveau système d’alerte précoce pour les éruptions sur des sites tels que Eyjafjallajokull en observant et en analysant les changements de vitesse des glaciers. Elles pourraient révéler une augmentation de l’activité volcanique plusieurs mois avant une éruption.

Éruption de l’Eyjafjoll en 2010 (Crédit photo: Wikipedia)

L’un des auteurs de l’étude a déclaré : « Notre travail a des implications significatives en matière de prévention des risques volcaniques. Les volcans recouverts de glace sont parmi les plus dangereux au monde car l’eau de fonte des glaciers libérée lors des éruptions peut déclencher des inondations soudaines et des coulées de débris capables de submerger rapidement les zones habitées voisines. […] La couverture de glace limite également l’utilisation des techniques permettant de surveiller l’activité volcanique. Des études récentes ont montré que la taille, la forme et l’altitude des glaciers peuvent influer sur l’activité volcanique, mais la relation entre le volcanisme et la vitesse de progression des glaciers reste inconnue. Nos résultats montrent que les observations par satellite de la vitesse des glaciers pourraient constituer une aide précieuse pour la surveillance de l’activité volcanique et la prévision des éruptions. »
Source : Médias d’information internationaux.

Volcan Redoubt en Alaska (Photo: C. Grandpey)

——————————————————-

Here is a piece of information that justifies the title of my weblog and the link between volcanoes and glaciers. New research by scientists at University of Aberdeen, University of Birmingham and Manchester Metropolitan University, published in Communications Earth & Environment, shows that glaciers near active volcanoes flow faster than other glaciers. The findings suggest it would be possible to predict volcanic eruptions by tracking the speed of glaciers.

The authors of the study say that glaciers could provide “much needed forewarning to local authorities to plan the possible evacuation of a nearby city, or impose a no-fly zone, without relying on last-minute decisions.”

For the study, researchers analyzed satellite data on the speed of close to 180,000 glaciers worldwide. Those in the study include those associated with some of the most iconic volcanoes in the world, such as Mt Rainier and Glacier Peak in Washington, Mt Redoubt and Mt Veniaminof in Alaska, and Eyjafjallajokull in Iceland. Controlling for the local climate, the thickness of ice, and the slope of mountains, they found that glaciers that lie within 5 kilometers of an active volcano flow 46 percent faster, on average, than other glaciers.

The authors of the study believe that underground heat from active volcanoes is melting the undersides of nearby glaciers. The enhanced melt reduces friction between the glacier and the underlying rock, causing those glaciers to flow more quickly. In light of their findings, authors warn that volcanic activity in Antarctica could further destabilize the massive West Antarctic Ice Sheet.

The findings could enable volcanologists to develop a new early warning system for potential eruptions at sites such as Eyjafjallajokull by tracking changes in glacier velocities that could reveal increases in volcanic activity several months ahead of an eruption.

One of the authors of the study said : « Our research has notable implications for the mitigation of volcanic hazards. Ice-covered volcanoes are among the most dangerous globally because glacial meltwater released during eruptions can trigger outburst floods and debris flows capable of rapidly submerging nearby settlements. […] Ice cover also limits the use of established techniques for monitoring volcanic activity. Recent studies have shown that the size, shape and elevation of glaciers can respond to volcanic activity, but the relationship between volcanism and glacier flow remained unknown. Our results suggest that satellite observations of glacier velocity could be a valuable new technique for monitoring volcanic activity and predicting eruptions. »

Source : International news media.

Les inclinomètres du Kilauea (Hawaï) // Tiltmeters at Kilauea Volcano (Hawaii)

Au cours de ma conférence « Volcans et risques volcaniques », j’explique que le regretté Maurice Krafft comparait un volcan sur le point d’entrer en éruption à une personne malade ou blessée. Une telle personne a de la fièvre et des frissons et généralement mauvaise haleine. La plaie enfle également. Il en va de même avec un volcan sur le point d’entrer en éruption : la température des gaz augmente ; on enregistre une hausse de la sismicité ; la composition des gaz change et un gonflement de l’édifice est détecté par les instruments.
Ce dernier paramètre est développé par l’Observatoire Volcanologique d’Hawaï (HVO) dans un nouvel épisode de la série « Volcano Watch ».
Au cours du siècle dernier, les avancées technologiques ont considérablement amélioré la surveillance volcanique. Une innovation clé a été l’introduction d’inclinomètres (aussi appelés tiltmètres) de forage, des appareils capables de mesurer d’infimes variations d’inclinaison de la surface du volcan.
Les inclinomètres de forage sont utilisés par les scientifiques du HVO depuis le début des années 1970 et sont devenus un élément essentiel de la surveillance volcanique. Un instrument plus ancien appelé « inclinomètre à tube d’eau » était utilisé dans les années 1950.
Aujourd’hui, le réseau d’inclinomètres moderne sur l’île d’Hawaï fait partie d’un ensemble plus vaste d’outils de surveillance incluant des stations sismiques, des récepteurs GPS, des capteurs de gaz et des images fournies par les webcams et les satellites. Tous ces outils permettent aux scientifiques de surveiller les changements de comportement des volcans susceptibles de provoquer des éruptions.
Les inclinomètres sont des instruments sensibles conçus pour détecter de très légères variations de déformation du sol. Ils sont installés autour des volcans pour surveiller l’évolution de la surface de la Terre causée par le déplacement du magma sous terre. Ces mouvements précèdent souvent les éruptions car le magma exerce une pression sur la roche environnante, tout en provoquant un gonflement ou un léger déplacement de la surface.
Les inclinomètres actuels fonctionnent avec une grande précision. Ils peuvent détecter des variations de seulement cinq nanoradians, soit moins d’un millionième de degré. Ce niveau de précision rend les inclinomètres indispensables pour suivre les changements subtils de l’activité volcanique et fournir des alertes précoces aux scientifiques.
Une vingtaine d’inclinomètres de forage sont installés stratégiquement sur le Kilauea et le Mauna Loa, à des endroits clés des sommets et des caldeiras de ces volcans. Ces zones sont importantes car elles sont les plus susceptibles de subir une déformation importante du sol pendant les périodes d’activité volcanique et avant le début d’une éruption.
Ces inclinomètres fonctionnent en continu et génèrent un point de données toutes les 60 secondes. Ainsi, ils peuvent transmettre ces données en temps quasi réel au HVO. Elles sont essentielles pour la détection précoce de l’activité volcanique. Par exemple, au cours de son ascension vers la surface, le magma peut provoquer une inclinaison significative du sol qui est enregistrée par les inclinomètres. En analysant plusieurs ensembles de données, les scientifiques peuvent déterminer la zone où le magma se déplace et si une éruption est imminente.
Les inclinomètres de forage nécessitent un entretien de routine, notamment le changement des batteries et la mise à niveau de la télémétrie radio utilisée pour envoyer les données au HVO.

Maintenance d’un inclinomètre de forage au sommet du Kilauea (Crédit photo : HVO)

Chaque inclinomètre a également une plage d’inclinaison limitée sur laquelle il peut enregistrer la déformation avec précision. Les inclinomètres analogiques du HVO doivent être mis à niveau manuellement si la déformation dépasse 300 microradians. L’inclinomètre aura alors besoin d’un peu de temps pour « se stabiliser » avant que les données puissent être de nouveau utilisées quantitativement. À côté des appareils analogiques, des inclinomètres numériques peuvent être mis à niveau à distance sans interruption de la qualité des données.
Les inclinomètres sont particulièrement utiles pour suivre les changements au fur et à mesure que le sommet du Kilauea gonfle et se dégonfle (phases d’inflation et de déflation). Le réseau d’inclinomètres du Kilauea a aussi fourni des informations précieuses sur la migration du magma entre le sommet et la Middle East Rift Zone au cours des nombreuses intrusions qui ont conduit à la dernière éruption dans et près du Nāpau Crater du 15 au 20 septembre 2024.
Le Mauna Loa fait également l’objet d’une surveillance étroite par le réseau d’inclinomètres du HVO. Bien que moins actif que le Kilauea au cours des dernières décennies, le Mauna Loa est toujours susceptible de donner naissance à des éruptions dangereuses. Au cours des mois qui ont précédé et des heures qui ont suivi le début de l’éruption de 2022, les inclinomètres ont joué un rôle essentiel car ils ont permis aux scientifiques de suivre l’activité et la déformation de plus en plus importante du sommet.
Les inclinomètres sont donc un élément essentiel du réseau de surveillance volcanique à Hawaï. En détectant des changements subtils dans l’inclinaison du sol, ils fournissent des signaux d’alerte précoce et permettent aux scientifiques de mieux comprendre le comportement des volcans d’Hawaï.
Source : USGS / HVO.

 

Données d’inflation du Kilauea obtenues grâce aux inclinomètres installés dans la zone sommitale du volcan (Source : HVO).

——————————————–

I explain in my conference « Volcanoes and volcanic hazards » that the late Maurice Krafft used to compare a volcano about to erupt with a sick or wounded person. Such a person has a fever and chills and usually bad breath. The wound also swells. It is the same with a volcano about to erupt : gas temperature rises ; seismicity increases ; gas composition changes and an inflation of the edifice is detected by the instruments.

This last parameter is developed by the Hawaiian Volcano Observatoty (HVO) in a new « Volcano Watch » episode.

Over the past century, technological advancements have vastly improved volcano monitoring. One key innovation was the introduction of modern borehole tiltmeters, devices that measure very small changes in the inclination of the volcano’s surface.

Borehole tiltmeters have been used by the HVO scientists since the early 1970s and have since become an essential part of the volcano monitoring program. An older style of instrument called a “water tube tiltmeter” goes back even further to the 1950s.

Today the modern tiltmeter network on the Island of Hawaii forms part of a larger array of monitoring tools, including seismic stations, GPS receivers, gas sensors, and webcam/satellite imagery. Together, these tools help scientists keep a close eye on the changing behaviors at volcanoes that may lead to eruptions.

A tiltmeter is a sensitive instrument designed to detect very slight changes in deformation of the ground. They are installed around volcanoes to monitor changes in the Earth’s surface caused by magma moving underground. These movements often precede eruptions, as pressure from magma pushes against the surrounding rock, causing the surface to bulge or shift slightly.

Today’s tiltmeters work with high precision. They can detect changes as small as five nanoradians, or less than one millionth of a degree. This level of precision makes tiltmeters invaluable for tracking subtle changes in volcanic activity and providing early warnings to scientists.

More than a dozen borehole tiltmeters are strategically installed on Kilauea and Mauna Loa at key locations across the volcano summits and calderas. These areas are of particular interest because they are most likely to experience significant ground deformation during periods of volcanic unrest and before an eruption onset.
These tiltmeters operate continuously and produce one data point every 60 seconds, transmitting data in near real-time to HVO. This data is critical for early detection of volcanic activity. For example, when magma begins to rise toward the surface, it can cause noticeable tilting of the ground, which is recorded by the tiltmeters. By analyzing multiple monitoring datasets, scientists can determine where magma is moving and whether an eruption may be imminent.

Borehole tiltmeters need routine maintenance including changing batteries and upgrading the radio telemetry used to send the data back to HVO. Each tiltmeter also has a limited range of tilt over which it can accurately record deformation. For example, HVO analog tiltmeters need to be manually leveled in their boreholes if deformation exceeds 300 microradians. Then, the tiltmeter will need time to “settle” from the physical disturbance before the data can be used quantitively. Other digital tiltmeters can be leveled remotely with no interruption in data quality.

Tiltmeters have been particularly useful in tracking changes as Kilauea’s summit inflates and deflates. Kilauea’s tiltmeter network provided valuable information about magma moving from the summit to the Middle East Rift Zone during the several intrusions leading up to the most recent eruption in and near Nāpau Crater from September 15th to 20th, 2024.

Mauna Loa has also been under close surveillance by HVO’s tiltmeter network. Although less active than Kilauea in recent decades, Mauna Loa is still capable of producing hazardous eruptions. In the months leading up to and in the hours during the initial onset of the 2022 Mauna Loa eruption, tiltmeters played a critical role in helping scientists track unrest and heightened summit deformation.

Tiltmeters are a crucial component of the volcanic monitoring network in Hawaii. By detecting subtle changes in ground inclination, they provide early warning signals of volcanic unrest and help scientists to better understand the behavior of Hawaii’s dynamic volcanoes.

Source : USGS / HVO.