Incendies zombies dans l’Arctique // Zombie wildfires in the Arctic

Dans une note publiée le 21 mai 2020, j’expliquais que les incendies observés dans l’Arctique pendant l’été 2019 avaient survécu à l’hiver sous la forme de « feux zombies ». Ces incendies ont repris en mai, alors que la neige était encore en train de fondre. Les incendies dans l’Arctique contribuent à la fonte du permafrost et envoient d’importantes quantités de carbone dans l’atmosphère, aggravant ainsi le réchauffement climatique, lui-même responsable de ces incendies.
Pour la plupart des gens, les incendies de forêt se résument à des flammes gigantesques qui dévorent les arbres et la végétation qui les entoure. Les incendies zombies, en revanche, ne s’enflamment pas mais brûlent plus lentement ; ils ont tendance à pénétrer profondément dans le sol et à se propager latéralement.Au final, ces incendies quasiment invisibles sont moins accessibles et nécessitent d’être déterrés et arrosés à grande eau. Les feux zombies produisent aussi plus de fumée en raison de leur température de combustion plus basse. Les particules ultrafines contenues dans la fumée sont particulièrement nocives pour les systèmes respiratoire et cardiovasculaire et peuvent être transportées très loin par le vent.

Les incendies qui couvent dans le sous-sol peuvent durer des mois, voire des années. On a constaté qu’ils « hivernent » pendant la saison froide pour réapparaître pendant la saison chaude et sèche. Au cours de la saison des incendies 2019-2020 en Sibérie, les incendies zombies ont été accusés d’avoir repris l’année suivante.
Certains incendies zombies peuvent devenir si vastes qu’ils libèrent des panaches de fumée affectant de vastes régions géographiques. En 1997, des incendies de tourbe en Indonésie ont généré des panaches de fumée qui sont devenus une menace pour toute l’Asie du Sud-Est et certaines parties de l’Australie, avec à la clé une augmentation des émissions de carbone. Ils ont été déclenchés par les activités de culture sur brûlis et amplifiés par les conditions de sécheresse lors d’un puissant épisode El Niño.
Comme indiqué plus haut, les incendies zombies sont plus difficiles à maîtriser et à éteindre pour les pompiers, ils demandent donc plus de ressources pendant de plus longues périodes. Les pompiers de l’Alberta, au Canada, où les tourbières riches en carbone sont courantes, ont été confrontés à des incendies zombies de plusieurs mètres de profondeur en 2023. Les incendies de tourbe peuvent rendre le sol instable et l’utilisation d’équipement lourd pour parcourir les zones d’incendie peut être dangereuse.

Sur tous les incendies de tourbe arctique recensés au cours des 40 dernières années, 70% se sont produits pendant les huit dernières années. 30 % de cette superficie a brûlé pendant la seule année 2020, ce qui montre l’accélération du phénomène.
Source : Yaloo Actualités.

 

Image satellite montrant le réveil d’un incendie qui avait couvé dans le sous-sol arctique pendant tout l’hiver (Source : Copernicus)

——————————————————-

In a post published on May 21st, 2020, I explained that Arctic fires observed in the summer of 2019 survived the winter in the form of « zombie fires ». These fires started again in May, while the snow was still melting. Arctic fires are contributing to the melting of permafrost and sending large amounts of carbon into the atmosphere, thereby exacerbating global warming, which is itself responsible for these fires.

Most people picture wildfires as catastrophic flames consuming trees and grasses. Ground fires, on the other hand, do not flame but burn more slowly and have the tendency to spread deep into the ground and spread laterally. The result is that ground-smoldering fires are not only less visible, but they are also less accessible and require digging up and dousing with lots of water. These smoldering fires also produce more smoke because of their lower temperature of combustion. Ultra-fine particles in smoke are particularly harmful to the respiratory and cardiovascular systems and can be carried far and wide by winds. Smoldering ground fires can burn for months and sometimes years. They have been shown to “overwinter,” persisting through the cold season to reemerge in the warm, dry season. During the 2019-2020 fire season in Siberia, zombie fires were blamed for rekindling fires the following year.

Some of these ground fires can become so massive that they release smoke plumes that cover vast geographical regions. In 1997, peat fires in Indonesia sent dangerous levels of smoke across Southeast Asia and parts of Australia and increased carbon emissions. They were ignited by slash-and-burn activities and amplified by drought conditions during a severe El Niño event.

Soil fires that spread underground are harder for firefighters to tame and extinguish, thus demanding more resources for longer periods of time. Firefighters in Alberta, Canada, where carbon-rich peatlands are common, have been dealing with fires smoldering to depths of several meters underground in 2023. Because peat fires can make the ground unstable, using heavy equipment to excavate the fire areas also becomes risky.

About 70% of recorded area of Arctic peat affected by burning over the past 40 years occurred in the last eight years, and 30% of it was in 2020 alone, showing the acceleration.

Source : Yaloo News.

Le méthane du Svalbard, un autre danger pour la planète // Svalbard methane, another danger for the planet

On sait depuis longtemps que le pergélisol arctique, c’est-à-dire le sol gelé pendant au moins deux ans, cache d’énormes quantités de méthane. Si le sol gelé fondait, cela libérerait d’énormes quantités de ce puissant gaz à effet de serre dans l’atmosphère.
Parmi les régions arctiques, le Svalbard est un archipel norvégien situé au plus profond du cercle polaire et à seulement 800 kilomètres du pôle Nord. Les missions qui impliquent de forer dans le sol gelé à la recherche de combustibles fossiles ont souvent touché des poches de gaz naturel par accident, mais l’étendue de ces réserves était inconnue.

Les auteurs d’une étude publiée en décembre 2023 dans la revue Frontiers in Earth Science ont utilisé des données historiques provenant de forages commerciaux et scientifiques pour cartographier le pergélisol dans tout le Svalbard et localiser ces réserves de gaz naturel. Les chercheurs ont découvert que les gisements riches en méthane sont beaucoup plus répandus qu’on ne le pense dans l’archipel. Étant donné que des îles ont une histoire géologique et glaciaire similaire à celle du reste de la région arctique, il pourrait en être de même pour d’autres endroits couverts de pergélisol près du pôle Nord.
L’empreinte du pergélisol au Svalbard n’est pas uniforme et son imperméabilité au méthane n’est pas la même partout. Les zones côtières ont une croûte de sol gelé plus fine en raison de la chaleur apportée par les courants océaniques, tandis que le pergélisol des basses terres est épais et saturé de glace, ce qui signifie qu’il possède de très bonnes propriétés d’étanchéité et peut retenir le gaz sous terre. Dans les hautes terres, le pergélisol est plus floconneux et plus perméable en raison des conditions sèches.
De plus, les chercheurs ont découvert que la base du pergélisol est irrégulière et ondulée, ce qui crée des poches entre le pergélisol et la géologie sous-jacente où les gaz provenant de sources biologiques et non biologiques peuvent s’accumuler et être piégés. Si ce sceau de pergélisol – appelé « capuchon cryogénique » dans l’étude – se  désintégrait, cela pourrait déclencher une réaction en chaîne dans laquelle le fort effet de réchauffement du méthane ferait fondre davantage de pergélisol et libérerait encore plus de gaz. Cette boucle de rétroaction accélérerait encore davantage le réchauffement, la fonte et les émissions de méthane.

À l’heure actuelle, les fuites sous le pergélisol sont très faibles, mais des facteurs tels que le retrait des glaciers et le dégel du pergélisol pourraient faire apparaître ce problème à l’avenir.

On sait que sous ces sols gelés se trouvent au moins de 1 700 milliards de tonnes de méthane. Un chiffre qui a de quoi effrayer. Car si le méthane reste bien moins longtemps dans l’atmosphère que le CO2 (une dizaine d’années contre une centaine d’années pour le dioxyde de carbone), il est 84 fois plus puissant les premières années ou il se libère dans l’atmosphère.

Source  : Médias d’information internationaux.

A noter dans l’émission « Les trains pas comme les autres » sur la chaîne France 5 une très bonne séquence, assez surprenante, consacrée au Svalbard.

°°°°°°°°°°

Peu de gens le savent, mais il existe au Svalbard une Réserve mondiale de semences – the Svalbard Global Seed Vault. C’est une chambre forte souterraine destinée à conserver dans un lieu sécurisé des graines de toutes les cultures vivrières de la planète et ainsi de préserver la diversité génétique. Abritant près d’un million de variétés, cette Réserve offre un filet de sécurité face aux catastrophes naturelles, aux guerres, au changement climatique, ou encore aux maladies.

Source: Wikipedia

Ce site a été choisi parce que le climat et la géologie du Spitzberg représentent un environnement idéal pour un tel projet de conservation. Le problème, c’est qu’aujourd’hui, avec la hausse globale des températures, la Réserve a chaud, trop chaud. En 2016, une poussée du mercure a bouleversé l’environnement autour de l’ancienne mine de charbon en faisant fondre le pergélisol. Or ce sol, normalement gelé en permanence, est censé contribuer à maintenir à la température idéale de -18°C à l’intérieur de la chambre forte.

En réaction à cette situation inquiétante, la Norvège a débloqué une dizaine de millions d’euros pour améliorer les conditions de conservation des précieuses graines. Le tunnel d’accès a été renforcé et un local a été érigé à proximité du site pour abriter le matériel technique et éloigner toute source de chaleur susceptible de contribuer à une nouvelle fonte du pergélisol.

————————————————–

It has been known for a log time that the Artic permafrost, or ground that remains frozen for at least two years, is hiding huge quantities of methane. Should the frozen ground thaw, it would release huge quantities of this powerful greenhouse gas into the atmosphere.

Among the Arctic regions, Svalbard is a Norwegian archipelago located deep inside the Arctic Circle and just 800 kilometers from the North Pole. Missions that involve drilling into the frozen soil in search of fossil fuels often hit pockets of natural gas by accident, but the extent of these reserves was unknown.

The authors of a study published in December 2023 in the journal Frontiers in Earth Science used historical data from commercial and scientific boreholes to map the permafrost throughout Svalbard and pinpoint these stores of natural gas. The researchers found deposits rich in methane are much more common than thought on the islands. Given that the archipelago has a similar geological and glacial history to the rest of the Arctic region, the same could be true of other permafrost-covered locations near the North Pole.

The permafrost seal on Svalbard is not uniform. Coastal areas have a thinner crust of frozen soil due to the warmth brought by ocean currents, whereas permafrost in the lowlands is thick and saturated with ice, meaning it has extremely good sealing properties and can keep the gas underground. In the highlands, the permafrost is flakier and more permeable due to dry conditions.

Theresearchers found that the base of permafrost is undulating, which creates pockets between the permafrost and the underlying geology where gas from biological and non-biological sources can accumulate and become trapped. Should this permafrost seal disintegrate, it could set off a chain reaction in which the methane’s strong warming effect would thaw more permafrost and release even more gas. This feedback loop would further accelerate warming, melting and methane emissions.

At present, the leakage from below permafrost is very low, but factors such as glacial retreat and permafrost thawing may ‘lift the lid’ on this in the future.

It is known that beneath these frozen soils are at least 1.7 trillion tons of methane. A frightening figure. Because if methane stays in the atmosphere much shorter than CO2 (around ten years compared to around a hundred years for carbon dioxide), it is 84 times more powerful in the first years when it is released into the atmosphere.

Source : International news media.

°°°°°°°°°°

Few people know it, but there is in Svalbard the Svalbard Global Seed Vault. It is an underground vault intended to store the seeds of all the planet’s food crops in a secure location and thus preserve genetic diversity. Home to nearly a million species, this Reserve offers a safety net against natural disasters, wars, climate change and even disease.
This site was chosen because the climate and geology of Spitsbergen represent an ideal environment for such a conservation project. The problem is that today, with the global rise in temperatures, the Reserve is hot, too hot. In 2016, a temperature rise disrupted the environment around the former coal mine by melting the permafrost. This ground, normally permanently frozen, is supposed to help maintain the ideal temperature of -18°C inside the vault.
In response to this worrying situation, Norway has released around ten million euros to improve the conservation conditions of the precious seeds. The access tunnel was reinforced and a room was erected near the site to house the technical equipment and keep away any heat source likely to contribute to further melting of the permafrost.

Impacts du réchauffement climatique à haute altitude dans les Alpes

Ludovic Ravanel, géomorphologue, guide de haute montagne et directeur de recherche au CNRS, a coordonné, avec Florence Magnin et deux autres collègues, le dernier numéro de la Revue de Géographie AlpineJournal of Alpine Research – sur les versants de haute montagne et les impacts de la crise climatique actuelle.

Dans le chapitre intitulé “Coups de chaud sur la haute montagne alpine”, on a la confirmation que les étés accompagnés de records de chaleur (2003, 2015, 2022, 2023) ont donné un coup d’accélérateur à la fonte de la haute montagne alpine. À Chamonix, au pied du mont Blanc, ces quatre années occupent respectivement les troisième, quatrième, première et deuxième positions des saisons les plus chaudes depuis le début des mesures en 1934. Comme je l’ai expliqué dans plusieurs notes sur ce blog, les témoins les plus visibles sont les pertes records au niveau des glaciers : plus de 16 m perdus par la Mer de Glace sous le site touristique du Montenvers ; plus de 10 % du volume des glaciers suisses perdus en deux ans. Ces pertes glaciaires se sont accompagnées d’une plus grande fréquence des écroulements rocheux sur le massif du Mont-Blanc, sans équivalent ces dernières décennies (près de 300 en 2022, selon Ludovic Ravanel). Dans les Alpes italiennes, le nombre de déstabilisations de versants rocheux en haute montagne a doublé en 2022 par rapport à la période 2000-2021. Plus inquiétant encore, les bouleversements sont visibles aux plus hautes altitudes, y compris au-dessus de 4000 m, un domaine jusque-là relativement épargné. Signe de l’impact du réchauffement climatique à très haute altitude, celle du Mont Blanc a été mesurée en septembre 2023 à 4805,59 m ; elle n’a jamais été aussi basse depuis le lever topographique du capitaine Jean-Joseph Mieulet en 1863. Les températures ont atteint des records à ces altitudes. Ainsi, le 18 juin 2022 une température de 10,4 °C a été enregistrée au col Major à côté du sommet du mont Blanc,. De la même façon, pendant quatre jours consécutifs l’isotherme 0 °C s’est situé au-dessus de 5000 m début septembre 2023. Dans la conclusion de ce chapitre, on peut lire que « l’accélération rapide du réchauffement climatique en cours dans les massifs alpins fait du devenir des glaciers et des secteurs à permafrost des préoccupations de plus en plus centrales pour des raisons environnementales, patrimoniales, économiques et sécuritaires. Ces éléments de la cryosphère pourraient quasiment disparaître du massif alpin d’ici la fin du siècle, avec des conséquences majeures en termes de ressources et de risques. »

 

Photo: C. Grandpey

++++++++++

S’agissant du permafrost dans les Alpes, on apprend que son épaisseur dépasse largement la profondeur des forages instrumentés (100 m), profondeur à laquelle les effets du réchauffement climatique des dernières décennies est déjà perceptible. On apprend aussi que la température à 15-20 m se réchauffe au même rythme que celle de l’atmosphère (0,8 °C en 35 ans) et que ce réchauffement se propagera en profondeur au cours des prochains siècles, quelle que soit l’évolution climatique future, avec d’importantes implications sur la stabilité des versants concernés. Cela conforte mon inquiétude à propos du téléphérique de l’Aiguille du Midi. Quand je l’ai emprunté en 2017, je me suis demandé jusqu’à quand les soubassements rocheux des pylônes pourraient résister à la hausse des températures. Un réchauffement moyen de 0,2 à 0,4 °C par décennie est mesuré en profondeur ainsi qu’un approfondissement de la couche active de 2 m par décennie.

Le dégel du permafrost dans le massif du Mont-Blanc aura des conséquences inéluctables, que ce soit dans la planification territoriale, les besoins géotechniques ou la réduction des risques par les pratiquants de la haute montagne. Parmi les questions ouvertes demeure la quantification des infiltrations d’eau et de ses effets dans les parois rocheuses affectées par le permafrost ainsi que la quantification de la teneur en glace de ces terrains.

 

Aiguille du Midi (Photo: C. Grandpey)

++++++++++

Les risques induits par l’évolution actuelle de la cryosphère ont fait l’objet de deux études La première s’intéresse aux écroulements rocheux et de séracs de grande ampleur dont l’occurrence est attestée durant la saison hivernale. La deuxième aborde les risques encourus par les grimpeurs empruntant les deux principales voies d’accès au sommet du mont Blanc.

Les écroulements rocheux et de glace affectant la haute montagne sont bien plus rares en hiver que durant les autres saisons. La fréquence maximale intervient en été. En revanche, les événements hivernaux sont comparativement d’ampleur plus importante que ceux du reste de l’année, en raison de l’incorporation de neige, mais aussi parce que c’est à la fin de l’automne que l’onde de chaleur estivale atteint sa profondeur maximale, pouvant ainsi déstabiliser de grands volumes rocheux. Les événements hivernaux ont donc une probabilité supérieure d’atteindre des infrastructures. Toutefois, seule la période récente (depuis 1997) a vu des événements d’ampleur se produire à haute altitude dans des zones affectées par le permafrost.

Les alpinistes sont les principaux pratiquants de la haute montagne et sont les premiers concernés par l’évolution des conditions nivologiques et géomorphologiques des itinéraires empruntés.

Comme toit de l’Europe occidentale, le mont Blanc a un statut iconique et est tenté chaque année par plus de 20 000 personnes. Le risque encouru par les alpinistes sur les deux voies principales d’accès à ce sommet, dont la voie normale du Goûter, notoirement accidentogène, a été évalué pour la première fois dans une étude réalisée par Ludovic Ravanel. Les deux voies ne sont pas exposées aux mêmes types de dangers objectifs : chutes de pierres pour le Goûter et chutes de séracs pour les Trois Monts. La méthodologie novatrice utilisée repose sur le croisement des données issues de capteurs pyroélectriques pour quantifier les passages et de capteurs sismiques pour l’enregistrement des chutes de pierres dans le couloir du Goûter, tandis que la photographie automatique a été utilisée pour les Trois Monts. Les résultats montrent un risque individuel de décès deux fois inférieur pour la voie des Trois Monts que pour le Goûter, risque considéré dans les deux cas comme « tolérable » au regard des seuils d’acceptabilité sociale du risque en France.

Alpinistes au sommet du Mont Blanc (Photo: C. Grandpey)

Tourbières, permafrost et gaz à effet de serre // Peatlands, permafrost and greenhouse gases

Le nombre et l’intensité des incendies de forêt ont augmenté, notamment dans l’Arctique, en raison du réchauffement climatique et devraient s’aggraver avec le temps. En plus de détériorer la qualité de l’air et de détruire des régions entières, ces incendies contribuent également à l’accélération du réchauffement climatique sur Terre. En effet, le feu s’attaque aux tourbières et aux zones de pergélisol, ce qui peut avoir des conséquences catastrophiques.
Les tourbières sont des écosystèmes de zones humides dans lesquels la terre gorgées d’eau empêche la décomposition complète des matières végétales. On les rencontre sur tous les continents et sous tous les climats et, parce qu’elles sont constituées de matière organique, elles ont piégé de grandes quantités de dioxyde de carbone. De nombreuses tourbières sont restées gelées pendant des milliers d’années dans le permafrost. On estime que près de 20 % des zones de pergélisol stockent près de 50 % du carbone du sol dans cet écosystème, ce qui correspond à près de 10 % du stockage de carbone dans le sol à l’échelle de la planète
Les tourbières sont d’énormes puits de carbone sur Terre car elles absorbent et stockent du carbone depuis des dizaines de milliers d’années. Les tourbières gelées, en particulier, retiennent près de 40 milliards de tonnes de carbone. Elles constituent une bombe à retardement à cause du réchauffement climatique et des incendies de végétation qui sont devenus de plus en plus fréquents. Les humains sont également responsables car ils ont drainé et asséché les tourbières à des fins agricoles ou forestières. En plus de cela, El Niño apporte un temps encore plus chaud et sec de sorte que les incendies peuvent devenir incontrôlables, alimentés par la tourbe, pendant des semaines ou plus.
Dans plusieurs notes sur la Sibérie, j’ai expliqué que les températures plus chaudes ont provoqué des « incendies zombies », autrement dit des incendies qui se propagent sous terre et qui peuvent brûler pendant des mois. Ces incendies brûlent plus lentement que les incendies de forêt classiques et ont tendance à se propager en profondeur et latéralement dans le sol.
A mesure que les incendies se déplacent vers le nord, les sols tourbeux brûlent à un rythme accéléré. Dans le même temps, la tourbe en brûlant fait disparaître la couche isolante du pergélisol.
La destruction des tourbières peut entraîner le rejet de milliards de tonnes de carbone dans l’atmosphère, aggravant ainsi la crise climatique. De plus, les incendies peuvent faire dégeler le pergélisol et déclencher une cascade de processus microbiens qui peuvent également générer des gaz à effet de serre. Le problème le plus inquiétant est que le carbone mettra encore au moins 1 000 ans pour revenir dans la tourbe.
En fin de compte, on assiste à la perte de carbone due au feu et au dégel du permafrost, ce qui aboutit à un changement rapide de la couverture terrestre par la végétation. Les scientifiques expliquent que si nous ne rétablissons pas cet écosystème afin de le rendre au moins neutre en carbone et éventuellement le faire redevenir un puits de carbone, les tourbières et les zones de pergélisol deviendront de puissantes sources d’émissions de gaz à effet de serre dans l’atmosphère.
Source : Yahoo Actualités.

———————————————-

The number and intensity of wildfires have increased, especially in the Arctic, due to global warming and are expected to worsen over time. Along with ruining air quality and causing destruction, wildfires also play a part in worsening global warming in general. Indeed, the burning damages peatlands and permafrost peatlands, which could have catastrophic outcomes.

Peatlands are terrestrial wetland ecosystems in which waterlogged conditions prevent plant material from fully decomposing. They are located on every continent and climate and because they are made up of organic matter have trapped lots of carbon dioxide. Many peatlands have been frozen over thousands of years in permafrost . Nearly 20% of the permafrost areas store nearly 50% of soil carbon of the permafrost ecosystem, which corresponds to nearly 10% of the global terrestrial soil carbon pool.

Peatlands are huge terrestrial carbon stores because they have been taking in and storing carbon for tens of thousands of years. Frozen peatlands in particular are holding on to almost 40 billion tons of carbon within them. They are a ticking time bomb of emissions due to global warming. This is due to temperature rises because of climate change and to wildfires which have become more prevalent. Humans have also been draining peatland to convert for agricultural or forestry purposes. On top of that, El Niño brings dry weather to the region, fires in the region can go out of control for several weeks or more, with lots of peat burning.

In several posts about Siberia, I have explained that the warmer temperatures have caused « zombie fires, » which are underground fires that may burn for months. These fires burn more slowly than typical wildfires and have the tendency to spread deep into the ground and spread laterally.

As the fires move northward, peat soils burn at an accelerated rate. The burning peat also removes the layer insulating permafrost.

The destruction of peatlands can cause billions of tons of carbon to be released into the atmosphere, worsening the already intensifying climate crisis. Moreover, fires can thaw permafrost and begin a cascade of microbial processes that may also generate greenhouse gases. The biggest problem is that carbon will take at least another 1,000 years to go back into the peat.

In the end, there is the carbon loss from the fire and the carbon loss from the permafrost thaw and then a more rapid change in the land cover. Scientists explain that if we don’t restore that ecosystem to make it at least carbon neutral and ipossibly a carbon sink again, peatlands and permafrost peatlands will become powerful sources of greenhouse gas emissions to the atmosphere.

Source : Yahoo News.

Photo: C. Grandpey

 

Image satellite montrant le réveil d’un incendie qui avait couvé dans le sous-sol arctique pendant tout l’hiver (Source : Copernicus)