Un nouveau type de volcan découvert sous les Bermudes // Discovery of a new type of volcano beneath Bermuda

Selon une étude dont les résultats ont été publiés dans la revue Nature, un volcan situé sous les Bermudes s’est formé d’une manière jamais observée auparavant. Il semble avoir été créé par des matériaux en provenance de la zone de transition située entre le manteau supérieur et le manteau inférieur. Elle se trouve entre 400 et 640 kilomètres sous la surface de la Terre et est riche en eau, en cristaux et en roches fondues.
Les volcans se forment généralement lorsque les plaques tectoniques se rencontrent dans un processus de subduction ou d’accrétion, ce qui génère des fractures à la surface de la Terre par lesquelles le magma peut s’échapper. Les volcans peuvent également se former au niveau de «points chauds», comme à Hawaii.
Les chercheurs viennent de découvrir que les volcans peuvent également se former lorsque du matériau remonte de la zone de transition. Les auteurs de l’étude estiment qu’il s’est produit une perturbation dans la zone de transition, ce qui a entraîné une fonte des matériaux de cette couche et leur remontée vers la surface.
Quand ils ont fait leur découverte, les chercheurs analysaient un volcan en sommeil au fond de l’Océan Atlantique et responsable de la formation des Bermudes. Ils examinaient la composition chimique d’une carotte de 780 mètres; en analysant sa composition, ils pensaient pouvoir construire une image de l’histoire volcanique des Bermudes.
Avant cette étude, on pensait que les Bermudes étaient le résultat d’une anomalie thermique profonde dans le manteau terrestre, mais il n’existait aucune donnée directe venant confirmer cette hypothèse. Cela est dû au fait que l’édifice volcanique est complètement recouvert de calcaire. Les scientifiques s’attendaient à découvrir que le volcan était le fruit d’un panache mantellique, comme à Hawaï, mais ce n’est pas ce qu’ils ont trouvé. Les mesures effectuées à partir de l’échantillon mentionné précédemment ne correspondaient à rien de connu, ce qui laisait supposer que la lave provenait d’une source non identifiée jusqu’à présent.
Les échantillons contenaient des signatures de la zone de transition. Comparés à ceux prélevés dans les zones de subduction, il y avait plus d’eau emprisonnée dans les cristaux. On sait que la zone de transition contient d’énormes quantités d’eau. Selon une étude précédente, il y a trois fois plus d’eau dans cette région de la Terre que dans tous les océans du monde.
Les modèles numériques développés par l’équipe scientifique indiquent qu’une perturbation dans la zone de transition a provoqué la remontée des matériaux vers le surface. Le phénomène aurait eu lieu il y a environ 30 millions d’années et a mis en place le socle sur lequel reposent les Bermudes aujourd’hui. C’est la première fois que des scientifiques découvrent que les volcans peuvent se former de la sorte, dans la zone de transition située au cœur du manteau terrestre.
Source: Newsweek.

——————————————–

According to a study whose findings have been published in the journal Nature, a volcano beneath Bermuda formed in a way that has never been seen before. It appears to have been created by material rising up from the transition zone, the region between the upper and lower mantle. It extends between 400 and 640 kilometres beneath the surface of the planet and is rich in water, crystals and melted rock.

Volcanoes usually form when the tectonic plates are pushed together in a subduction process or pull apart, producing a crack in Earth’s surface where magma can escape. They can also form at “hotspots,” like in Hawaii.

Now, researchers have found volcanoes can also form when material moves up from the transition zone. The authors of the study believe there was a disturbance in the transition zone that forced the material in this layer to melt and move up towards the surface.

The researchers were analyzing a now dormant volcano beneath the Atlantic Ocean that was responsible for the formation of Bermuda. They were looking at the chemical composition of a 780-metre core sample; by understanding its makeup they thought they could build a picture of Bermuda’s volcanic history.

Before this study, Bermuda had been interpreted as the result of a deep thermal anomaly in the Earth’s mantle, but there was no direct data to support this. This is due to the fact that the volcanic edifice is completely covered by limestone. The scientists were expecting to show that the volcano was a mantle plume formation like Hawaii. Actually, this was not what they found. The measurements taken from the core sample were unlike anything seen before, suggesting the lava came from a previously unidentified source.

The samples contained signatures from the transition zone. Compared to samples taken from subduction zones, there was more water trapped in the crystals. The transition zone is known to contain vast quantities of water, a previous study calculated there is three times as much water in this region of Earth than is present in all the world’s oceans.

Numerical models developed by the team indicate a disturbance in the transition zone forced the material up. This is thought to have taken place about 30 million years ago and provided the foundation that Bermuda sits on today. This is the first time scientists have found a clear indication from the transition zone deep in the Earth’s mantle that volcanoes can form this way.

Source : Newsweek.

 Illustration montrant comment le volcan s’est formé. Wendy Kenigsberg / Clive Howard – Université Cornell, modifiée par Mazza et al. (2019)

La zone de subduction de Cascadia (Etats-Unis) // The Cascadia subduction zone (United States)

Le volcanisme et la sismicité le long de la Chaîne des Cascades dans l’ouest des États-Unis sont largement déterminés par la tectonique des plaques dans la région. La zone de subduction de Cascadia, de 1 000 kilomètres de long, qui n’a pas connu de puissant séisme depuis 1700, est l’endroit où la plaque océanique Juan de Fuca plonge sous la plaque continentale nord-américaine. Cette zone de faille s’étend depuis le nord de l’île de Vancouver jusqu’au Cap Mendocino dans le nord de la Californie.
La carte ci-dessous montre la zone de subduction de Cascadia avec une zone grisée englobant les zones sur terre et en mer où les sismomètres ont été installés par des chercheurs de l’Université de l’Oregon. Les données sismiques leur ont permis d’identifier des anomalies aux deux extrémités de la zone de faille où ils pensent que certaines parties du manteau supérieur se soulèvent et modulent l’activité sismique.
Grâce à quatre années de données provenant de 268 sismomètres au fond de l’océan et de plusieurs centaines d’autres sur terre, les chercheurs ont détecté des anomalies dans le manteau supérieur en dessous des deux extrémités de la zone de subduction de Cascadia. Ces anomalies peuvent jouer un rôle dans l’emplacement, la fréquence et la force des séismes le long de la côte nord-ouest des États-Unis. L’étude a été publiée dans la revue Geophysical Research Letters.
Les anomalies, qui correspondent aux zones ayant des vitesses d’ondes sismiques plus faibles qu’ailleurs sous la ligne de faille, indiquent des parties du manteau supérieur de la Terre qui se soulèvent en raison de la fonte des roches et éventuellement sous l’effet des hautes températures. Le manteau se soulève sous la partie méridionale de la zone de déformation de Gorda , à la limite septentrionale de la faille de San Andreas, ainsi que sous la Péninsule Olympique (ou Olympic) et le sud de l’île de Vancouver. Ces régions n’ont pas le même comportement que l’ensemble de la faille. On observe trois segments qui ont des caractéristiques géologiques distinctes. Ainsi, les segments nord et sud ont un niveau de verrouillage de plaque plus élevé et une densité de tremor plus accentuée.
Le verrouillage fait référence à la force de contact entre deux plaques. Cela signifie que les plaques accumulent des contraintes qui, en se libérant, peuvent provoquer de puissants séismes. Ce verrouillage est beaucoup plus faible dans la partie centrale de la zone de Cascadia qui comprend la majeure partie de l’Oregon où de plus petits séismes peu fréquents ont tendance à se produire.
Le tremor, quant à lui, fait référence aux signaux sismiques de longue durée souvent observés dans les zones de subduction.
L’étude ne permettra probablement pas de mieux prévoir les séismes mais elle souligne la nécessité d’une surveillance sismique en temps réel sur terre et en mer, ainsi que d’analyses géodésiques telles que le GPS pour permettre de tracer les coordonnées spatiales des anomalies.
L’étude a utilisé l’imagerie profonde avec différentes formes d’ondes sismiques provenant de séismes lointains qui se déplacent à travers la Terre. Les stations sismiques au fond de l’océan, dont les données sont récupérées tous les dix mois, faisaient partie de la Cascadia Initiative financée par la National Science Foundation. L’étude a également utilisé des données plus anciennes provenant de nombreuses recherches menées sur la terre ferme dans l’ouest des États-Unis.
Source: Université de l’Oregon.

———————————————–

Volcanism and seismicity along the Cascade Range in Western U.S.A. are largely determined by plate tectonics in the area. The 1,000-kilometres subduction zone, which has not experienced a powerful earthquake since 1700, is where the Juan de Fuca ocean plate dips under the North American continental plate. The fault zone stretches just offshore from northern Vancouver Island to Cape Mendocino in northern California.

The map below shows the Cascadia Subduction Zone with a shaded area encompassing the onshore and offshore areas where seismometers were located by University of Oregon researchers. Data from the seismometers helped them identify seismic anomalies at both ends of the fault where they believe pieces of the upper mantle are rising and modulating earthquake activity.

With four years of data from 268 seismometers on the ocean floor and several hundred on land, researchers have found anomalies in the upper mantle below both ends of the Cascadia Subduction Zone. They may influence the location, frequency and strength of earthquake events along the U.S. Pacific Northwest. The study was released by the journal Geophysical Research Letters.

The anomalies, which reflect regions with lower seismic wave velocities than elsewhere beneath the fault line, point to pieces of the Earth’s upper mantle that are rising because of melting rock and possibly elevated temperatures. The mantle is rising under the southern Gorda deformation zone at the north edge of the San Andreas Fault and under the Olympic Peninsula and southern Vancouver Island. These regions do not have the same behaviour as the entire fault. There are three segments that have their own distinct geological characteristics. The north and south segments have increased locking and increased tremor densities.

Locking refers to how strongly two plates stick. This means that the plates are building up stress that may lead to powerful earthquakes when it is released.  Locking is much weaker in Cascadia’s central section, which includes most of Oregon, where infrequent, smaller quakes tend to occur.

Tremor refers to long-duration seismic signals often seen at subduction zones.

The study will not help earthquake forecasting, but it points to the need for real time onshore-offshore seismic monitoring and geodetic analyses, such as from GPS to help plot spatial coordinates, of the anomalies.

The study involved deep imaging using different forms of seismic waves coming from distant earthquakes moving through the Earth. The ocean-bottom seismic stations, from which data were retrieved every 10 months, were part of the National Science Foundation-funded Cascadia Initiative. Older data from numerous onshore studies in the western United States also were included in the analysis.

Source : University of Oregon.

 Carte montrant la zone de subduction de Cascadia (Source: University of Oregon)

 

Le soulèvement de l’Antarctique // Antarctica’s uplifting

Une étude publiée le 21 juin 2018 dans la revue Science révèle que le substrat rocheux sous l’Antarctique se soulève beaucoup plus vite qu’on le pensait, à raison d’environ 41 millimètres par an, probablement en raison de l’amincissement de la glace qui se trouve au-dessus. En effet, à mesure que la glace fond, son poids et sa pression sur la masse rocheuse diminuent. Avec le temps, lorsque d’énormes quantités de glace disparaissent, le substratum rocheux se soulève, poussé par le manteau visqueux sous la surface de la Terre. C’est un phénomène qui a été baptisé rebond isostatique par les scientifiques.
Ce soulèvement du substrat rocheux de l’Antarctique est à la fois une bonne et une mauvaise nouvelle. La bonne nouvelle, c’est que ce soulèvement du substrat rocheux pourrait stabiliser la calotte glaciaire. La mauvaise nouvelle, c’est qu’il a faussé les mesures satellitaires montrant la perte de glace qui a probablement été sous-estimée d’au moins 10%.
Le substrat rocheux de l’Antarctique est difficile à étudier parce qu’il est en grande partie recouvert d’une épaisse couche de glace; D’après la NASA, l’Antarctique contient environ 90% de toute la glace de la Terre, de sorte que sa fonte intégrale pourrait entraîner une hausse d’environ 60 mètres du niveau des océans. Pour mesurer les changements intervenus sur le continent, les chercheurs ont installé six stations GPS en différents points de l’Amundsen Sea Embayment (ASE), une vaste échancrure littorale de la Baie d’Admundsen, de la taille du Texas. Ils ont placé les capteurs GPS dans des endroits où le substrat rocheux était accessible, ce qui a permis de recueillir des données à une résolution spatiale de 1 km, plus élevée que celle obtenue dans des études antérieures.
Les scientifiques s’attendaient à voir un lent rebond isostatique. Au lieu de cela, ils ont constaté qu’il était environ quatre fois plus rapide que prévu. C’est le plus rapide jamais enregistré dans des zones glaciaires. Les résultats laissent supposer que le manteau sous-jacent est très réactif lorsque le poids important de la glace s’amoindrit, ce qui entraîne un soulèvement rapide du substrat.
Le soulèvement du substrat rocheux est certes le résultat de la perte de glace au cours du siècle dernier, mais cette perte de glace continue de nos jours à une vitesse inquiétante sous l’effet du changement climatique induit par l’homme. La quantité de glace qui a disparu du continent antarctique depuis 1992 a provoqué une élévation du niveau de la mer d’environ 8 mm. Les scientifiques de la NASA ont récemment prédit que le West Antarctic Ice Sheet (WAIS) – inlandsis antarctique occidental – pourrait disparaître entièrement dans les 100 prochaines années, entraînant une élévation du niveau de la mer de près de 3 mètres.
Les chercheurs font remarquer  que la fonte de l’Antarctique occidental pourrait avoir un aspect positif. Le soulèvement du substrat rocheux sous cette région pourrait permettre de stabiliser la calotte glaciaire et empêcher sa disparition totale, en dépit du réchauffement climatique qui affecte la planète.
Le point négatif, c’est que les estimations de la perte de glace en Antarctique dépendent des mesures satellitaires qui peuvent être affectées par des changements de masse significatifs. Les mesures risquent donc d’être faussées, avec des marges d’erreur pouvant atteindre jusqu’à 10 pour cent.
Source: Live Science.

———————————————–

A study published on June 21st, 2018 in the journal Science reveals that the bedrock under Antarctica is rising more swiftly than ever recorded — about 41 millimetres upward per year, probably due to the thinning of the ice above. Indeed, as ice melts, its weight on the rock below lightens. And over time, when enormous quantities of ice have disappeared, the bedrock rises in response, pushed up by the flow of the viscous mantle below Earth’s surface, a phenomenon called post-glacial rebound or isostatic rebound.

This uplifting is both bad news and good news for the frozen continent. The good news is that the uplift of supporting bedrock could make the remaining ice sheets more stable. The bad news is that in recent years, the rising earth has probably skewed satellite measurements of ice loss, leading researchers to underestimate the rate of vanishing ice by as much as 10 percent.

Antarctica’s bedrock is difficult to study because most of it is covered by thick layers of ice; the continent’s ice sheet cover holds about 90 percent of all the ice on Earth, containing enough water to elevate sea levels worldwide by about 60 metres, according to NASA. To measure how it was changing, the researchers installed six GPS stations at locations around the Amundsen Sea Embayment (ASE), a region of the ice sheet roughly the size of Texas, that drains into the Amundsen Sea. They placed the GPS monitors in places where bedrock was exposed, gathering data at a spatial resolution of 1 km, higher than any recorded in prior studies.

The scientists expected to see some evidence of slow uplift in the bedrock over time. Instead, they saw that the rate of the uplift was about four times faster than anticipated from ice-loss data. The velocity of the rebound in the ASE was one of the fastest rates ever recorded in glaciated areas. The findings suggest that the mantle underneath is fast-moving and fluid, responding rapidly as the heavy weight of ice is removed to push the bedrock upward very quickly.

The bedrock uplift is a result of ice loss over the past century, but ice continues to vanish from parts of Antarctica at a dramatic rate, spurred by human-induced climate change. The amount of ice that has vanished from the continent since 1992 caused about 8 mm of sea level rise. And scientists recently predicted that the West Antarctic Ice Sheet (WAIS) could collapse entirely within the next 100 years, leading to sea level rise of up to nearly 3 metres.

But the researchers suggest that there may be a ray of hope for the weakening WAIS. The deforming bedrock under Antarctica, buoyed by a fluid mantle, could provide an unexpected source of support for the WAIS. In fact, the bedrock’s uplift could stabilize the WAIS enough to prevent a complete collapse, even under strong pressures from a warming world.

There’s a downside to the scientists’ findings, too. Estimates of ice loss in Antarctica depend on satellite measurements of gravity in localized areas, which can be affected by significant changes in mass. If the bedrock under Antarctica is rapidly adjusting in response to ice loss, its uplift would register in gravity measurements, compensating for some ice loss and obscuring just how much ice has truly disappeared by about 10 percent.

Source : Live Science.

Source: NOAA

Histoire de cristaux d’olivine à Hawaii // About olivine crystals in Hawaii

Alors que l’éruption du Kilauea se poursuit intensément, les habitants sont surpris de trouver de petits cristaux verts tombés du ciel pendant l’éruption. Ce sont en fait des cristaux d’olivine, un minéral très répandu dans la lave à Hawaii. En géologie, on parle aussi de péridotite, roche constituée principalement de cristaux d’olivine et de pyroxènes, alors que l’olivine est un minéral. Pendant une éruption, le volcan fait éclater les lambeaux de lave, ce qui permet de séparer les minéraux verts d’olivine du reste de la masse en fusion et de laisser tomber ces minuscules cristaux à l’aspect de pierres précieuses.
Plusieurs plages à Hawaii ont une couleur verdâtre, en raison de la forte concentration d’olivine. En fait, l’olivine est l’un des minéraux les plus répandus sous la surface de la Terre, mais il est assez difficile de le trouver séparé de la roche mère et encore plus difficile de le trouver avec une qualité de gemme.
L’olivine est si répandue que l’on estime que plus de 50% du manteau supérieur de la Terre est composé d’olivine ou de variantes du minéral. Les volcans d’Hawaï sont le produit d’un point chaud ou hotspot, ce qui signifie que la composition d’origine du manteau supérieur n’est pas modifiée de manière significative lorsqu’elle atteint la surface de la Terre.

La raison pour laquelle il y a une variété d’autres roches sur les continents est en grande partie due aux modifications subies par le magma au cours de son ascension sous chaque continent. Ce voyage à travers différentes couches de la croûte terrestre ajoute et élimine les éléments chimiques et des minéraux et modifie la composition originale du magma. Un géologue français avait l’habitude de dire qu’à Hawaï, on des laves « TGV » qui, comme les trains ultra rapides, arrivent directement à destination, en l’occurrence la surface de la Terre, sans s’arrêter dans les gares. A l’inverse,  dans d’autres régions du monde on a des magmas « omnibus » qui subissent des changements pendant leur ascension, comme les passagers des trains qui s’arrêtent dans différentes gares.

——————————————–

While Kilauea Volcano is still fiercely erupting, residents are surprised to find little green gems that have fallen out of the sky during the eruption. They are actually olivine crystals, a common mineral found in Hawaii’s lava. In geology, it is called peridot. As the volcano erupts, it blasts apart molten lava, allowing for green olivine minerals to be separated from the rest of the melt and fall as tiny gemstones.

There are several places in Hawaii where the beaches have a green colour, due to a high concentration of olivine that has weathered out of the basalt. In fact, olivine is one of the most common minerals below Earth’s surface but it is quite hard to find it separated from the parent rock and even harder to find it of gem quality.

Olivine is so common that it is estimated that over 50 percent of the Earth’s upper mantle is composed of olivine or variations of the mineral. Hawaii’s volcanoes are the product of a hotspot, which means that the true composition of the upper mantle is not significantly altered when erupted on Hawaii’s surface as basalt.

The reason there is a variety of other rocks on continents is largely due to magma travelling through the varied geology that underlies each continent. This adds and removes chemicals/minerals and alters the original composition of the magma from basalt to a unique blend of minerals. A French geologist used to say that in Hawaii, you have “high speed train” minerals reaching the surface directly, with no stops at the stations, contrary to other regions of the world where they are “slow train” minerals, undergoing changes – like passengers in a train – in different stations.

Nodules de péridotite (Photo: C. Grandpey)

Green Sand Beach à Hawaii (Photo: C. Grandpey)