Nouvel effondrement glaciaire en Alaska // New glacial landslide in Alaska

Comme je l’ai écrit à propos des températures élevées au sommet du Mont-Blanc (France), la fonte de la glace et du permafrost de roche dans les Alpes est susceptible de provoquer des chutes de séracs, des éboulements ou des glissements de terrain. C’est ce qui s’est passé à l’Arête des Cosmiques en août 2018. La plus grande vigilance est demandée aux randonneurs qui s’aventurent en haute montagne.
De tels glissements de terrain, mais de plus grande ampleur, ont été observés en Alaska ces dernières années, notamment à Juneau, Glacier Icy Bay / Tyndall, Glacier Bay / Lamplugh et Sitka. Par exemple, un énorme glissement de terrain a été observé dans le parc national de Glacier Bay en Alaska le 28 juin 2016 (voir ma note à cette date), lorsqu’un pan de montagne de 1200 mètres de hauteur s’est effondré. L’événement a recouvert de débris le glacier Lamplugh sur plusieurs kilomètres.
Plus récemment, un très important glissement de terrain s’est produit sur les flancs du volcan Iliamna le 21 juin 2019. Les matériaux se sont répandus sur une longueur d’environ 6 km et plus de 3 km de largeur. Ils semblent provenir du sommet (voir image ci-dessous).
La dernière éruption connue de l’Iliamna a eu lieu en 1876, avec un VEI 3.
Les causes de ces spectaculaires glissements de terrain ne sont souvent pas claires, mais elles sont probablement liées au réchauffement de la planète ou à l’intensification des eaux de fonte. Les statistiques montrent que ces événements ont surtout lieu pendant les mois les plus chauds. En ce moment, l’Alaska traverse la plus intense vague de chaleur de son histoire.
Source: The Watchers.

Dans le même ordre d’idées, les glaciologues suisses sont inquiets pour le Cervin. En effet les très fortes chaleurs à répétition risquent de faire fondre le permafrost de roche qui assure la stabilité du sommet  Ce dernier est constitué d’un empilement de roches qui tient grâce à ce permafrost. Si le dégel intervient, le risque de chutes de blocs de pierres sera élevé.

———————————-

As I put it in my last post about the high temperatures on Mont Blanc (France), the melting of the ice and the rock permafrost in the Alps might trigger icefalls, rockfalls or landslides. This is what happenned at the Arête des Cosmiques in August 2018. Climbers should be very careful.
Similar large-scale landslids have been observed in Alaska in recent years, including Juneau, Icy Bay / Tyndall Glacier, Glacier Bay / Lamplugh, and Sitka, landslides. For instance, a massive landslide hit Alaska’s Glacier Bay National Park on June 28th 2016 (see my post at that date), when a 1,200-metre-high mountain collapsed. The event spread debris over kilometres across the Lamplugh glacier below. More recently, a very large landslide took place on the flanks of Iliamna volcano on June 21st, 2019.The slide is about 6 km long and appears to be originating near the summit. The debris field is more than 3 kilometres wide.
The last known eruption of this volcano took place in 1876, with a VEI 3.
What triggers giant landslides often isn’t clear but they are likely related to global warming. . Statistics show there tend to be more in warmer months, which may be related to warming temperatures or meltwater. Alaska is currently going through the most intense heatwave of its history.
Source: The Watchers.

In the same vein, Swiss glaciologists are worried about the Matterhorn. Indeed, the frequent heatwaves may melt the rock permafrost which ensures the stability of the summit. The latter consists of a stack of rocks that holds thanks to this permafrost. If the thaw occurs, the risk of falling stone blocks will be high.

Le glissement de terrain sur l’Iliamna (Crédit photo: USGS)

Vues de l’Iliamna (Photos: C. Grandpey)

Vue de l’effondrement sur le glacier Lamplugh le 28 juin 2016 (Crédit photo: Paul Swanstrom que je salue ici et dont je recommande l’agence basée à Haines)

Le Cervin risque-t-il de se déliter? Vue de la montagne en septembre 2018 (Photo: C. Grandpey)

Le glissement de l’Etna (Sicile) // Mt Etna’s sliding movement in Sicily

Un article récent paru dans Newsweek nous rappelle que le flanc sud-est de l’Etna glisse dans la Mer Méditerranée à raison de quelques centimètres par an. Selon les scientifiques, « il est important de comprendre ce processus susceptible de générer un effondrement catastrophique du volcan dans le futur ». Le glissement de terrain qui accompagnerait un tel événement pourrait, à son tour, provoquer un tsunami qui menacerait les zones habitées de la région.
Une équipe internationale de chercheurs a proposé une nouvelle approche de cette activité de glissement de l’édifice volcanique, tout en laissant entendre que le mouvement du flanc oriental du volcan pose un risque plus grand que prévu.
Dans un article publié dans la revue Science Advances, les scientifiques expliquent que le flanc E de l’Etna glisse principalement en raison de l’instabilité gravitationnelle. Auparavant, on pensait que c’était la poussée du magma à l’intérieur du volcan qui était responsable du mouvement. Jusqu’à présent, il n’avait pas été possible de dire lequel de ces processus – instabilité gravitationnelle ou poussée du magma – était à l’origine du glissement.
Pour effectuer leur étude, la première de ce type sur le glissement en mer du volcan, les scientifiques ont mis en place et analysé un réseau de cinq transpondeurs sous-marins. Ces appareils étaient équipés de capteurs de pression pour surveiller en permanence le déplacement du fond marin en bordure de la côte E de la Sicile.
Les mesures effectuées par les transpondeurs entre avril 2016 et juillet 2017 ont montré que la déformation de l’Etna s’éloignait de son système magmatique, ce qui donne à penser que la majeure partie du glissement est provoquée par gravité.
Les chercheurs disent qu’ils ne peuvent pas exclure la possibilité d’un effondrement catastrophique du flanc sud-est, bien qu’il soit impossible de dire si, comment et quand cela se produira. De nouvelles recherches seront nécessaires pour faire une telle prévision. Sur la terre ferme, on étudie le mouvement de l’Etna depuis les années 1980, mais trois décennies ne sont pas suffisantes pour tirer des conclusions sur le cycle de vie géologique du volcan qui s’étire qui plusieurs centaines de milliers d’années.
Le résultat le plus intéressant de l’étude est que la vitesse de déplacement est plus importante au large que près du sommet. De nombreux chercheurs pensaient que le glissement d’Etna était provoqué par la pression magmatique au sommet du volcan, mais la dernière étude contredit cette idée. Le mouvement est plutôt causé par un simple glissement vers le bas des flancs sous-marins par gravité, et ce mouvement effectue lui-même une traction sur les pentes supérieures du volcan.
Les archives géologiques montrent que les volcans peuvent s’effondrer de manière catastrophique en suivant ce processus. Il existe de nombreux exemples, comme à Hawaii et aux îles Canaries. Au cours de tels événements, tout un pan du volcan se détache en provoquant un énorme glissement de terrain dévastateur. Selon les chercheurs, ils se produisent dans le monde environ quatre fois par siècle. Les auteurs de cette dernière étude attirent l’attention sur ce point, mais à l’heure actuelle, notre connaissance des précurseurs de tels événements catastrophiques est très rudimentaire, ce qui rend impossible toute prévision fiable.
Source: Newsweek.

Sur sa page Facebook, Boris Behncke (INGV Catane) indique que l’activité sismique dans le sud-est de l’Etna et d’autres parties du volcan n’est pas le signe qu’un important séisme est sur le point de se produire ; ce n’est pas non plus le signe d’une éruption imminente. Cela montre seulement la dynamique des flancs de l’Etna, phénomène susceptible d’entraîner une déstabilisation progressive de la montagne. Cela peut également faciliter les mouvements du magma sur les flancs du volcan et provoquer une éruption latérale. Les scientifiques sont actuellement incapables de prédire un tel événement qui sera annoncé par une augmentation de la sismicité avant l’ouverture d’une ou plusieurs fractures éruptives. Les dernières éruptions latérales de l’Etna, avec menace pour des zones habitées, remontent à 1928 (Mascali), 1979 (Fornazzo), 1991 (Zafferana).
Boris demande aux gens de ne pas diffuser d’informations alarmantes, comme celles concernant un séisme majeur, bien que le risque existe réellement dans l’est de la Sicile.

————————————————

A recent article in Newsweek reminds us that the southeastern flank of Mount Etna is sliding into the Mediterranean Sea at the rate of a few centimetres every year. According to experts, “understanding this process is important as it could precipitate a catastrophic collapse of the volcano in the future.” The resulting landslide could, in turn, produce a tsunami that threatens human life in the region.

An international team of researchers has proposed a new driver for this sliding activity, while suggesting that the volcano’s flank movement poses a greater hazard than previously thought.

In a paper published in the journal Science Advances, the scientists report that the flank is sliding primarily due to gravitational instability. Previously, it was assumed that the pushing of ascending magma inside the volcano was responsible for the movement. Until now, it has not been possible to determine which of these processes could be causing the sliding.

In what was the first such offshore movement monitoring study, the scientists set up and analyzed a network of five underwater transponders. They were equipped with pressure sensors to continuously monitor the displacement of the seafloor around Etna’s submerged southern boundary on Sicily’s east coast.

The observations made with the transponders between April 2016 and July 2017 showed that Etna’s deformation increased away from its magma system, suggesting that the bulk of the sliding is being driven by gravity.

The researchers say they cannot exclude the possibility that the southeastern flank might collapse catastrophically, although it is impossible to say if, how and when this could happen. More research is required to make such a prediction. On land, this motion has been tracked since the 1980s but three decades is almost nothing compared to the geologic life cycle of the volcano.

The most interesting result of the study is that the rate of movement is greater offshore than near to the summit. Many previous researchers had supposed that Etna’s sliding was initiated by magmatic pressure from the active summit, but this study contradicts that idea. The movement is instead caused by simple downslope sliding of the submarine flanks under gravity, this movement then pulling on the upper slopes of the volcano.

The geological archives show that volcanoes can collapse catastrophically from this process. There are numerous examples of this, the largest ones being in Hawaii and the Canary Islands. Such events involve a large sector of the volcano detaching itself in one massive, devastating landslide, and occur worldwide about four times per century, according to the researchers. The authors of this study draw attention to this, but at present our knowledge of the precursors to such disastrous events is very rudimentary, making meaningful predictions impossible.

Source: Newsweek.

On his Facebook page, Boris Behncke (INGV Catania) indicates that seismic activity in SE Etna and other parts of the volcano is neither the sign of an imminent major earthquake nor of an imminent eruption. It is just a sign of the dynamics of Mt Etna’s flanks which may lead to a progressive destabilisation of the mountain. This may, in turn, facilitate magma movements of the flanks of the volcano and cause a flank eruption. Scientists are currently unable to predict such an event which will be announced by an increase in seismicity before the opening of an eruptive fissure. Mt Etna’s last flank eruptions threatening populated areas date back to 1928 (Mascali), 1979 (Fornazzo), 1991 (Zafferana).

Boris asks people not to spread alarming information, like the ones concerning a major earthquake, although the risk really exists in eastern Sicily.

Photo: C. Grandpey

 

 

 

Le flanc sud du Kilauea // Kilauea Volcano’s south flank

La partie visible du Kilauea, du sommet à la Lower East Rift Zone (LERZ), ne représente qu’une petite partie de l’édifice volcanique dans son ensemble. Une grande partie du Kilauea se trouve sous la mer, y compris la dorsale de Puna à l’est et le flanc sud qui s’étire au large de la côte.
Au fur et à mesure que le volcan se développe au rythme de son activité, cette région sous-marine du flanc sud glisse lentement vers le sud. Ce déplacement est ponctué de séismes qui durent quelques secondes – comme celui de magnitude M 6,9 enregistré le 4 mai 2018 – et de glissements de terrain qui s’étalent sur plusieurs jours ou semaines.

De nombreuses questions se posent à propos de la stabilité du flanc sud car d’autres parties des côtes de l’île de Hawaii montrent des traces de glissements de terrain survenus dans le passé.
Bien que la partie sous-marine du flanc sud du Kilauea soit une partie importante du volcan, son mouvement est beaucoup plus difficile à contrôler que la partie qui se trouve au-dessus du niveau de la mer. Bien que l’on soit en mesure d’enregistrer des séismes se produisant sous le flanc sud, seuls les plus significatifs et les plus proches du littoral sont bien captés par le réseau sismique. En général, seuls quelques séismes au large sont enregistrés. Cependant, à la suite du séisme de M6.9 et de l’éruption du Kilauea dans la LERZ, un nombre important de séismes se sont produits sous le flanc sud, certains dans des régions habituellement peu actives sur le plan sismique.
Pour mieux comprendre ce qui se passe à l’intérieur du flanc sud du Kilauea et déterminer son impact sur l’éruption, un groupe de scientifiques de différentes universités a déployé au mois de juillet 12 sismomètres sur le plancher océanique du flanc sud du Kilauea. Les instruments ont été installés à partir d’un navire de recherche exploité par l’Université d’Hawaï, au cours d’une mission d’une semaine financée par la National Science Foundation.
Les sismomètres ont été positionnés sur tout le flanc sud afin que les séismes en bordure de ce versant puissent être enregistrés eux aussi, afin de voir si le champ de contrainte au large s’est modifié. Ils ont également été positionnés sur la zone de répliques du séisme de M6.9 pour mieux comprendre cet événement, et près de l’entrée en mer de l’éruption dans la LERZ pour étudier la progression de la lave et sa pénétration dans l’eau.
Ces données devraient permettre à l’équipe scientifique de déterminer plus précisément les secteurs où les séismes se sont produits au large et sur quelle (s) faille (s) le séisme de M 6.9 s’est déclenché. Les enregistrements au niveau de l’entrée dans l’océan permettront de mieux comprendre pourquoi certaines interactions entre la lave et l’eau sont explosives alors que d’autres sont relativement calmes. En collectant des données au large des côtes, les scientifiques espèrent pouvoir mieux comprendre certaines zones du Kilauea qui ne peuvent pas être facilement observées.
Les sismomètres au fond de l’océan enregistrent les données en interne, de sorte qu’on ne saura pas ce qu’ils ont enregistré avant leur récupération courant septembre.
Source: USGS.

————————————————–

The visible part of Kilauea from the summit to the Lower East Rift Zone makes up only a small portion of the total volcano. Much of Kilauea lies beneath the sea, including the Puna ridge to the east and the south flank extending offshore beyond the southern coastline.

As the volcano grows, this underwater region of the south flank creeps slowly to the south, moving in fits and starts with earthquakes that last seconds (such as the May 4th M 6.9 event) and in slow slip events, which last for days or weeks.

Many questions have been raised about the stability of the south flank, since other portions of Hawaii Island’s coasts show evidence of past landslides.

Although Kilauea’s submarine south flank is a major part of the volcano, its motion is much harder to monitor than the part above sea level. While we can record earthquakes occurring beneath the flank, only the largest, and those closest to shore, are well-captured by the seismic network. In general, only a few offshore earthquakes are recorded. However, following the M6.9 earthquake and Kilauea’s LERZ eruption, a significant number of earthquakes took place beneath the south flank, some of which were in regions that have not typically been very seismically active.

To better understand what is going on within Kilauea’s south flank and help determine how it has been affected by the eruption, a group of scientists from different universities deployed 12 ocean bottom seismometers in July on the submarine Kilauea south flank. The instruments were deployed from a research vessel operated by the University of Hawaii, during a weeklong cruise funded by the National Science Foundation.

Seismometers were positioned over the whole south flank so earthquakes associated with the edges of the flank could be recorded to see if the offshore stress field has changed. They also were positioned on the M6.9 aftershock zone to try to better understand that earthquake, and near the LERZ eruption ocean entry to study how lava enters the water and progresses downslope.

These data should allow the scientific team to determine more precisely where the offshore earthquakes occurred and on what fault(s) the M6.9 earthquake took place. Recordings of the ocean entry activity might help us learn more about why some lava-water interactions are explosive while others are relatively calm. In general, scientists hope that by collecting data offshore they will be able to better understand parts of Kilauea that cannot be easily observed.

The ocean bottom seismometers record data internally, so they won’t know what they recorded until they are recovered in September.

Source: USGS.

Le glissement du flanc sud du Kilauea (Source: USGS / HVO)

Mont St Helens (Etat de Washington / Etats Unis) : Les risques liés au Spirit Lake // The risks linked to Spirit Lake

L’un des sites les plus intéressants et les plus visités du Mount St Helens National Monument est le Spirit Lake, avec tous les troncs d’arbres qui ont été propulsés à la surface du lac par le souffle de l’éruption du 18 mai 1980.
Trente-sept ans après cette éruption, les scientifiques, les ingénieurs, les gestionnaires du territoire, ainsi que les responsables de différentes institutions nationales et locales sont confrontés à un problème majeur créé par l’éruption: comment prévenir les inondations potentiellement dévastatrices que provoquerait un débordement du Spirit Lake.
Un nouveau rapport publié au cours de l’été 2017 par le Service Américain des Eaux et Forêts (USFS) décrit les dangers naturels – volcaniques, sismiques et hydrologiques – et les risques associés qui doivent être pris en compte pour gérer le niveau d’eau du Spirit Lake.
L’éruption de 1980 a provoqué un énorme glissement de terrain, avec un amas gigantesque de roches et de glace qui s’est précipité sur 22 kilomètres dans le lit de la North Fork Toutle River, remplissant la vallée d’une couche de matériaux d’environ 45 mètres d’épaisseur en une dizaine de minutes.
Une partie de ce glissement de terrain a terminé sa course dans le Spirit Lake. L’amas de matériaux a bloqué l’exutoire naturel du lac et élevé son niveau de 60 mètres. Dans le secteur entre Spirit Lake et la North Fork Toutle River à l’ouest, le dépôt de glissement de terrain atteint 190 mètres d’épaisseur!
Dépourvu d’exutoire, le niveau du lac montait avec chaque orage et au moment de la fonte de la neige au printemps. En août 1982, le niveau du lac a connu une hausse de 16 mètres supplémentaires. Au train où allaient les choses, on prévoyait que l’eau pourrait passer outre le blocage et provoquer une inondation catastrophique en 1985. Une telle inondation aurait probablement fait des victimes et provoqué des dégâts dans les localités en aval le long des rivières Toutle, Cowlitz et Columbia.
Pour prévenir ce risque d’inondation, le président Reagan, le 19 août 1982, a chargé l’Agence Fédérale en charge des Situations d’Urgence (FEMA) d’élaborer une stratégie pour prévenir la rupture de la digue retenant les eaux du Spirit Lake. Diverses solutions ont été proposées et étudiées et, au final, une installation de pompage temporaire a été mise en place pour abaisser et stabiliser le niveau du lac.
Quelques mois plus tard, les ingénieurs de l’armée américaine ont construit un tunnel de 2,5 km de long et de 3 mètres de diamètre à travers une paroi rocheuse sur le côté ouest de Spirit Lake pour permettre le déversement de l’eau dans la rivière North Fork Toutle. Le tunnel contrôle ainsi le niveau du lac depuis 1985.
Cependant, plusieurs réparations majeures et coûteuses dont dû être effectuées sur le tunnel en raison des dégâts provoqués par la pression de la roche qui l’entoure en 1995, 1996 et 2016. De nouvelles réparations sont prévues à l’avenir.
Lorsque des parties du tunnel sont en travaux, il est fermé pendant de nombreux mois. Les réparations ont toujours lieu pendant la saison des pluies d’hiver afin d’assurer un débit adéquat vers l’aval pour les poissons. Lorsque le tunnel est fermé, le niveau du lac monte et, au cours de chaque réparation, l’eau se rapproche de son niveau de sécurité maximum. De tels niveaux d’eau élevés suscitent des inquiétudes. Il suffirait que le lac s’élève de quelques mètres supplémentaires pour qu’il génère des très sérieux problèmes.
Pour répondre à cette préoccupation, un groupe de travail  incluant plusieurs institutions a évalué les risques liés au tunnel actuel et essayé de trouver des solutions alternatives. Le nouveau rapport résume ces risques potentiels, y compris ceux d’un chenal qui serait creusé juste sous le cratère du volcan, une option qui serait exposée à des événements volcaniques qui pourraient bloquer ou endommager le chenal. Il y aurait aussi la solution d’un tuyau enterré dans les dépôts de matériaux laissés par le glissement de terrain. On attend un autre rapport en provenance de l’Académie Nationale des Sciences. Il se concentrera sur un « cadre de travail pour la prise de décisions techniques liées à la gestion à long terme des risques liés au système Spirit Lake / Toutle River» et prendra en considération les « priorités régionales économiques, culturelles et sociétales ».
A l’heure actuelle, le Service Américain des Eaux et Forêts  n’a pris aucune décision concernant l’évacuation de l’eau du Spirit Lake. Le nouveau rapport aidera à prendre une décision au vu des risques volcaniques, sismiques et hydrologiques qui menacent chaque solution alternative, ainsi que les coûts sur le long terme.
Source: Hawaiian Volcano Observatory.

—————————————–

One of the highlights of the Mount St Helens National Monument is Spirit Lake and all the tree trunks that were blown to its surface by the blast of may 18th 1980.

Thirty-seven years after the eruptions, scientists, engineers, land managers, and federal, state, and county officials are still grappling with a challenge created by the eruption: how to prevent potentially massive downstream flooding by the release of water from Spirit Lake.

A new report published during the summer 2017 by the U.S. Forest Service (USFS) describes the natural hazards – volcanic, seismic, and hydrologic – and risks associated to manage the water level of Spirit Lake.

The 1980 eruption began with an enormous landslide. It released a series of massive blocks of rock and ice that sped 22 kilometres down the North Fort Toutle River, filling the valley to an average of depth of about 45 metres in about 10 minutes.

Part of the landslide slammed into Spirit Lake, blocking its natural outlet and raising the lake level by 60 metres. In the area between Spirit Lake and the North Fork Toutle River to the west, the landslide deposit is as thick as 190 metres!

Without an outlet, the lake rose with each rainstorm and seasonal snowmelt. By August 1982, the lake level had risen another 16 metres. At that filling rate, water was projected to possibly breach the blockage and produce a catastrophic flood by 1985. Such a flood would likely lead to loss of life and extensive damage in communities downstream along the Toutle, Cowlitz and Columbia rivers.

To mitigate this potential flood hazard, President Reagan, on August 19th 1982, directed the Federal Emergency Management Agency (FEMA) to develop a strategy to prevent breaching of the landslide blockage. While various outlet alternatives were proposed and studied, a temporary pumping facility was installed to lower and stabilize the lake level.

Ultimately, the U.S. Army Corps of Engineers constructed a 2.5-km-long long, 3-metre diameter tunnel through a bedrock ridge on the west side of Spirit Lake to deliver its water back into the North Fork Toutle River. The tunnel has successfully controlled the lake level since 1985.

However, several major and costly repairs to the tunnel, owing to damage caused by surrounding rock squeezing it, were necessary in 1995, 1996 and 2016. Additional repairs are expected in the future.

When sections of the tunnel are repaired or upgraded, the tunnel is closed for many months. Repairs always happen during the winter rainy season to ensure adequate streamflow downstream for fish. With the tunnel closed, the lake level rises, and during each repair water has approached its maximum safe level. Such high water levels raise concern. If the lake rises only a few metres higher than it has during prior repairs, the consequences could be severe.

To address this concern, an interagency task force evaluated risks associated with the current tunnel and alternative outlets. The new report summarizes those potential risks, including those to an engineered open channel just below the volcano’s north-facing crater, an option exposed to volcanic events that could block or damage the channel, and a buried pipe through the chaotic landslide deposit. Another report is expected soon from the National Academy of Sciences. This report will focus on a “framework for technical decision making related to the long-term management of risks related to the Spirit Lake/Toutle River system” and take into consideration “regional economic, cultural and societal priorities.”

As yet, the USFS has not made any decisions regarding a new outlet strategy. The new reports will help inform such decisions given the volcanic, seismic and hydrologic hazards that threaten each alternative as well as the long-term costs.

Source : Hawaiian Volcano Observatory.

Photos: C. Grandpey