Nouveau projet géothermique dans l’Oregon // New geothermal project in Oregon

Le 12 octobre 2012, j’ai publié une note sur ce blog à propos d’un projet de développement de l’énergie géothermique dans la région du volcan Newberry (Oregon). Ce projet avait suscité de nombreuses protestations dans cette région potentiellement volcanique et sismiquement active, ce qui présentait des risques évidents.
Aujourd’hui, en 2025, nous apprenons que des ingénieurs construisent la centrale géothermique la plus chaude au monde. Elle exploitera l’énergie de ce qui est, selon l’USGS, « l’un des volcans actifs les plus dangereux des États-Unis ».

Vue du site exploité par Mazama Energy sur le Newberry

La société Mazama Energy a déjà atteint des températures de 331 °C, ce qui en fait l’un des sites géothermiques les plus chauds au monde. Elle commencera à vendre de l’électricité aux foyers et aux entreprises des environs dès 2026.
Mazama Energy souhaite maintenant atteindre une température de 389 °C et devenir la première à produire de l’électricité à partir de « roche surchauffée ». Certains affirment que l’on est à l’aube d’une nouvelle ère pour l’énergie géothermique. Aujourd’hui, la géothermie produit moins de 1 % de l’électricité dans le monde. Toutefois, l’exploitation de la chaleur extrême des roches, combinée à d’autres avancées technologiques, pourrait porter cette part à 8 % d’ici 2050 ; c’est ce que prétend l’Agence internationale de l’énergie (AIE). L’AIE explique qu’ en utilisant des températures extrêmement élevées la géothermie pourrait théoriquement produire 150 fois plus d’électricité que la consommation mondiale.

Le projet entrepris sur le volcan Newberry combine deux grandes tendances susceptibles de rendre l’énergie géothermique moins chère et plus accessible. Mazama Energy achemine sa propre eau jusqu’au volcan, grâce à une méthode baptisée « géothermie améliorée ». Au cours des dernières décennies, des projets pionniers ont commencé à produire de l’énergie à partir de roches chaudes et sèches en fracturant la pierre et en y injectant de l’eau pour produire de la vapeur, en s’inspirant des techniques de fracturation hydraulique développées par l’industrie pétrolière et gazière. Des projets pilotes ont été mis en place au Nevada et en Utah, et des chercheurs internationaux ont démontré l’efficacité de cette technologie en France, en Allemagne, en Suisse et au Japon. Injecter de l’eau dans des fractures rocheuses comporte des risques sismiques, tout comme l’injection d’eaux usées issues de la fracturation hydraulique. Une expérience de ‘géothermie améliorée’ en Suisse a été interrompue après avoir déclenché un séisme de magnitude 3,4 en 2006. Les capteurs du site de Newberry ont enregistré cinq secousses sismiques au cours des six derniers mois ; la plus importante a atteint une magnitude de 2,5 le 24 juillet 2025. Les scientifiques affirment que les séismes constitueront toujours un risque, mais qu’il peut être géré grâce à une surveillance et une ingénierie efficaces.

Le Département de l’Énergie indique que les risques de pollution de l’eau sont faibles car les centrales géothermiques recyclent l’eau dans des puits étanches, et cette eau passe par des réservoirs beaucoup plus profonds que la plupart des nappes phréatiques.
Le projet de Newberry exploite également une roche plus chaude que tous les projets précédents. Cependant, même les 331 degrés de Newberry restent inférieurs au seuil de surchauffe de 373 degrés ou plus. À cette température, et sous une pression très élevée, l’eau devient « supercritique » et se comporte comme un fluide à mi-chemin entre un liquide et un gaz. L’eau supercritique emmagasine une grande quantité de chaleur comme un liquide, tout en s’écoulant avec la fluidité d’un gaz.
Un puits géothermique à très haute température peut produire cinq à dix fois plus d’énergie qu’un puits à température classique, qui avoisine les 204 °C. De ce fait, les exploitants géothermiques n’ont plus besoin de forer autant de puits coûteux, ce qui permet de réduire les coûts.
À terme, l’énergie géothermique issue de roches à très haute température pourrait être aussi économique que le gaz naturel ou l’énergie solaire, sans la pollution des énergies fossiles ni la variabilité des énergies renouvelables.

Mazama Energy prévoit de forer de nouveaux puits l’an prochain afin d’atteindre des températures supérieures à 398 °C. À proximité d’un volcan actif, elle espère atteindre cette température à moins de 5 kilomètres de profondeur. Ailleurs, les exploitants géothermiques doivent souvent creuser jusqu’à 20 kilomètres.
Forer dans une roche à 398 °C représente un défi de taille. Les centrales géothermiques conventionnelles utilisent des équipements prévus pour l’industrie pétrolière et gazière, mais dans une roche surchauffée, les foreuses classiques deviennent inutilisables car leurs composants électroniques sont défaillants. Les ingénieurs de Mazama Energy ont refroidi leurs installations de forage en injectant un flux constant de dioxyde de carbone liquide. Cela leur a permis de forer à 3,2 km de profondeur sur le flanc du volcan et d’atteindre une roche à 331 °C en début d’année.
D’autres puits expérimentaux ont atteint des températures encore plus élevées, mais aucun n’a résisté longtemps. Des expériences de forage en Islande et à Hawaï ont été interrompues après avoir rencontré du magma de manière inattendue, ce qui a endommagé les trépans. Des puits forés au Japon et en Italie ont atteint des roches à plus de 482 °C, approchant la zone de la croûte terrestre où la roche rigide commence à se comporter comme de la pâte à modeler. Cependant, ces forages ont été abandonnés suite à des problèmes rencontrés avec le matériel de forage et les tubages en ciment.
Pour l’instant, Mazama Energy affirme que son puits est stable. Cependant, les scientifiques prévoient que les difficultés s’accumuleront à mesure que l’entreprise forera dans des roches plus chaudes et exploitera ses puits pendant des années. Les tubages en ciment et en acier seront alors exposés à des variations extrêmes de température et de pression.
Cependant, les avantages potentiels de cette nouvelle géothermie sont bien supérieurs aux défis qu’elle suppose. Mazama Energy prévoit de produire 15 mégawatts d’électricité sur le flanc ouest du volcan Newberry en 2026, avec une augmentation progressive de la production jusqu’à 200 mégawatts, soit suffisamment d’énergie pour alimenter un grand centre de données ou une petite ville.
Source : Médias américains.

Big Obsidian Flow dans le parc du Newberry (Photo: C. Grandpey)

————————————————-

On October 12, 2012 I released a post on this blog, about a geothermal energy development project in the Newberry volcano area (Oregon). Such a project had triggered numerous protests because the region is potentially volcanically and seismically active, and the project therefore presented obvious risks.

Today in 2025, we learn that engineers are building in the region the hottest geothermal power plant on Earth. The plant will tap into the energy of what is, according to the USGS, “one of the largest and most hazardous active volcanoes in the United States.”.

Newberry

Vue du site exploité par Mazama Energy sur le Newberry (Source : Mazama Energy)

The structure has already reached temperatures of 331 degrees Celsius, making it one of the hottest geothermal sites in the world, and next year it will start selling electricity to nearby homes and businesses.

But the start-up behind the project, Mazama Energy, wants to reach a temperature of 389°C and become the first to make electricity from “superhot rock.”

Enthusiasts say that could usher in a new era of geothermal power. Today, geothermal produces less than 1 percent of the world’s electricity. But tapping into superhot rock, along with other technological advances, could boost that share to 8 percent by 2050, according to the International Energy Agency (IEA) which explains that geothermal using superhot temperatures could theoretically generate 150 times more electricity than the world uses..

The Newberry Volcano project combines two big trends that could make geothermal energy cheaper and more widely available. First, Mazama Energy is bringing its own water to the volcano, using a method called “enhanced geothermal energy.” Over the past few decades, pioneering projects have started to make energy from hot dry rocks by cracking the stone and pumping in water to make steam, borrowing fracking techniques developed by the oil and gas industry. Pilot projects have been developed in Nevada and Utah, and international researchers have demonstrated the technology in France, Germany, Switzerland and Japan.

Pumping water into rock fractures risks causing earthquakes, much like injecting wastewater from fracking. A Swiss enhanced geothermal experiment was shut down after setting off an M 3.4 quake in 2006. Sensors at the Newberry site recorded five tremors in the past six months, with the biggest reaching M2.5 on July 24, 2025.

Scientists say earthquakes will always be a risk, but it can be managed with good monitoring and engineering. The Energy Department says water pollution risks are low because geothermal plants recirculate the same water in sealed wells, passing through reservoirs much deeper than most groundwater.

The Newberry project also taps into hotter rock than any previous enhanced geothermal project. But even Newberry’s 331 degrees fall short of the superhot threshold of 373 degrees or above. At that temperature, and under a lot of pressure, water becomes “supercritical” and starts acting like something between a liquid and a gas. Supercritical water holds lots of heat like a liquid, but it flows with the ease of a gas, combining the best of both worlds for generating electricity.

A superhot geothermal well can produce five to 10 times more energy than a well at typical temperatures, which hover around 204°C. That means geothermal operators don’t have to drill as many multimillion-dollar holes in the ground, bringing down costs.

Eventually, superhot rock geothermal energy could be about as cheap as natural gas or solar — without the pollution of fossil fuels or the variability of renewables.

The Mazama company will dig new wells to reach temperatures above 398°C next year. Alongside an active volcano, the company expects to hit that temperature less than 5 kilometers beneath the surface. But elsewhere, geothermal developers might have to dig as deep as 20 kilometers.

Drilling into 398°C rock presents some devilish challenges. Conventional geothermal plants can use gear developed by the oil and gas industry, which can stand up to lower temperatures. But in superhot rock, standard drills die as their electronic components fail. Mazama engineers cooled their drilling rigs by pumping in a constant stream of liquid carbon dioxide. That allowed them to burrow3.2 km into the flank of the volcano to find 331 degrees rock earlier this year.

Other experimental wells have hit even higher temperatures, but none has survived for long. Drilling experiments in Iceland and Hawaii were called off after they unexpectedly hit magma, which broke their drill bits. Wells in Japan and Italy reached rock hotter than 482°C approaching the region of Earth’s crust where rigid rock starts behaving more like putty, but were abandoned after facing problems with their drilling equipment and cement casings.

So far, Mazama says its well has remained stable. But experts say challenges will pile up as the company drills into hotter rock and operates its wells for years on end, exposing the cement and steel casings to punishing up-and-down cycles of temperature and pressure.

However, the potential rewards loom larger than the challenges. Mazama plans to generate 15 megawatts of electricity on the western flank of Newberry Volcano in 2026, eventually ramping up to 200 megawatts, enough to power a big data center or a small city.

Source : US news media.

Séismes et industrie pétrolière au Texas // Earthquakes and oil indusrtry in Texas

Par sa taille, le Texas est le deuxième plus grand État des États-Unis après l’Alaska. Contrairement à l’Alaska, il n’est pas connu pour son activité sismique. Cependant, un essaim comprenant plus de 100 séismes a été enregistré dans l’ouest du Texas entre le 22 et le 29 juillet 2024, avec déclaration de l’état de catastrophe. L’événement le plus significatif de l’essaim jusqu’à présent avait une magnitude de M5,1 le 26 juillet. Par son intensité, c’est le 6ème événement de l’histoire du Texas.
L’ouest du Texas connaît une hausse significative de l’activité sismique depuis 2019, et les scientifiques de l’USGS pensent qu’elle est probablement étroitement liée à l’exploitation du pétrole dans la région. L’un d’eux a déclaré : « Nous pouvons dire avec certitude que ces phénomènes sont liés à l’extraction du pétrole et du gaz. »
En effet, l’activité sismique est très probablement à mettre en relation avec de nouvelles techniques de forage du pétrole et du gaz naturel qui permettent aux entreprises de forer non seulement en profondeur, mais aussi horizontalement le long d’un gisement de pétrole. De cette façon, les compagnies pétrolières atteignent des gisements de pétrole et de gaz naturel qui sont les restes décomposés de plantes et d’animaux qui existaient dans d’anciens océans. Lorsque le pétrole remonte vers la surface, l’eau salée, qui peut avoir des millions d’années, remonte également. C’est ce qu’on appelle « l’eau produite » (produced water) et elle remonte en grande quantité. Le rapport pétrole/eau salée est faible. Il équivaut à 5, 10 ou même 20 barils d’eau salée pour un baril de pétrole. Cette eau préhistorique est beaucoup plus salée que l’eau de l’océan et ne peut pas être rejetée dans les rivières ou même dans l’océan car elle peut contenir des contaminants tels que des hydrocarbures. Au lieu de cela, elle doit être renvoyée profondément sous pression sous terre, à une profondeur où elle ne risque pas de s’infiltrer dans les eaux souterraines. Ce processus s’appelle « élimination de l’eau salée » (‘saltwater disposal’). Il a été prouvé que les grandes quantités d’eau renvoyées sous pression sous terre peuvent à leur tour provoquer des séismes.
Le Texas enquête sur les séismes enregistrés dans le dernier essaim. La Railroad Commission of Texas, qui régule l’industrie pétrolière et gazière de l’État, a indiqué qu’elle étudiait d’éventuels liens entre les séismes et l’injection de fluides dans le sol pour l’extraction de produits pétroliers.
Aujourd’hui, les entreprises tentent de réduire la sismicité causée par l’injection souterraine d’eau produite. Plusieurs d’entre elles dans la région ont déjà transformé des puits d’évacuation d’eau salée profonds en puits d’évacuation d’eau salée superficiels. Une inspection des puits d’évacuation d’eau salée dans un rayon de 4 kilomètres autour de l’épicentre de l’essaim sismique est actuellement en cours. Deux puits d’évacuation profonds ont déjà été fermés à la suite de ces inspections.
Source : Médias d’information américains.

 

Le Texas, 695 662 km² est seulement dépassé en superficie par l’Alaska. Le deux états sont de gros producteurs de pétrole. L’Alaska est une terre volcanique et sismique alors que le Texas est en théorie beaucoup plus calme d’un point de vue géologique. Pour rappel, Austin est la capitale du Texas qui rassemble quelque 30 millions d’habitants.

————————————————

Texas is the second largest State in the United States after Alaska. Contrary to Alaska it is not known to be seismically active. However, a swarm including more than 100 earthquakes struck West Texas between July 22nd to 29th, 2024, prompting the declaration of a state of disaster. The strongest event in the series thus far was M5.1 on July 26th, making it the 6th strongest earthquake in Texas history.

West Texas has seen a significant increase in seismic activity since 2019, and USGS scientists believe it is probably closely linked to local oil fields. One of them said : “We can say with confidence that these are related to oil and gas extractions. »

Indeed, the earthquakes are very likely linked to new forms of oil and natural gas drilling technology that allow companies to drill not just down into the earth but horizontally along an oil formation. In this way, oil companies are reaching deeply buried oil and natural gas deposits that are the decomposed remnants of plants and animals in ancient oceans. When the oil comes up, the salt water, which can be millions of years old, also comes up. This is called « produced water » and it comes up in large quantities. The ratio of oil to saltwater is low. It can be five or 10 or even 20 barrels of salt water for every barrel of oil. This prehistoric water is much saltier than ocean water and can’t be disposed of in rivers or even the ocean, in part because it can contain contaminants such as hydrocarbons. Instead, it must be pumped back deep underground where it cannot leech into groundwater, a process called ‘saltwater disposal.’ It has been proved that the large amounts of water being pumped underground in turn can cause earthquakes.

After the last swarm, Texas is investigating the earthquakes. The Railroad Commission of Texas, which regulates the state’s oil and natural gas industry, has indicated that it was looking into any connections between the quakes and the injection of fluids into the ground for the extraction of petroleum products.

Companies are trying to reduce seismicity caused by underground injection of produced water. Several of them in the area have already converted deep saltwater disposal wells to shallow saltwater disposal wells. Therre is currently an inspection of saltwater disposal wells within 4 kilometers of the cluster of earthquakes. Two deep disposal wells in the area has already benn shut following inspections.

Source : US news media.

Nouvelle carte sismique des Etats Unis // New seismic map of the United States

Des scientifiques de l’Université de Stanford ont compilé la carte la plus détaillée à ce jour des contraintes sismiques en Amérique du Nord. La carte et l’étude qui l’accompagne fournissent des informations précises sur les régions les plus exposées aux séismes ainsi que les types de séismes susceptibles de se produire.
La nouvelle carte est apparue dans une étude publiée le 22 avril 2020 dans la revue Nature Communications. Grâce à l’incorporation de près de 2 000 «orientations de contraintes» (mesures indiquant la direction dans laquelle la pression s’exerce sous terre) ainsi que 300 mesures non incluses dans les études précédentes, la carte fournit une image de bien meilleure résolution de l’activité sismique régionale.
Pour élaborer la carte, les chercheurs ont compilé des mesures nouvelles et anciennes obtenues à partir de forages, puis ils ont utilisé des informations relatives aux séismes passés pour en déduire quels types de failles étaient susceptibles de se trouver en différents endroits.
Connaître l’orientation d’une faille et le niveau de contrainte à proximité permet de savoir dans quelle mesure elle est susceptible de s’activer et si les gens doivent s’inquiéter, que ce soit dans le cadre de scénarios de séismes naturels ou de ceux déclenchés par l’industrie. L’expression « séismes déclenchés par l’industrie» fait référence à l’activité sismique causée par l’homme, en particulier dans certaines parties de l’Oklahoma et du Texas où la fracturation hydraulique est monnaie courante. Il est utile de rappeler que cette méthode d’extraction du pétrole et du gaz consiste à injecter de l’eau en profondeur dans des couches de roches pour forcer l’ouverture de crevasses et extraire le pétrole ou le gaz qui se trouve à l’intérieur. Le risque, c’est que cette technique déstabilise le sol. En 2018, l’USGS a constaté que le niveau de risque sismique dans l’Oklahoma était à peu près le même qu’en Californie.
Tout en confirmant les connaissances existantes, certaines caractéristiques de la nouvelle carte donnent des indications supplémentaires sur les types de séismes les plus susceptibles de se produire à travers le continent. Ces informations peuvent jouer un rôle majeur dans la façon dont les régions se préparent aux catastrophes. Dans l’ouest des États-Unis, par exemple, les chercheurs ont observé que la direction des contraintes sous la surface de la Terre avait changé jusqu’à 90 degrés sur des distances de seulement 10 kilomètres. Cela signifie que les fluides injectés dans le sol dans le processus de fracturation hydraulique peuvent être chahutés, même à une courte distance de l’endroit où ils sont injectés.

Sur la carte ci-dessous, des lignes noires indiquent la direction de la pression dans les zones de contrainte maximale. Les zones bleues représentent des failles d’extension où la croûte s’étire horizontalement. Les zones vertes représentent des failles transformantes, comme la faille de San Andreas. Les zones rouges représentent les failles de chevauchement, où la Terre se déplace sur elle-même.
Source: Business Insider.

————————————————

Scientists at Stanford University have compiled the most detailed map to date of seismic stress across North America. The map and accompanying study offer precise information about the regions most at risk of earthquakes, and which types of quakes are likely to occur.

The new map was described in a study published on April 22nd, 2020 in the journal Nature Communications. By incorporating nearly 2,000 « stress orientations » (measurements indicating the direction that pressure gets exerted underground in high-stress areas) as well as 300 measurements not included in previous studies, the map provides a higher-resolution picture of regional seismic activity than ever before.

To make the map, the researchers compiled new and previously published measurements from boreholes, then used information about past earthquakes to infer which types of faults were likely to be found in different locations.

Knowing the orientation of a fault and the state of stress nearby allows to know how likely it is to fail and whether people should be concerned about it in both naturally triggered and industry-triggered earthquake scenarios. The term « industry-triggered » earthquakes refers to seismic activity caused by humans, which is most common in parts of Oklahoma and Texas where hydraulic fracturing, or « fracking, » commonly occurs. This method of oil and gas extraction involves injecting water deep into the Earth’s layers of rocks to force open crevices and extract the oil or gas buried inside. But it destabilizes the ground. In 2018, USGS found that Oklahoma’s earthquake threat level was roughly the same as California’s.

While some of the researchers’ findings in the new map reaffirm existing knowledge, they also reveal new discoveries about the types of earthquakes that are most likely to occur across the continent. That information could have profound implications for how regions prepare for disasters. In the Western US, for example, the researchers observed that the direction of pressure under the Earth’s surface changed by up to 90 degrees over distances as short as 10 kilometres. That means the fluids injected into the ground in the fracking process could get pushed around in completely different ways even just a short distance from where they get injected.

In the map below, black lines indicate the direction of pressure in maximum stress areas. Blue areas represent extensional, or normal faulting, where the crust extends horizontally. Green areas represent strike-slip faulting, where the Earth slides past itself, like the San Andreas fault. Red areas represent reverse, or thrust faulting, where the Earth moves over itself.

Source: Business Insider.

Source : Stanford University

La sismicité dans l’Oklahoma et à l’est des Rocheuses // Seismicity in Oklahoma and to the east of the Rockies

drapeau-francaisUn séisme de M 5 0 a frappé la ville de Cushing dans l’Oklahoma à 01:44 (TU) le 7 novembre 2016. L’USGS fait état d’une profondeur de 5 km. Cet événement intervient juste deux mois après une secousse de M 5.8, la plus forte dans l’histoire de l’Oklahoma ; elle avait causé des dégâts dans la ville de Pawnee et entraîné la fermeture de 37 puits de pétrole. Elle a été ressenti jusque dans l’Iowa, l’Illinois et le Texas.
Selon les médias, le dernier séisme s’est produit à proximité de l’un des plus importants sites pétroliers au monde, ce qui a fait craindre des dégâts à des infrastructures majeures. Toutefois, les exploitants des oléoducs au terminal de stockage de pétrole de Cushing ont déclaré qu’ils n’avaient pas relevé de problèmes.
Ces dernières années, l’Oklahoma a connu des milliers de séismes. Presque tous ont été attribués à l’injection souterraine d’eaux usées provenant de la production de pétrole et de gaz (NDLR : par fracturation hydraulique).
La majeure partie de l’Amérique du Nord située à l’est des montagnes Rocheuses n’est pas soumise à une activité sismique intense. Ici et là, on observe quelques événements plus nombreux, par exemple dans la zone sismique de New Madrid dans le sud-est du Missouri ou dans la zone sismique Charlevoix-Kamouraska dans l’est du Québec.
La plupart des séismes en Amérique du Nord à l’est des Rocheuses se produisent au niveau de fractures dans le substrat rocheux, généralement à plusieurs kilomètres de profondeur. Malgré tout, peu de séismes à l’est des Rocheuses sont liés à des failles géologiques cartographiées, contrairement à ce qui se passe dans un Etat comme la Californie avec la faille de San Andreas. Les scientifiques qui étudient les séismes dans les parties septentrionale et centrale de l’Amérique du Nord pensent que les séismes se produisent suite à des mouvements de failles qui se sont formées à des époques géologiques antérieures et qui ont été réactivées suite aux contraintes auxquelles elles sont soumises de nos jours.

Comme ailleurs dans le monde, il a été prouvé que certains séismes dans le centre et l’est de l’Amérique du Nord ont été déclenchés par des activités humaines qui ont exercé suffisamment de contraintes dans la croûte terrestre pour avoir un effet sur des failles. Ces activités comprennent la mise en eau des barrages, l’injection de fluides dans la croûte terrestre, l’extraction de fluides ou de gaz, et l’extraction de roches dans les mines ou les carrières.

La conclusion de l’USGS est assez révélatrice de l’approche américaine de la sismicité induite par l’homme: « Prouver scientifiquement qu’il existe un lien causal entre une activité humaine particulière et l’activité sismique qui y serait liée requiert des études consacrées spécifiquement à cette question. »
Source: USGS.
La prochaine note aura pour sujet la fracturation hydraulique, ou « fracking », en Akaska, et son impact potentiel sur l’environnement.

———————————-

drapeau-anglaisAn M 5 .0 earthquake hit the city of Cushing, Oklahoma at 01:44 UTC on November 7th, 2016. USGS reported a depth of 5 km. This quake hit just two months after an M 5.8 event, the strongest earthquake in Oklahoma’s history, shook Pawnee and forced shutdowns of 37 oil wells. It was felt as far away as Iowa, Illinois and Texas.

According to media reports, it was a sharp earthquake near one of the world’s key oil hubs which triggered fears it might have caused damage to key infrastructure. However, pipeline operators at the Cushing, Oklahoma, oil storage terminal said that there have been no immediate reports of any problems.

In recent years, Oklahoma has had thousands of earthquakes. Nearly all have been traced to the underground injection of wastewater left over from oil and gas production.

Most of North America east of the Rocky Mountains has infrequent earthquakes. Here and there earthquakes are more numerous, for example in the New Madrid seismic zone centered on southeastern Missouri, or in the Charlevoix-Kamouraska seismic zone of eastern Quebec.

Most earthquakes in North America east of the Rockies occur as faulting within bedrock, usually several kilometres deep. Few earthquakes east of the Rockies, however, have been definitely linked to mapped geologic faults, in contrast to the situation at plate boundaries such as California’s San Andreas fault system. Scientists who study eastern and central North America earthquakes often work from the hypothesis that modern earthquakes occur as the result of slip on preexisting faults that were formed in earlier geologic eras and that have been reactivated under the current stress conditions.

As is the case elsewhere in the world, there is evidence that some central and eastern North America earthquakes have been triggered or caused by human activities that have altered the stress conditions in earth’s crust sufficiently to induce faulting. Activities that have induced felt earthquakes in some geologic environments have included impoundment of water behind dams, injection of fluid into the earth’s crust, extraction of fluid or gas, and removal of rock in mining or quarrying operations.

The USGS conclusion is quite revealing of the US approach of human-induced seismicity: “Making a strong scientific case for a causative link between a particular human activity and a particular sequence of earthquakes typically involves special studies devoted specifically to the question.”

Source: USGS.

The next note will be about hydraulic fracturing, or fracking, in Akaska and its potential impact on the environment.

Source: USGS.

oklahoma

Localisation du séisme du 7 novembre dans l’Oklahoma (Source: USGS)