La fonte du permafrost (2ème partie) // Permafrost thawing (Part two)

Voici ce qui se passe lors de la fonte du permafrost: La ‘couche active’ du sol qui se trouve au-dessus du permafrost dégèle chaque été et entretient la végétation. Cette couche libère du carbone à partir des racines des plantes qui émettent du CO2 et à partir des microbes dans le sol. Certains microbes décomposent les matières organiques en CO2. D’autres produisent du méthane lorsque les conditions sont anaérobies, autrement dit lorsque le sol est saturé d’eau ou qu’il n’y a pas d’oxygène. Le méthane est 20 à 30 fois plus puissant que le dioxyde de carbone pour exacerber le réchauffement climatique, mais il reste dans l’atmosphère moins longtemps.
À mesure que le permafrost fond, la couche active du sol s’épaissit. Les microbes deviennent actifs et les racines des plantes peuvent s’enfoncer davantage, entraînant la production de plus de CO2. La quantité de méthane générée dépend de la saturation du sol.
Les scientifiques ignorent quelles sont les proportions relatives de dioxyde de carbone et de méthane pouvant découler du dégel à grande échelle du permafrost, car cela ne s’est jamais produit de toute l’histoire de l’humanité. Cependant, les recherches sur la couche supérieure de la toundra suggèrent que les émissions moyennes de CO2 sont environ 50 fois plus élevées que celles de méthane. En outre, nous savons que, chaque fois que le sol se réchauffe de 10 degrés Celsius, les émissions de CO2 doublent.
Une étude effectuée en 2017 a estimé que si la température de notre planète dépassait de 1,5°C le niveau de 1861, la fonte du permafrost pourrait libérer de 68 à 508 gigatonnes de carbone. Ce carbone augmenterait à lui seul les températures globales de 0,13 à 1,69°C d’ici 2300. Comme la hausse des températures se situe déjà à 1,5°C au-dessus du niveau préindustriel, ce réchauffement supplémentaire pourrait avoir des effets catastrophiques sur le changement climatique.
Bien qu’un Arctique plus chaud puisse supporter plus de plantes et que les plantes absorbent le dioxyde de carbone par la photosynthèse, ces nouvelles plantes ne devraient compenser que 20% environ des émissions de carbone du permafrost.
De nombreux scientifiques craignent que le dégel du permafrost soit un point critique qui déclenche un cycle irréversible: lorsque le pergélisol libère le carbone sous forme de CO2 ou de méthane, il accélère le réchauffement, ce qui accélère le dégel du permafrost et ainsi de suite. Les hommes ne pourront rien faire pour arrêter ce cycle infernal. Les régions où le permafrost est gelé toute l’année se déplacent déjà vers le nord; et dans certaines régions, la toundra gèle plus tard à l’automne, ce qui laisse plus de temps aux microbes pour décomposer la matière organique et aux plantes pour respirer.

————————————————–

Here is what happens when permafrost is thawing:  The ‘active layer’ of soil on top of the permafrost thaws each summer and can sustain plant life. This layer releases carbon from the roots of plants that respire out CO2, and from microbes in the soil. Some microbes break down the organic matter into CO2. Others produce methane instead, when conditions are anaerobic, on other words when the soil is saturated with water or no oxygen is available. Methane is 20 to 30 times more potent than carbon dioxide at exacerbating global warming, but it remains in the atmosphere for less time.

As permafrost thaws, the active layer deepens. The microbes become active and plant roots can penetrate further down, resulting in the production of more CO2. The amount of methane generated depends on how saturated the ground is.

Scientists don’t know the relative proportions of carbon dioxide and methane emissions that might result from largescale thawing permafrost because this has never happened in human history. However, research on the upper layer of the tundra suggests that the average CO2 emissions are about 50 times higher than those of methane. Besides, we know that for every 10 degrees Celsius that the soil warms up, the emission of CO2 will double.

A 2017 study estimated that if global temperatures rise 1.5˚C above 1861 levels, thawing permafrost could release 68 to 508 gigatons of carbon. This carbon alone would increase global temperatures 0.13 to1.69˚C by 2300. Since we may have already locked in 1.5˚C of warming above pre-industrial levels, this amount of additional warming could result in catastrophic impacts of climate change.

Although a warmer Arctic could support more plants, and plants absorb carbon dioxide through photosynthesis, the new growth is projected to offset only about 20 percent of the permafrost’s carbon release.

Many scientists are concerned that thawing permafrost could be a tipping point that triggers an irreversible cycle: When permafrost releases its carbon as CO2 or methane, it will accelerate warming, which will then precipitate more permafrost thaw, and so on. There will be nothing humans can do to stop it. The regions where permafrost is frozen year-round are already shifting northwards; and in some areas, the tundra now freezes later in the fall, allowing more time for microbes to decompose organic matter and for plants to breathe.

Photos: C. Grandpey

Ruapehu (Nouvelle Zélande / New Zealand)

Lors d’une visite à la zone sommitale du Ruapehu le 23 novembre 2017, les scientifiques de GeoNet ont pu mesurer les émissions de dioxyde de carbone qui atteignaient 2 290 tonnes par jour, l’une des valeurs les plus hautes enregistrées ces dernières années. La température du lac était de 37°C, vers le haut de la fourchette de température habituelle.
Le tremor volcanique reste à des niveaux modérés.
Le beau temps qui régnait sur le volcan a également permis de prélever des échantillons d’eau dans le cratère ; les analyses sont en cours.
Bien que les émissions de gaz et les températures soient plutôt élevées en ce moment, le niveau d’alerte volcanique est maintenu à 1. En effet, ce genre de situation apparaît périodiquement et les scientifiques de GeoNet pensent que l’on devrait rapidement observer un retour à la normale.

Source: Manawatu Evening Standard.

—————————————

During a visit to Mr Ruapehu’s summit area on November 23rd, 2017, GeoNet scientists could measure carbon dioxide emissions which reached 2,290 tonnes per day, one of the largest values recorded in recent years. The lake temperature was 37°C, near the top of its usual range.

The volcanic seismic tremor remains at moderate levels.

The fine weather also allowed for water samples to be taken from the crater, and analysis of those was underway.

Although gas emissions and temperatures are rather high at the moment, the volcanic alert level is kept at 1. This kind of situation appears periodically and GeoNet scientists think the volcano should settle down shortly.

Source: Manawatu Evening Standard.

Lac de cratère du Ruapehu (Photo: C. Grandpey)

Contrôle de l’acidification des océans // Monitoring of ocean acidification

drapeau-francaisL’Alaska est l’un des rares Etats américains à avoir créé un site Web dont le but est de contrôler l’acidification des océans. L’Alaska Ocean Acidification Network, créé grâce à la collaboration de scientifiques, d’organismes environnementaux, de groupes de pêche et d’aquaculture, est opérationnel depuis le mois dernier. Son objectif est de fournir un forum aux scientifiques, diffuser les résultats des recherches et informer les populations côtières concernées.
L’acidification des océans se produit lorsque le dioxyde de carbone, émis principalement par les combustibles fossiles, est absorbé par l’océan. Il augmente la corrosivité de l’eau de mer, ce qui nuit à la formation des écailles et des coquilles des animaux marins. L’Alaska est particulièrement menacée par l’acidification car ses eaux sont plus froides et retiennent davantage le dioxyde de carbone.
En Alaska, le secteur des fruits de mer est évalué à environ 5,8 milliards de dollars chaque année et représente le plus grand employeur du secteur privé de cet Etat.
Depuis 2011, le réseau d’observation des océans a échantillonné le pH sur différents sites de la Mer de Béring, du Golfe de l’Alaska et à la pisciculture Alutiiq Pride de Seward. Les chercheurs ont également recueilli 1200 échantillons d’eau à bord des navires chaque année. Selon la NOAA, le pH moyen des océans aujourd’hui dans le monde est de 8,1. Plus le pH est bas, plus l’acidité est forte. Les solutions avec un pH inférieur à 7 sont acides tandis que celles avec un pH supérieur à 7 sont basiques.
L’Alaska n’a pas, pour le moment, observé les effets directs de l’acidification sur les coquillages et crustacés, mais les modèles informatiques indiquent que l’eau océanique va devenir acide plus tôt que prévu. Ces modèles prévoient que la Mer de Beaufort sera la première à voir son pH baisser vers 2025, suivie de la Mer des Tchouktches en 2027 et de la Mer de Béring en 2044. Selon les estimations de l’acidification des océans à l’échelle de la planète, le pH de la Mer de Béring pourrait se situer entre 7,5 et 7,8 dans les 75 à 100 prochaines années, voire plus tôt.
Source: Alaska Dispatch News.

—————————————–

drapeau-anglaisAlaska is one of a few U.S. states to launch a website aimed at keeping track of ocean acidification. The Alaska Ocean Acidification Network, a collaboration of state and federal scientists, agencies, tribes, conservation, fishing and aquaculture groups, went live last month. Its goal is to provide a forum for researchers to share findings and connect with concerned coastal residents.

Ocean acidification happens when carbon dioxide, generated primarily from the burning of fossil fuels, is absorbed by the ocean. It causes seawater to become corrosive, making it tough for marine creatures to grow scales and shells. Alaska is particularly susceptible to acidification because its waters are colder and hold more carbon dioxide.

In Alaska, the seafood industry is valued at about $5.8 billion every year, and it is the largest private sector employer in the state.

Since 2011 the ocean-observing system has sampled pH levels at moorings in the Bering Sea, Gulf of Alaska and at the Alutiiq Pride Hatchery in Seward. Researchers also take 1,200 shipboard water samples each year. The average pH in the world’s oceans today is 8.1, according to NOAA. The lower the pH, the higher the acidity. Solutions with a pH less than 7 are acidic and solutions with a pH greater than 7 are basic.

No direct effects of acidification are showing up yet in Alaska sea creatures, but computer models predict the ocean will become acidic sooner than previously thought. They are anticipating that the Beaufort Sea will be first to leave its natural range of pH variability around 2025, followed by the Chukchi in 2027 and the Bering in 2044. Based on global estimates of ocean acidification, the Bering Sea may reach a pH level of 7.5 to 7.8 in the next 75 to 100 years, if not earlier.

Source: Alaska Dispatch News.

NOAA 2

Carte montrant, à l’échelle mondiale, les sites de contrôle de l’acidification des océans par la NOAA.

NOAA_modifié-1

Carte des sites de contrôle de l’acidification de l’eau par la NOAA sur le continent américain.

Dioxyde de carbone: Volcans contre activités humaines // Carbon dioxide: Volcanoes vs. human activities

drapeau francaisIl y a eu récemment un certain nombre de discussions entre scientifiques pour savoir si les volcans contribuaient davantage au réchauffement et au changement climatiques que les activités humaines. Des études récentes montrent que les activités humaines émettent chaque année au moins 60 fois plus de dioxyde de carbone (CO2) que les volcans. De grandes éruptions peuvent certes émettre ponctuellement autant de CO2 que les activités humaines, mais de tels événements sont trop rares et éphémères pour pouvoir rivaliser avec les émissions anthropiques annuelles.

Les activités humaines  telles que la combustion des combustibles fossiles ou la déforestation, ont émis environ 40 milliards de tonnes de CO2 en 2015. Selon le Global Carbon Project (http://www.globalcarbonproject.org/), depuis le début de la Révolution Industrielle, plus de 2000 milliards de tonnes de dioxyde de carbone ont été envoyés dans l’atmosphère par les activités humaines.
Les volcans émettent du dioxyde de carbone de deux manières: 1) pendant les éruptions et 2) par le biais des évents fumerolliens, des roches et des sols poreux, ainsi que par l’eau qui alimente les lacs volcaniques et les sources chaudes. Les estimations de CO2 d’origine volcanique doivent prendre en compte à la fois les sources éruptives et les sources annexes.
En 2011, le scientifique américain Terry Gerlach a fait la synthèse de cinq estimations relatives aux émissions planétaires de dioxyde de carbone d’origine volcanique publiées entre 1991 et 1998. Les estimations mondiales étaient de l’ordre 0,3 ± 0,15 milliards de tonnes de CO2 par an, ce qui signifie que les émissions anthropiques de CO2  étaient plus de 90 fois supérieures aux émissions volcaniques.
En 2013, un autre groupe de scientifiques a publié une estimation mise à jour en utilisant des données plus précises. Les auteurs ont conclu que l’estimation globale la plus fiable était d’environ 0,6 milliards de tonnes de dioxyde de carbone par an. Ce résultat signifie que le CO2 anthropique dépasse d’au moins 60 fois le CO2 volcanique.

De temps en temps, de très violentes éruptions peuvent libérer du dioxyde de carbone avec des quantités pouvant dépasser les émissions humaines pendant quelques heures. Ce fut le cas des éruptions du Mont St. Helens en 1980 et du Pinatubo en 1991. Cet excès de CO2 n’a duré que 8 ou 9 heures alors que les émissions anthropiques de dioxyde de carbone continuent jour après jour, mois après mois, année après année. Cependant, les volcans ont contribué, en certaines occasions, au réchauffement climatique en produisant des quantités importantes de dioxyde de carbone et d’autres gaz à effet de serre. Ce fut le cas il y a 250 millions d’années quand un déversement de lave en Sibérie a peut-être duré des centaines de milliers d’années. Selon certains scientifiques, une telle éruption à grande échelle et sur une longue durée a probablement entraîné une hausse suffisante des températures pour provoquer l’un des pires événements d’extinction dans l’histoire de notre planète.

De nos jours, plutôt que réchauffer la Terre, les éruptions volcaniques ont souvent l’effet inverse. Elles  produisent souvent de la cendre et des aérosols qui réfléchissent la lumière du soleil vers l’espace, ce qui entraîne une baisse de la température sur Terre. Ainsi, en 1815, l’éruption du Tambora a émis suffisamment de cendre et d’aérosols pour réduire à néant l’été en Europe et en Amérique du Nord en 1816.
Source: NJtoday.net
http://njtoday.net/

 ————————————————–

There were a lot of debates recently to know whether volcanoes were larger contributors to global warming and climate change than human activities. Recent studies show that human activities emit 60 or more times carbon dioxide (CO2) than volcanoes each year. Large, violent eruptions may match the rate of human emissions for the few hours that they last, but they are too rare and ephemeral to rival humanity’s annual emissions.

Human activities – mostly the burning of fossil fuels and deforestation – emitted roughly 40 billion tons of CO2 in 2015. According to the Global Carbon Project (http://www.globalcarbonproject.org/), since the start of the Industrial Revolution, more than 2,000 billion tons of carbon dioxide have been added to the atmosphere by human activities.

Volcanoes emit carbon dioxide in two ways: during eruptions and through vents, porous rocks and soils, and water that feeds volcanic lakes and hot springs. Estimates of global CO2 emissions from volcanoes have to take both erupted and non-erupted sources into account.

In 2011, USGS scientist Terry Gerlach summarized five previous estimates of global volcanic carbon dioxide emission rates that had been published between 1991 and 1998. The global estimates fell within a range of about 0.3 ± 0.15 billion tons of CO2 per year, which implied that human carbon dioxide emissions were more than 90 times greater than volcanic CO2 emissions.

In 2013, another group of scientists published an updated estimate using more accurate data. The authors concluded that the best overall estimate was about 0.6 billion tons of carbon dioxide per year. Taken at face value, the result implies that anthropogenic CO2 exceeds global volcanic CO2 by at least a factor of 60 times.

Occasionally, eruptions are powerful enough to release carbon dioxide at a rate that may exceed the global rate of human emissions for a few hours. This was the case with the eruptions of Mount St. Helens in 1980 and Pinatubo in 1991. While this excess of CO2 only lasted 8 or 9 hours, human emissions of carbon dioxide continue day after day, month after month, year after year. However, volcanoes on some occasions contributed to global warming by producing significant amounts of carbon dioxide and other greenhouse gases. This was the case 250 million years ago when an extensive flood of lava poured continually from the ground in Siberia perhaps hundreds of thousands of years. According to some scientists, this large-scale, long-lasting eruption likely raised global temperatures enough to cause one of the worst extinction events in our planet’s history.

Today, rather than warming the Earth, volcanic eruptions often have the opposite effect. Eruptions often produce volcanic ash and aerosol particles which reflect sunlight back into space, cooling global climate. Thus, the 1815 eruption of Mount Tambora produced enough ash and aerosols to cancel summer in Europe and North America in 1816.

Source: NJtoday.net

 Panache-Kilauea

Panache de gaz du Kilauea à Hawaii (Photo: C. Grandpey)

Panache-Semeru

Panache de cendre du Semeru en Indonésie (Photo: C. Grandpey)

Pinatubo-blog

 Double couche d’aérosols émise par l’éruption du Pinatubo en août 1991.

(Source : NASA)

Toujours plus de CO2 dans l’atmosphère…et de moins an moins de glace de mer ! // More and more carbon dioxide in the atmosphere…and less and less sea ice !

drapeau-francaisL’Observatoire du Mauna Loa à Hawaii mesure le dioxyde de carbone (CO2) atmosphérique depuis près de 60 ans. Les niveaux enregistrés complètent la célèbre courbe de Keeling (voir ci-dessous), du nom de Charles David Keeling, le scientifique qui a commencé les mesures en 1958.
La première mesure de dioxyde de carbone enregistrée par Keeling en 1958 révélait un niveau de seulement 316 ppm (parties par million). Depuis cette date, le CO2 a augmenté de façon spectaculaire. En 2013, la concentration dans l’atmosphère atteignait 400 ppm, un niveau symbolique, car c’est celui que les climatologues définissent comme «le début de la zone de danger ». La quantité de CO2 dans l’atmosphère a atteint un nouveau record en mai 2016. C’est également la plus forte augmentation annuelle depuis le début de son suivi à la fin des années 1950.

La concentration de CO2 moyenne en mai était de 407,7 ppm, ce qui correspond à une augmentation de 3,76 ppm par rapport à mai 2015, et la plus forte hausse sur une année. Le 9 avril, un niveau de 409,44 ppm a été atteint. Toutefois,  les scientifiques ont tendance à ne pas attacher trop d’importance aux moyennes quotidiennes car elles fluctuent souvent de manière trop forte pour être représentatives de l’atmosphère dans son ensemble.
L’augmentation de la concentration de CO2 est actuellement la plus rapide depuis des centaines de milliers d’années. Selon la NOAA, la dernière fois que notre planète a connu une telle augmentation continue du dioxyde de carbone, c’était il y a entre 17 000 et 11 000 ans. L’augmentation actuelle est 200 fois plus rapide que cela. Aujourd’hui, la concentration de CO2 est la plus élevée des 800 000 dernières années ; c’est ce que révèlent les carottes de glace qui ont piégé le dioxyde de carbone du passé.

L’augmentation provient principalement des combustibles fossiles, même si El Niño peut être tenu en partie pour responsable. En effet, l’air des tropiques a tendance à s’assécher pendant un épisode El Niño, ce qui affecte énormément la vie végétale. Les plantes absorbent le dioxyde de carbone atmosphérique qui est nécessaire à la photosynthèse. S’il y a moins de plantes, il y aura plus de CO2 dans l’atmosphère. El Niño augmente également le risque d’incendies qui injectent, eux aussi, de grandes quantités de CO2 dans l’air.
En cliquant sur ce lien, vous verrez une animation qui montre la variation des concentrations de CO2 dans l’atmosphère entre septembre 2014 et janvier 2016:
https://youtu.be/YFeaBDavzSY

Source: The Washington Post.

Dans le même temps – et ce n’est pas une surprise – les scientifiques enregistrent dans l’Arctique, pour le mois de mai, la plus faible étendue de glace de mer de tous les temps. Cette étendue (autrement dit la zone dans laquelle au moins 15% de la surface de la mer est gelée) a été la plus réduite pour ce mois depuis le début des mesures satellites en 1979. Le record du mois de mai fait suite à d’autres pour les mois de janvier, février et avril, sans oublier le record hivernal enregistré en mars. L’absence de glace de mer affecte l’ensemble de l’Arctique, aussi bien le côté Pacifique que la partie Atlantique.

La fonte de la glace de mer est actuellement en avance de deux à quatre semaines par rapport à 2012, année de référence pour le minimum. Ainsi, la débâcle a déjà commencé dans la Mer de Beaufort ; les zones dépourvues de glace ont tendance à s’agrandir, ce qui va contribuer à accélérer la fonte. En effet, ces zones libres de glace absorbent la chaleur pendant l’été et la glace fond encore plus vite.

Source : Alaska Dispatch News.

————————————

drapeau-anglaisThe Mauna Loa Observatory in Hawaii has been measuring atmospheric carbon dioxide (CO2) for nearly 60 years. The resulting CO2 levels create the iconic Keeling Curve, shown below, named for Charles David Keeling, the scientist who began the measurements in 1958.

The first carbon dioxide measurement recorded by Keeling was just 316 ppm. Since then, it has increased dramatically. In 2013, the atmosphere’s carbon dioxide concentration hit 400 ppm — a significant milestone, because it’s the level at which climate scientists identify as “the beginning of the danger zone”. The amount of CO2 in the atmosphere reached a new record in May. It also increased more in a single year than it has since the beginning of its monitoring in the late 1950s.

The average CO2 concentration in May was 407.7 parts per million. This was a 3.76 ppm increase since May 2015, and the largest year over year increase on record. On April 9th, a daily record of 409.44 ppm was set, although scientists tend to not follow the daily averages too closely, since they often fluctuate too wildly to be representative of the atmosphere as a whole.

Carbon dioxide levels are increasing faster than they have in hundreds of thousands of years. According to NOAA, the last time our planet saw such a sustained increase in carbon dioxide was between 17,000 and 11,000 years ago. The current rate of increase is 200 times faster than that. Carbon dioxide in the atmosphere is higher now than it has been in more than 800,000 years, as can be concluded from ice samples that have trapped the carbon dioxide in ancient air.

The increase mostly comes the burning of fossil fuels, although a part of this year’s very large spike can be attributed to El Niño. Indeed, the tropics tend to dry out during an El Niño episode, which kills off a lot of plant life. Plants absorb atmospheric carbon dioxide, which is necessary for photosynthesis. Fewer plants means more CO2 in the atmosphere. El Niño also increases the likelihood of extreme wildfires, which also inject large amounts of CO2 into the air.

By clicking on this link, you will see an animation that shows the variation of CO2 concentrations in the atmosphere between September 2014 and January 2016:

https://youtu.be/YFeaBDavzSY

Source: The Washington Post.

Meantime, and this does not come as a surprise, scientists are announcing another monthly record low for Arctic sea ice. Its extent (namely the area where at least 15 percent of sea surface is frozen) in May was the lowest measured for that month since satellite recording began in 1979. The record-low in May follows record lows posted for January, February and April and a record-low winter maximum reached in March. The low-extent pattern is spread across the Arctic, both on the Pacific side and the Atlantic side.

The melt is now two to four weeks ahead of the pace set in 2012, the year when the record-low minimum was set. For instance, the ice in the Beaufort Sea is already broken up, and holes have become large and are expected to contribute to future melt. The holes are likely to absorb a lot of heat during the summer and accelerate the melt.

Source : Alaska Dispatch News.

Keeling 2016

Courbe de Keeling (Source: NOAA): Le CO2 atteint des sommets….

Groenland-blog

…et la glace de mer se réduit comme peau de chagrin! (Photo: C. Grandpey)

La fonte du pergélisol s’accélère // The thawing of permafrost is accelerating

drapeau francaisDans une étude internationale à grande échelle publiée la semaine dernière dans Nature Geoscience, une équipe de chercheurs des régions allant de l’Alaska à la Russie indique que le permafrost (également appelé pergélisol) dégèle plus rapidement que prévu, même dans certaines régions réputées comme étant très froides. Dans ces régions, le gel ouvre des fractures dans le sol pendant l’hiver. Elles se remplissent ensuite d’eau en été quand la neige fond. Lorsque le regel se produit en hiver, cela provoque la formation de grands « coins » de glace dans le sol glacé (voir photo ci-dessous). Ces coins de glace peuvent atteindre dix ou quinze mètres de profondeur, et peuvent dans certains cas être âgés de plusieurs milliers d’années.
L’étude s’appuie sur l’observation de sites arctiques en Russie, en Alaska et au Canada, avec deux campagnes d’observations sur le terrain et des données satellitaires. Les chercheurs ont constaté que dans l’Arctique, la partie supérieure des coins  de glace est en train de fondre en même temps que la couche supérieure du pergélisol.
Les chercheurs se sont attardés sur les conséquences de cette dégradation de la glace sur l’hydrologie de la région. En effet, la fonte des coins de glace redistribue l’eau sur une grande échelle. Il y a de fortes chances pour que cette eau quitte la terre ferme pour rejoindre les rivières et ensuite l’Océan Arctique, ou qu’elle stagne dans les lacs.
La dégradation du pergélisol n’aura pas seulement une incidence sur l’eau ; elle affectera aussi l’atmosphère de la planète. En effet, la fonte des coins de glace montre que la partie supérieure du pergélisol dégèle, ce qui ne manquera pas de produire un effet de serre supplémentaire. En même temps que le sol dégèle, même si ce n’est qu’une partie de l’année, les micro-organismes qui y vivent commencent à se décomposer et à libérer leur carbone sous forme de dioxyde de carbone ou de méthane. On a estimé que le pergélisol arctique contient environ deux fois plus de carbone que toute l’atmosphère planétaire car les régions arctiques l’ont lentement stocké pendant de longues périodes de temps.
En outre, la fonte des coins de glace provoque des affaissements du sol et fait naître un paysage cahoteux qui perturbe le transport et les infrastructures de l’Arctique (voir photo ci-dessous).

Certains scientifiques affirment qu’il existe des facteurs susceptibles de compenser les émissions de carbone du pergélisol. Ils pensent que davantage de plantes pousseront dans un Arctique plus chaud en emmagasinant du carbone, ce qui compensera les pertes de pergélisol. Cependant, une étude qui vient d’être publiée dans Environmental Research Letters par près de 100 spécialistes de l’Arctique n’attribue guère d’importance à un tel facteur de compensation. Comme l’a expliqué un chercheur, «il ne faut pas compter sur la biomasse boréale pour compenser les émissions de carbone du permafrost. Ce dernier deviendra une source de carbone dans l’atmosphère d’ici 2100 quel que soit le scénario de réchauffement. »
Ces études sur le pergélisol sont essentielles en raison de la mathématique sous-jacente du problème du changement climatique. Il est difficile de définir une limite des émissions de gaz à effet de serre qui permettrait de ne pas atteindre 1,5°C ou 2°C de réchauffement au-dessus des niveaux pré-industriels. Il y a quelques années, des chercheurs ont essayé de quantifier cette limite. Selon eux, il ne fallait pas émettre plus de 1 000 milliards de tonnes, ou gigatonnes, de dioxyde de carbone à partir de 2011 et dans les années suivantes si nous voulions avoir une chance de rester en dessous de 2°C.
La quantité de carbone que le pergélisol est capable d’émettre et la vitesse à laquelle il peut l’émettre restent du domaine de l’incertitude. Toutefois, étant donné les connaissances scientifiques actuelles, le niveau pourrait facilement dépasser 100 gigatonnes de dioxyde de carbone d’ici la fin du siècle.
Source: Alaska Dispatch News.

 ————————————–

drapeau anglaisIn a major international study published last week in Nature Geoscience, a team of researchers from regions ranging from Alaska to Russia report that permafrost is thawing faster than expected, even in some of the very coldest areas. In these regions, winter freezing cracks open the ground, which then fills with water in the summer from melting snow. When refreezing occurs in the winter, that causes large wedges of ice to form amid the icy ground. These ice wedges can extend ten or fifteen metres deep, and can in some cases be thousands of years old.

The study, sampling high Arctic sites in Russia, Alaska and Canada based on both field studies and satellite observations, found that across the Arctic, the tops of these wedges are melting, as the top layer of permafrost soil also begins to thaw.

The new study focuses specifically on the consequences of this ice wedge degradation for the region’s hydrology. The melting of ice wedges redistributes water on a massive scale. It can flow out of the landscape and into rivers and the Arctic Ocean. Or it pools in lakes.

The degrading of permafrost won’t just affect water, but also the planet’s atmosphere. Indeed, the degradation of ice wedges shows that upper part of permafrost is thawing, and thawing of the upper part of permafrost definitely is producing additional greenhouse gases. As these frozen soils thaw, even for part of the year, microorganisms living within them can begin to break down and release their carbon in the form of carbon dioxide or methane. It has been estimated that Arctic permafrost contains roughly twice as much total carbon as the entire planetary atmosphere does, because these landscapes have slowly stored it up over vast time periods.

Besides, the melting of ice wedges leads to sinking ground and a bumpy, denatured landscape that impairs Arctic transportation and infrastructure (see photo below).

There have been some arguments to suggest that there may be other factors that offset permafrost carbon emissions. Some have shown that more plants will grow in the warmer Arctic, sequestering more carbon, and that this will help offset permafrost losses. However, a study, just published in Environmental Research Letters, nearly 100 Arctic scientists found little reason to believe there will be any factor that offsets permafrost emissions enough to reduce the level of worry. As one expert puts it, « Arctic and boreal biomass should not be counted on to offset permafrost carbon release. The permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario. »

These studies of permafrost are critical because of the underlying math of the climate change problem. There is a hard limit to how many greenhouse gases can be emitted if we want to avoid a given level of warming – 1.5°C or 2°C above pre-industrial levels.

Some years ago, researchers have even quantified the latter limit, suggesting “we can’t emit more than 1,000 billion tons, or gigatons, of carbon dioxide from 2011 and on if we want a two thirds or better chance of staying below 2°C”.

Granted, precisely how much carbon permafrost can emit and how fast that can happen remain big uncertainties. But given current scientific understanding, it could easily be well over 100 gigatons of carbon dioxide by the end of the century.

Source : Alaska Dispatch News.

Wedge

« Coin » de glace dans le pergélisol

Permafrost_modifié-1

Exemple des conséquences de la fonte du permafrost pour le réseau routier

(Photos: C. Grandpey)

Trous sibériens et réchauffement climatique

Voici deux informations intéressantes et qui demandent à être confrontées. D’un côté, certains font remarquer – alors que nous sommes seulement à la fin du mois de juillet !- que l’été 2014 aux Etats-Unis est l’un des plus froids de l’histoire, avec une moyenne des températures qui a du mal à atteindre 90 degrés Fahrenheit (32 degrés Celsius). Semblable fraîcheur avait été enregistrée en 1992, peu de temps après l’éruption du Pinatubo aux Philippines. En remontant dans le temps, un seul été dans les années 1880 peut rivaliser avec les températures de 1992 et 2014. Bien sûr, les négationnistes du réchauffement climatique vont s’empresser d’ajouter que l’hiver 2013-2014 dans le nord-est des Etats-Unis a été l’un des plus rigoureux de l’histoire, en oubliant de mentionner qu’en Alaska les températures n’ont jamais été aussi élevées !

En face de ces propos, on apprend qu’un second trou géant vient d’être découvert dans le sol sibérien, à une cinquantaine de kilomètres du premier, découvert à la mi-juillet 2014. Il est légèrement plus petit que le précédent qui avait une trentaine de mètres de diamètre et 50 à 70 mètres de profondeur.

Les scientifiques russes pensent que la cause de l’ouverture de ces deux orifices à la surface du sol sibérien est le réchauffement climatique qui accélère de manière alarmante la fonte du permafrost, ce qui a pour effet de relâcher brutalement du gaz,  à la manière de l’ouverture d’un bouchon de champagne.

Ces découvertes appellent une double remarque :

1) Ces trous sont des indicateurs visibles du réchauffement climatique, car ils se trouvent au niveau du permafrost (ou pergélisol), une zone constamment gelée qui rétrécit comme peau de chagrin à l’heure actuelle. J’ai eu l’occasion d’attirer à plusieurs reprises l’attention sur ce phénomène à propos de l’Alaska où certaines forêts s’écroulent (elles ont été baptisées « drunken forests », les forêts ivres) car les racines ne sont plus retenues par le sol gelé. Les routes subissent elles aussi de plein fouet les effets de la fonte du permafrost ; il suffit de traverser l’Alaska ou le Yukon pour s’en apercevoir.

2) Le gaz libéré dans l’atmosphère lors de la formation de ces trous est du méthane (CH4). Au même titre que le dioxyde de carbone (CO2), le CH4 est un gaz à effet de serre. Toutefois, son potentiel de réchauffement global est 21 fois supérieur au CO2. Selon les scientifiques russes, « on entre dans un cercle vicieux: de plus en plus de méthane est dégagé dans l’atmosphère, ce qui augmente les températures, donc le pergélisol se réduit et de nouvelles poches de méthane éclatent. » J’avais attiré l’attention sur ce phénomène gazeux dans une note publiée le 20 mai 2014.

Une étude publiée en 2012 avait déjà montré que les rejets de carbone issus du permafrost seront plus rapides que ceux prévus par les modèles présentés à l’époque. Selon les dernières estimations, les quelque 18,8 millions de km2 de sols gelés dans le Grand Nord retiennent environ 1.700 milliards de tonnes de carbone organique, soit deux fois la quantité présente dans l’atmosphère aujourd’hui.

Trou-siberie

Crédit photo: Service de presse du gouverneur YaNAO / Marya Zulinova

Drunken-forest

« Forêt ivre » en Alaska  (Photo:  C.  Grandpey)