Menace de la lave à Hawaii : l’éruption de 2014 // Lava threat in Hawaii : the 2014 eruption

Dans le dernier épisode de la série ‘Volcano Watch’, le HVO nous rappelle qu’au cours des dernières années, la plupart des éruptions du Kilauea se sont produites dans des régions reculées et les coulées de lave n’ont pas vraiment menacé les zones habitées. Cependant, faisant exception à la règle, l’éruption de 2018 dans la Lower East Rift Zone a détruit des centaines de structures, sans toutefois tuer personne.

Avant 2018, lors de l’éruption de Pu’uO’o, qui a duré 35 ans, des coulées de lave ont provoqué des dégâts dans les Royal Gardens, à Kalapana et à Pahoa. Avant l’éruption du Pu’uO’o, il y a eu également des éruptions au niveau du village de Kapoho en 1960 et dans la Lower East Rift Zone du Kīlauea en 1955. Toutefois, les dégâts causés par ces éruptions n’ont pas eu l’ampleur de ceux provoqués par les événements de 2018.

Il y a dix ans, en 2014, un nouvel épisode éruptif s’est produit sur le flanc nord-est du Pu’uO’o. Il a été officieusement baptisé Épisode 61e, mais plus communément Coulée du 27 juin en référence à la date de début de cette éruption.

Au cours des premiers jours de l’éruption, quatre fissures ont émis des coulées avançant en chenaux, avant que l’éruption se concentre au niveau de la bouche la plus en aval, où un lac surélevé (perched pond) a commencé à se former. Le 10 juillet, la pression exercée par ce lac a entraîné le déplacement de la bouche éruptive vers la fissure en amont et la disparition du lac de lave. Le déplacement de la bouche éruptive a généré une coulée rapide qui parcourait parfois plusieurs centaines de mètres par jour.

Le 18 août, la lave est entrée dans une profonde fracture souterraine qui l’a dirigée vers le nord-est. Après environ une semaine, la lave a émergé de la fracture. La coulée ainsi produite a parcouru environ 5 km en tunnels jusqu’à environ 1,2 km de la subdivision des Kaʻohe Homesteads. La lave a émergé de ces tunnels début septembre.

Le front de coulée a avancé lentement et régulièrement au cours des premières semaines de septembre. Puis, de fin septembre à début octobre, l’avancée de la coulée de lave a commencé à fluctuer. Vers la fin du mois d’octobre, une nouvelle coulée de lave en chenal a traversé Cemetery Road à Pahoa. La lave a ensuite traversé le cimetière japonais de la localité, puis une propriété privée. Elle a détruit une structure, avant de s’arrêter à seulement 155 m de la Pahoa Village Road.

Le 14 novembre 2014, une importante émission de lave a été observée à environ 6,5 km en amont du front de coulée. La lave a rapidement progressé en bordure nord-ouest de la coulée précédente, pour finalement se diriger vers la Place du Marché de Pahoa et la Highway 130. Le front de coulée s’est arrêté le 30 décembre après s’être approché à moins de 530 m du marché. C’est la plus longue distance parcourue par la lave, mais de nombreuses sorties de lave en amont ont continué à menacer Pahoa jusqu’au début de l’année 2015. L’activité de la coulée du 27 juin a ensuite diminué et est restée encore active à environ 8 km du Pu’uO’o.

Cet épisode éruptif s’est poursuivi jusqu’au début de juin 2016, moment où l’inflation du Pu’u’ō’ō a culminé et s’est accompagnée de l’ouverture de deux nouvelles bouches sur les flancs nord-est et sud-est du cône le 24 mai.

Source : USGS/HVO.

Vue de la Coulée du 27 juin le 5 novembre 2014. Le front de coulée se trouve à environ 170 mètres des premières maisons de Pahoa, en bas à droite de la photo (Source : HVO)

—————————————-

In the latest episode of the series ‘Volcano Watch’, HVO reminds us that over the past few years, most eruptions of Kilauea volcano have happened in remote regions and lava flows have not directly threatened communities. However, the 2018 lower East Rift Zone eruption destroyed hundreds of structures, without killing anybody.

Before 2018, during the 35-year eruption of Pu’uO’o, lava flows caused destruction in Royal Gardens, Kalapana, and in Pahoa. Before Pu’uO’o, there were also eruptions in Kapoho Village in 1960 and on Kīlauea’s lower East Rift Zone in 1955.

Ten years ago, in 2014, a new eruptive episode occurred on the northeast flank of the Pu’uO’o cone. It was informally named episode 61e, but more commonly referred to as the June 27 flow in reference to the start date of that eruption.

In the first few days, four fissures produced channelized flows before the eruption focused at the lowest elevation vent, where a perched pond began to form. On July 10th, pressure from the perched pond triggered the eruptive vent to shift to the next highest fissure and abandon the perched pond. The change in eruptive vent produced a fast-moving flow that traveled up to several hundred meters per day.

On August 18th, the lava entered into a deep ground crack that directed the flow further to the northeast. After about a week the lava overflowed from the crack. The flow traveled roughly 5 km underground in these cracks to within about 1.2 km of Kaʻohe Homesteads subdivision where the lava exited the final crack in early September.

The flow front advanced slow and steadily during the first few weeks of September. Then from late September to early October, the lava flow’s advance began to fluctuate. Towards the end of October, a breakout surged through a narrow drainage and crossed Cemetery Road in Pahoa. The flow continued through the Pahoa Japanese Cemetery, through private property, and destroyed one structure, stalling only 155 m from Pahoa Village Road.

A large breakout on November 14th occurred roughly 6.5 km upslope of the flow front, and rapidly advanced along the northwest margin of the previous flow, ultimately headed towards Pahoa Marketplace and Highway 130. The flow front again stalled on December 30 after advancing to within 530 m of the marketplace. That was the furthest the lava flow advanced, but numerous breakouts just upslope continued to threaten Pahoa until early 2015.

The June 27th flow then retreated upslope and stayed within about 8 km of Pu’uO’o. This episode continued until early June 2016, when inflation at Puʻuʻōʻō culminated in two new eruptive vents on the northeast and southeast flanks of the cone on May 24th.

Source : USGS / HVO.

11 mars 1669 : début d’une grande éruption de l’Etna (Sicile) // March 11th, 1669 : start of a major eruption on Mt Etna (Sicily)

Ce 11 mars marque l’anniversaire du début de l’éruption de 1669 sur l’Etna. Il s’agit d’une éruption majeure qui a menacé la ville de Catane. Une bouche s’est ouverte à 800 mètres d’altitude près de la bourgade de Nicolosi et a donné naissance aux Monti Rossi. La lave a atteint Catane le 16 avril et a détruit une grande partie de la ville avant de se jeter dans la mer.

Fresque montrant l’éruption de 1669. On peut l’admirer dans la cathédrale de Catane (Photo: C. Grandpey)

Cette éruption a été rendue célèbre par la première tentative de détournement d’une coulée de lave. Malgré le peu de moyens dont disposait la population au 17ème siècle, elle eut un certain succès. Une cinquantaine d’hommes, dirigés par Diego Pappalardo et protégés de la chaleur par des peaux de vache mouillées, creusèrent une brèche dans le mur de lave brûlante bordant un côté de la coulée. Une partie du flot de lave s’échappa par la brèche et s’engagea dans une direction légèrement différente, ce qui réduisit le volume de lave en direction de Catane.

Le problème, c’est qu’en prenant cette nouvelle direction, la lave menaçait la bourgade de Paterno, à une quinzaine de kilomètres au nord-ouest de Catane. Les habitants estimèrent que le nouveau cours emprunté par la lave les menaçait et quelque 500 personnes prirent des armes et mirent en fuite les hommes qui avaient ouvert la brèche. Cette dernière, n’étant plus entretenue fut bientôt colmatée par de la lave solidifiée et la coulée reprit la direction de Catane. L’éruption, commencée le 11 mars, ne s’arrêta qu’en juillet.

Haroun Tazieff m’a expliqué un jour les problèmes juridiques provoqués par le détournement d’une coulée de lava. Des territoires autrement épargnés peuvent être recouverts et rendus inutilisables par la lave. La dernière tentative de détournement de la lave sur l’Etna a eu lieu en 1983. A noter l’ « opération thrombose » tentée au cours de l’éruption de 1991-1993 dont le but était d’obstruer les tunnels de lave avec des blocs de béton.

Photo: C. Grandpey

J’ai écrit une note sur les différentes tentatives de détournement d’une coulée de lave :

https://claudegrandpeyvolcansetglaciers.com/2017/12/19/detournement-des-coulees-de-lave-diversion-of-lava-flows/

———————————————

Today March 11th, 2024 marks the anniversary of the start of the 1669 eruption on Mt Etna. This was a major eruption that threatened the city of Catania. A vent opened at 800 meters above sea level near the town of Nicolosi and built the Monti Rossi. Lava reached Catania on April 16th and destroyed much of the city before flowing into the sea.
This eruption was made famous by the first attempt to divert a lava flow. Despite the limited means available to the population in the 17th century, it had a certain success. About fifty men, led by Diego Pappalardo and protected from the heat by wet cowhides, dug a breach in the wall of burning lava bordering one side of the flow. Some of the lava flow escaped through the gap and went in a slightly different direction, which reduced the volume of lava heading towards Catania.
The problem was that while taking this new direction, the lava threatened the town of Paterno, about fifteen kilometers northwest of Catania. The inhabitants thought that the new course taken by the lava might threaten their town and some 500 people took up weapons and chased the men who had opened the breach which was soon blocked by solidified lava and the flow returned to Catania. The eruption, which began on March 11th, did not stop until July.
Haroun Tazieff once explained to me the legal problems caused by the diversion of a lava flow. Otherwise untouched territories can be covered and rendered unusable by lava. The last attempt to divert lava on Mt Etna took place in 1983. Note the « thrombosis attempt » during the 1991-1993 eruption, the aim of which was to block the lava tunnels with concrete blocks.

Iwrote a post on the different attempts to divert a lava flow:
https://claudegrandpeyvolcansetglaciers.com/2017/12/19/detournement-des-coulees-de-lave-diversion-of-lava-flows/

Des digues de terre pour dévier la lave // Earth dykes to deflect lava

Avec les dernières éruptions du 18 décembre 2023 et du 14 janvier 2024 sur la péninsule de Reykjanes, au sud-ouest de leur pays, les Islandais ont compris que les coulées de lave pouvaient menacer, voire détruire les infrastructures essentielles et les zones habitées. C’est la raison pour laquelle ils travaillent 24 heures sur 24 pour construire d’impressionnantes digues de terre pour essayer de de protéger la centrale vitale de Svartsengi et le port de pêche de Grindavik, et les mettre ainsi à l’abri des coulées de lave.

Les scientifiques expliquent que les six systèmes volcaniques de la péninsule, restés en sommeil pendant près de 800 ans, pourraient être de nouveau actifs pendant trois siècles, faisant planer une menace réelle sur 30 000 personnes, soit près de 8 % de la population totale du pays. Cinq éruptions ont déjà eu lieu depuis 2021.
Face au risque d’une éventuelle nouvelle activité volcanique, les autorités ont commencé, en novembre 2023, à construire des remparts de terre autour de la centrale géothermique de Svartsengi. Près de 100 bulldozers, excavatrices et camions travaillent sans relâche autour de la centrale. Au total, quelque 560 000 mètres cubes de matériaux – graviers et lave solidifiée – seront utilisés pour protéger la structure.

Bulldozer à l’oeuvre près de la centrale de Svartsengi (Crédit photo : Iceland Review)

Le but des digues est de détourner la lave, non de l’arrêter, et de forcer la coulée à progresser le long de ces barrières de terre. Essayer d’arrêter la lave ne sert à rien ; certes, ça l’arrêtera momentanément, mais elle finira par franchir ces obstacles
La construction de remparts a également commencé autour de Grindavik où vivent près de 4 000 habitants, évacués le 10 novembre 2023, un mois avant l’éruption du 18 décembre. Lorsque la dernière éruption a débuté le 18 janvier 2024, la première barrière de terre s’est avérée efficace pour éloigner la lave de Grindavik. Toutefois, lorsque des fissures se sont ouvertes à la périphérie de la ville, au-delà des digues de terre, la lave a détruit trois maisons. .

 

Les digues de terre (au premier plan) n’ont rien pu faire contre l’ouverture d’une nouvelle fissure aux abords de Grindavik (image webcam)

Les plus grandes digues mesurent environ 40 mètres de large à la base, entre huit et dix mètres de hauteur et quatre mètres de large au sommet. Il faudra probablement six semaines pour terminer le demi-cercle de sept kilomètres autour de Grindavik. Cela nécessitera environ deux fois plus de matériaux que pour la centrale de Svartsengi.
Ce n’est pas la première fois que des digues de terre sont érigées dans des régions sous la menace de volcans actifs. Des digues ou des remparts similaires ont déjà été tentés en Italie, à Hawaï et en Islande pour se protéger de la lave, mais à plus petite échelle.

Lors de l’éruption de l’Etna (Sicile) de 1991 à 1994, une digue de terre de 234 mètres de long et 21 mètres de haut a été construite dans le Val Calanna pour tenter d’empêcher la lave de devenir une menace pour la ville de Zafferana Etnea. La lave a été retenue pendant environ un mois avant de finalement déborder de la structure. La leçon a été tirée par les Islandais qui construisent désormais les digues différemment.

Edification d’une digue de terre sur l’Etna en 1991 (Crédit photo : Salvatore Caffo)

Les Islandais ont tenté pour la première fois de freiner la lave sur l’île de Heimaey (îles Vestmann) lorsqu’en 1973 une éruption a détruit la ville de Vestmannaeyjar, obligeant toute sa population à partir.
Depuis cette époque, d’autres éruptions ont eu lieu en Islande, mais généralement loin des villes et des infrastructures critiques. Lorsque l’activité volcanique a commencé sur la péninsule de Reykjanes en 2021, les Islandais ont essayé de construire un rempart de terre afin d’essayer d’éloigner la coulée de lave qui semblait déjà menacer Grindavik. Heureusement, la lave s’est arrêtée avant d’atteindre la digue.

Digue de terre dans la Meradalir en 2022 (Photo: C. Grandpey)

Les premières tentatives ont permis aux Islandais de se rendre compte que les barrières de terre étaient efficaces. Ils ont pu acquérir une technique pour les construire. La Protection civile enterre également les canalisations d’eau chaude plus profondément sous terre et surélève les lignes électriques et de télécommunications pour les protéger. Des tentatives sont également faites pour isoler les tuyauteries et les câbles électriques afin de les protéger de la lave à haute température.
Les Islandais sont habitués à vivre avec les volcans qui ont façonné de magnifiques paysages dans leur pays. Les geysers et les sources d’eau chaude attirent des foules de touristes, mais les volcans peuvent devenir un problème lorsqu’ils entrent en éruption au mauvais endroit. Le ministre islandais des Infrastructures a déclaré : « Il ne faut pas oublier que notre énergie géothermique verte, nos superbes attractions touristiques et notre bien-être proviennent de la puissance des volcans. Parfois, c’est une bonne chose et les gens en profitent, mais parfois les volcans peuvent devenir une menace. »
Source  : Adapté d’un article paru dans Yahoo Actualités.

Dans une note publiée le 18 janvier 2024, j’ai abordé le sujet du détournement des coulées de lave, en expliquant que cette technique présentait des limites :

Le détournement des coulées de lave et ses limites // The diversion of lava flows and its limits

—————————————————–

With the past eruption of December 18th, 2023 and January 14th, 2024, Icelanders have understood yhat lava flows are able to threaten and even destry essential infrastructure and residential areas. This is the reason why they are working round-the-clock to build impressive dykes to protect the vital Svartsengi power plant and the fishing port of Grindavik from lava flows on Iceland’s southwestern Reykjanes Peninsula where volcanic activity had been dormant for nearly 800 years.

Scientists explain that the six volcanic systems on the peninsula might be active for up to three centuries, with a real threat to 30,000 people, nearly 8% of the country’s total population. Five eruptions have already occurred since 2021.

With the risk of possible new volcanic activity, authorities in November 2023 began building defence walls around the Svartsengi geothermal power plant. Since then, nearly 100 bulldozers, excavators and haul trucks have been working nonstop around the plant. In total, some 560,000 cubic meters of gravel and solidified lava rock will be used to protect the structure

The aim of the dykes is to divert the lava, not to stop it, and to force the flow to move forward beside the barriers. Trying to stop the lava is of no use ; it will stop it, the lava will eventually go over the barriers.

Construction of defence barriers has also started around Grindavik, home to nearly 4,000 residents who were evacuated on November 10th 2023, one moth before the December 18th eruption. When the last eruption started on January 18th, 2024, the first barrier proved effective in diverting lava away from Grindavik but when fissures opened on the outskirts of the town, beyond the barriers, lava destroyed three houses. .

The biggest barriers are about 40 metres wide, between eight and ten metres high, and four meters wide at the top. Finishing the seven-kilometre half circle around Grindavik is expected to take six weeks. It will take roughly twice as much material as was needed at Svartsengi.

This is not the first time earthen barriers have been erected in regions with active volcanoes. Similar dykes or embankments have already been attempted in Italy, Hawaii and Iceland to protect from lava but on a smaller scale. During the 1991-1994 eruption of Mount Etna (Sicily), a 234-metres long and 21-metres high barrier was constructed in Val Calanna to try and prevent lava from travelling farther downslope and become a threat to Zafferana Etnea. The lava was held back for approximately one month before it eventually flowed over the structure. The lesson was drawn by Icelander who are now building the dykes differently.

Icelanders first attempted building defence walls on the island of Heimaey (Vestmann Islands) when a 1973 eruption ravaged the town of Vestmannaeyjar, forcing its entire population to evacuate.

Other eruptions have struck Iceland since, but usually away from towns and critical infrastructure. When volcanic activity began on the Reykjanes peninsula in 2021, attempts at building a defence were made, in order to try to steer the lava flow away from one area that would eventually lead to Grindavik, Fortunately, the lava stopped before reaching the barrier.

The first attempts allowed Icelanders to realise that the barriers are working, so now they know more about how to build them and how to use them. The Department for Civil Protection is also digging hot water pipelines deeper underground and lifting power and telecom lines higher to protect them. Attempts are also being made to insulate overland pipelines and power cables from hot lava.

Icelanders are used to living with volcanoes which have shped wonderful landscapes in their country. Geysers and hot water springs draw crowds of tourists, but volcanes can become a problem when they erupt in the wrong places. Said Iceland’s Minister of Infrastructure : « We must remember that our green geothermal energy, amazing tourist attractions and well-being in Iceland come from the power of the volcanoes. Sometimes it is good and a benefit to the people, but sometimes it is threatening us. »

Source : Adapted from an article in Yahoo News.

In a post published on January 18th, 2024, I addressed the subject of diverting lava flows, explaining that this technique had limitations:

Le détournement des coulées de lave et ses limites // The diversion of lava flows and its limits

Hausse d’activité du Stromboli (Sicile) // Increase in activity at Stromboli (Sicily)

Depuis 21h30 (heure locale) le 8 octobre 2023, les images de la webcam du Stromboli (Sicile) montrent un débordement de lave alimenté par l’intense activité de spattering de la zone cratèrique Nord. La coulée, pour le moment, reste confinée à la partie supérieure de la Sciara del Fuoco (voir image caméra thermique ci-dessous) , mais elle est bien alimentée. A partir de 21h15, on a observé une hausse du tremor qui a atteint une valeur élevée.

Source : INGV.

—————————————

Since 9:30 p.m. (local time) on October 8th, 2023, images from the Stromboli webcam (Sicily) show a lava overflow supplied by an intense spattering activity in the northern crater area. The flow, for the moment, remains confined to the upper part of the Sciara del Fuoco (see thermal camera image below), but it is well fed. From 9:15 p.m., an increase in the tremor has been observed, reaching high values.
Source: INGV.