Islande : des éruptions plus difficiles à prévoir ? // Iceland : eruptions more difficult to predict ?

Depuis le mois de décembre 2023, la prévision éruptive le long de la chaîne de cratères Sundhnúkagígar sur la péninsule de Reykjanes est relativement bonne. En s’appuyant sur les données de soulèvement du sol dans le secteur de Svatseengi, qui correspondent à l’accumulation de magma sous la surface, les scientifiques du Met Office ont pu dire, avec une marge d’erreur relativement faible, à quel moment une éruption était susceptible de se produire.
Cependant, selon une étude récente effectuée par des scientifiques de l’Institut des sciences de la Terre de l’Université d’Islande en collaboration avec le Met Office islandais, la prévision des prochaines éruptions pourrait devenir plus difficile.
La composition chimique du magma émis lors des quatre premières éruptions de Sundhnúkagígar révèle qu’il provient de plusieurs chambres ou sources magmatiques proches les unes des autres, à une profondeur d’environ cinq kilomètres. L’étude se base sur les données des quatre premières éruptions, en décembre 2023 et en janvier, février et mars 2024.
L’objectif de l’étude était de mieux comprendre l’accumulation de magma pour chaque éruption en examinant la composition chimique du magma émis. Si cette composition change à chaque éruption, cela montre que le magma provient de plusieurs chambres magmatiques.
La méthodologie de l’étude comprenait le prélèvement d’un certain nombre d’échantillons de lave à différents endroits au cours des quatre éruptions, ainsi que l’étude des différentes compositions chimiques du magma. Au total, 161 échantillons ont été collectés ; leur analyse a été réalisée à l’Institut des sciences de ta Terre de l’Université d’Islande et au Laboratoire Magmas et Volcans de Clermont-Ferrand.
Le résultat des analyses révèle que la composition chimique du magma est très variable, ce qui laisse supposer qu’il provient de chambres magmatiques différentes à une profondeur d’environ cinq kilomètres sous la chaîne de cratères. De plus, la composition chimique varie également d’une éruption à l’autre, ce qui indique des changements dans les chambres magmatiques à mesure que l’activité volcanique progresse sur la péninsule de Reykjanes.
Selon la conclusion de l’étude, comme il existe probablement plus d’une chambre magmatique sous Svartsengi, il peut être difficile de prévoir quand les prochaines éruptions auront lieu. Le comportement des éruptions peut également changer. Il peut être difficile de prévoir la quantité de magma émise par chaque éruption et la durée de l’éruption, en fonction de la chambre d’où provient ce magma.
On savait déjà que le magma est susceptible de s’accumuler dans plusieurs chambres magmatiques proches les unes des autres, mais c’est la première fois que cela est confirmé, grâce à l’analyse détaillée du magma émis sur la chaîne de cratères Sundhnúkagígar.

L’étude souligne également que l’analyse de la composition chimique du magma fournit des informations permettant l’interprétation des données géophysiques ; cela pourrait conduire à une meilleure compréhension du comportement des volcans.
Source ; Icelandic Met Office, Iceland Monitor.

Image webcam de la dernière éruption

————————————————-

Since December 2023, the prediction of eruptions along the Sundhnúkagígar crater row on the Reykjanes Peninsula has been quite good. Relying on ground uplift in the Svatseengi area that corresponded with magma accumulation beneath the surface, scientists at the Met Office were able to say, with a relatively small margin of error, when the next eruption would occur.

However, according to a recent study by scientists at the Earth Sciences Institute of the University of Iceland in collaboration with the Icelandic Meteorological Office, eruptive prediction might become more difficult in the future.

The chemical composition of the magma in the first four eruptions in the Sundhnúkagígar crater row suggests that the magma comes from several magma chambers or vents that are close to each other at a depth of about five kilometers.The study is based on data from the first four eruptions, in December 2023 and January, February and March 2024.

The goal of the study was to gain a better understanding of magma accumulation for each eruption by examining the chemical composition of the magma that emerged. If it turned out to change in each eruption, it would be an indication that the magma came from more than one magma chamber.

The methodology of the study included that the researchers collected a number of lava samples in many places in the eruption areas during the four eruptions and investigated the different chemical composition of the magma. They took a total of 161 samples whose analysis was carried out at the Institute of Geosciences of the University of Iceland and the Laboratoire Magmas et Volcans in Clermont-Ferrand.

The result of the analysis was that the chemical composition of the magma is very variable, which suggests that it comes from several different magma chambers at a depth of about five kilometers below the series of craters. In addition, the chemical composition also varies from one eruption to another, which indicates changes in the magma chambers as the volcanic activity progresses on the Reykjanes Peninsula.

The conclusion of the study is that since there is possibly more than one magma chamber under Svartsengi, it may be difficult to predict when the next eruptions will occur. Then the behaviour of the volcanic eruptions can also change. It may be difficult to predict how much magma will be produced by each eruption and how long the eruption will last, depending on which chamber the magma comes from.

We know that it is probably common for magma to accumulate in more than one magma chamber that are close to each other in volcanoes, but this is the first time it has been confirmed, thanks to the detailed analysis of the magma from the Sundhnúkagígar crater row. The study also emphasizes that the analysis of the chemical composition of magma provides more accurate information that helps in the interpretation of geophysical data and will lead to a better understanding of the behaviour of volcanoes.

Source ; Icelandic Met Office, Iceland Monitor.

Islande : résultats des analyses de la lave // Iceland : results of lava analysis

Les dernières analyses de la lave émise par l’éruption actuelle ont révélé que le magma est sensiblement différent de celui des éruptions précédentes. Il ressemble davantage au magma de l’éruption du Geldingadalir en mars 2021.

Deux échantillons de lave ont été analysés, un premier issu de téphras et un deuxième de lave, collectés à la surface au début de l’éruption, le 29 mai 2024. Ce qui a surpris les scientifiques, c’est le rapport dioxyde de potassium/dioxyde de titane. La lave des éruptions précédentes sur la chaîne de cratères de Sundhnúkagígar avait un rapport relativement élevé de dioxyde de potassium par rapport au dioxyde de titane, semblable à ce qui s’est produit lors de l’éruption de Litli-Hrútur en 2022 et de l’éruption dans la Meradalir en 2022. En revanche, au début de l’éruption dans la Geldingadalir en mars 2021, le magma a présenté un rapport potassium-titane très similaire à celui de l’éruption actuelle. Un scientifique a déclaré : « C’est comme si le magma qui est émis aujourd’hui avait la même source que celui qui est apparu pour la première fois dans la Geldingadalir.

Eruption dans la Meradalir en 2022 (image webcam)

Les similitudes entre les deux éruptions, survenues à trois ans d’intervalle, sont intéressantes pour plusieurs raisons. L’une d’elles est que l’éruption se produit dans deux systèmes volcaniques différents. Une autre raison est que le magma qui émis dans la chaîne de cratères de Sundhnúkagígar provient d’une chambre magmatique sous Svartsengi. Après une brève période d’accumulation, il remonte à la surface, mais il s’est refroidi et un peu cristallisé dans la chambre, et est donc plus avancé. Ce n’était pas le cas lors de l’éruption dans la Geldingadalir. Cependant, personne ne sait pourquoi le magma qui remonte maintenant à la surface semble avoir la même composition que celui qui est apparu dans la Geldingadalir en 2021. Un scientifique islandais a déclaré : « Il faudrait le demander au Diable !. » On pense que ce magma pourrait provenir d ‘une zone entre la croûte et le manteau. Des analyses supplémentaires seront nécessaires pour espérer obtenir une réponse.

Image webcam de l’éruption du 29 mai 2024

On peut lire sur le site Internet de l’Institut des Sciences de la Terre de l’Université d’Islande : « Des échantillons de téphras et de lave ont été collectés au nord de Fiskidalsfjall et à l’est de Sýlingarfell le 1er et le 4ème jour de l’éruption qui a débuté le 29 mai 2024. Le verre volcanique présent dans les échantillons a été analysé avec la microsonde électronique de l’Institut des Sciences de la Terre de l’Université d’Islande. La lave et les tephras sont composés de cristaux de plagioclase, d’olivine et de clinopyroxène. Le verre des tephras est exempt de microlites, tandis que les échantillons de lave en contiennent des quantités variables. Dans l’ensemble, les caractéristiques pétrographiques de la nouvelle lave sont assez semblables à celles des laves émises précédemment sur la fissure de Sundhnúksgígar depuis décembre 2023. »

Source  : Iceland Monitor..

Remarques personnelles à propos des dernières éruptions sur la péninsule de Reykjanes.

Les dernières analyses et celles effectuées lors des éruptions précédentes sont intéressantes car elles révèlent que le magma qui alimente les éruptions sur la péninsule de Reykjanes a sa source à grande profondeur, dans le manteau ou dans la zone entre le manteau et la croûte. La différence de composition chimique de la lave entre les différents échantillons prélevés est probablement liée au séjour – ou au non séjour – du magma dans une chambre magmatique comme celle sous Svartsengi.

Quelle que soit la zone source du magma, on peut remarquer que la composition chimique de la lave n’a guère d’influence sur le processus éruptif. Les événements observés sur la péninsule de Reykjanes ces dernières années se sont tous déroulés de la même façon. Ils sont d’ailleurs liés à la position de l’Islande sur le rift médio-atlantique.

Du fait de de la source profonde du magma, on a affaire à une lave à haute température, donc très fluide qui crée des intrusions en s’infiltrant dans les fractures qui tranchent l’Islande du nord-est au sud-ouest. Ces intrusions s’accompagnent généralement de fortes crises sismiques comme on l’a vu quand l’une d’elles a atteint Grindavik.

Une fois la surface atteinte, le magma ouvre des fractures et donne naissance à des éruptions fissurales. Telle une boutonnière, plusieurs bouches s’ouvrent le long de la fracture. Leur activité décline au fil des jours avec l’évacuation du magma et l’éruption se termine en général avec une seule bouche active, comme c’est le cas avec la dernière éruption.

Le Met Office islandais indique que la chambre magmatique sous Svartsengi est probablement à nouveau en cours de remplissage. Si c’est le cas, on peut s’attendre à de nouveaux événements éruptifs, à moins que le magma décide de séjourner dans la chambre et d’attendre un temps plus ou moins long avant de percer la surface. Ainsi va la vie volcanique dans cette partie de l’Islande…

——————————————–

The latest analyses of the lava emitted by the current eruption have revealed that the magma differs significantly from its predecessors. It is more similar to the magma from the Geldingadalir eruption in March 2021.

Two lava samples have been analyzed, a tephra deposit and secondly a lava deposit, which came to the surface when the eruption began on May 29th, 2024. What surprised the scientists was the ratio of potassium dioxide to titanium dioxide. The lava from previous eruptions on the Sundhnúkagígar crater row has had a relatively high ratio of potassium dioxide to titanium dioxide, similar to what came up in the Mt Litli-Hrútur eruption in 2022 and the Meradalur eruption in 2022. By contrast, at the beginning of the eruption in Geldingadalir in March 2021, magma came up with a very similar potassium-titan ratio as in the current eruption, One scientis said : “It’s like the magma that’s coming up now is of the same strain as the one that first appeared in Geldingadalir.”

The similarities between the two eruptions, which occurred three years apart, are interesting for several reasons. One reason is that the eruption occur in two different volcanic systems. Another reason is that magma that comes up at Sundhnúkagígar crater row is first collected in a magma chamber under Svartsengi. After a brief accumulation period there, it then pops onto the surface, but then the magma has cooled, crystallized a little, and is usually more advanced. This was not the case in the eruption in Geldingadalir. However, nobody knows why the magma that is now rising to the surface appears to be of the same strain as the one that came in Geldingadalir 2021. An Icelandic scientist said : “You have to ask the devil about that.” It is thought that this magma may come from the area between crust and mantle. More analyses will be necessary to hope to get some answer.

One can read on the website of the Institute of Earth Sciences of the University of Iceland : “Samples of tephra and quenched lava were collected north of Fiskidalsfjall and east of Sýlingarfell on the 1st day and 4th day of the eruption at Sundhnúksgígar that started on May 29th, 2024. The volcanic glass in the samples was analysed with the electron microprobe of the Institute of Earth Sciences, University of Iceland. The lava and tephra are composed of vesicular glass, plagioclase, olivine and clinopyroxene crystals. The tephra glass is microlite-free, whereas quenched lava samples contain variable amounts of microlites. Overall, the petrographic features of the new lava resemble those of previous lavas erupted at Sundhnúksgígar since December 2023 .”

Source : Iceland Monitor.

Personal remarks about the latest eruptions on the Reykjanes Peninsula.

The latest analyzes and those carried out during previous eruptions are interesting because they reveal that the magma which fuels the eruptions on the Reykjanes Peninsula has its source at great depth, in the mantle or in the zone between the mantle and the crust. The difference in chemical composition of the lava between the different samples is probably linked to the stay – or non-stay – of the magma in a magma chamber like the one under Svartsengi.

Whatever the source area of ​​the magma, it can be noted that the chemical composition of the lava has little influence on the eruptive process. The events witnessed on the Reykjanes Peninsula in recent years have all developed in the same way. They are also linked to Iceland’s position on the mid-Atlantic rift.

Due to the deep source of the magma, we are dealing with lava at high temperature, therefore very fluid, which creates intrusions by infiltrating the fractures which cut Iceland from the north-east to the south-west. These intrusions are generally accompanied by strong seismic crises as could be seen when one of them reached Grindavik.

Once it reaches the surface, the magma opens fractures and triggers fissure eruptions. Like a buttonhole, several vents open along the fracture. Their activity declines over the days as the magma evacuates and the eruption generally ends with only one active vent, as is the case with the current eruption. The Icelandic Met Office says the magma chamber beneath Svartsengi is likely filling again. If this is the case, we can expect new eruptive events, unless the magma decides to stay in the chamber and wait a longer or shorter time before breaking through the surface. Such is volcanic life in this part of Iceland…

Les laves du Mauna Loa (Hawaii) // Mauna Loa lavas

Plusieurs visiteurs de mon blog m’ont demandé si j’avais des informations sur la chimie de la lave émise par l’éruption en cours du Mauna Loa. Selon l’Observatoire des Volcans d’Hawaii (le HVO) qui vient de me transmettre ce qui suit, la lave émise en ce moment par le Mauna Loa n’est pas un vestige de l’éruption de 1984.
Les scientifiques expliquent que la lave provient d’une nouvelle intrusion magmatique au sommet et sur la zone de rift nord-est. Les coulées de lave sont dépourvues de cristaux près des bouches éruptives et présentent une abondance de petits cristaux (<0.01 mm) sur les fronts de coulées. Ces cristaux d’olivine et de plagioclase se sont développés pendant le refroidissement des coulées. Ces échantillons ont une teneur en MgO (oxyde de magnésium) de 6,0 à 6,8 % en poids, ce qui est typique des magmas du Mauna Loa. La température moyenne calculée à partir des teneurs en oxyde de magnésium est de 1156°C. Les scientifiques du HVO et de l’Université d’Hawai indiquent que la poursuite des analyses chimiques en laboratoire leur permettra de comprendre comment l’éruption évolue. De nouveaux instruments ont été déployés le long des fractures dynamiques et des coulées de lave afin de contrôler l’éruption et d’analyser des échantillons.
Dans le même temps, les scientifiques expliquent que les éruptions du passé sur la zone de rift nord-est du Mauna Loa ont généralement duré quelques semaines. Cependant, dans un cas, une éruption sur cette zone de rift s’est poursuivie pendant plus d’un an.
Source : USGS/HVO que je remercie sincèrement.

On peut lire dans une étude publiée en 1983 et intitulée Homogeneity of Lava Flows: Chemical Data for Historic Mauna Loan Eruptions que les analyses chimiques des basaltes échantillonnés lors des principales éruptions historiques du Mauna Loa montrent que de nombreux champs d’écoulement de la lave sont remarquablement homogènes dans leur composition. Malgré leur grande taille et différentes durées d’éruption (1 à 450 jours), de nombreux champs de lave ont une variabilité de composition qui est à l’intérieur ou proche de l’erreur analytique pour la plupart des éléments. Les champs de coulées qui ne sont pas homogènes varient principalement en teneur en olivine dans une lave par ailleurs homogène. Certains sont des champs de lave composites constitués de plusieurs sous-unités apparemment homogènes qui ont été émises à différentes altitudes le long de rifts actifs. Il faut toutefois noter que tous les volcans ne produisent pas des laves homogènes comme celles du Mauna Loa.

Une étude précédente publiée en 1971 fait référence aux laves émises par le Mauna loa et le Kilauea voisin. Les auteurs expliquent que le Kilauea et le Mauna Loa, deux volcans boucliers actifs, sont composés de basalte tholéiitique ayant des teneurs en oxyde de magnésium ( MgO) allant de plus de 20% à moins de 4%. La plupart des bouches éruptives sont situées soit dans la caldeira centrale, soit sur deux zones rift s’étendant à l’est et au sud-ouest du sommet de chaque volcan. Le Mauna Loa possède également quelques bouches éruptives isolées sur son versant nord-ouest; elles ne sont apparemment pas liées aux zones de rift.
Vous pourrez lire l’étude complète à cette adresse :
https://pubs.usgs.gov/pp/0735/report.pdf

S’agissant de la lave du Kilauea, vous pourrez lire également ces deux notes sur mon blog, suite à un travail personnel effectué par le Parc des Volcans :

Processus de refroidissement de la lave sur le Kilauea :

https://claudegrandpeyvolcansetglaciers.com/processus-de-refroidissement-de-la-lave-sur-le-kilauea-hawaii/

La géochimie de la lave du Kilauea :

https://claudegrandpeyvolcansetglaciers.com/2021/01/26/la-geochimie-de-la-lave-du-kilauea-the-geochemistry-of-kilaueas-lava/

 ———————————————–

Several visitors to my blog have asked me if I had information about the chemistry of the lava emitted by the Mauna Loa current eruption. According to the Hawaiian Volcano Observatory (HVO) which has just sent me what follows, the lava spewing from Mauna Loa is not left over from the 1984 eruption.

Scientists explain that the lava represents a new intrusion of magma into the summit and northeast rift zone. The lava flows remain crystal free near the vents and full of small crystals (<0.01 mm) at the flow fronts. These crystals of plagioclase and olivine grew during cooling of the lava flows. These samples have an MgO (magnesium oxide) content of 6.0-6.8 weight percent, which is very typical of Mauna Loa magmas. The average temperature calculated from these collected magnesium oxide contents is 1156°C. HVO and University of Hawaii scientists say that continued chemical analyses in the lab will help them understand how the eruption is evolving. New instruments have been deployed along the dynamic fissures and lava flows so as to monitor the eruption and analyze samples of the eruption.

Meanwhile, experts also explain that past Mauna Loa northeast rift zone eruptions have typically lasted a few weeks. However, in one instance, a northeast rift zone eruption continued for over a year.

Source: USGS / HVO I sincerely thank. .

One can read in a 1983 study entitled Homogeneity of Lava Flows: Chemical Data for Historic Mauna Loan Eruptions that chemical analyses of basalts collected from the major historic eruptions of Mauna Loa show that many of the flow fields are remarkably homogeneous in composition. Despite their large size and various durations of eruption (1-450 days), many of the flow fields have compositional variability that is within, or close to, the analytical error for most elements. The flow fields that are not homogeneous vary mainly in olivine content in an otherwise homogeneous melt. Some are composite flow fields made up of several, apparently homogeneous subunits erupted at different elevations along the active volcanic rifts. Not all volcanoes produce lavas that are homogeneous like those of Mauna Loa.

A previous study published in 1971 refers to lavas emitted both by Mauna loa and meighbouring Kilauea. The authors explain that Kilauea and Mauna Loa, two active shield volcanoes, are composed of tholeiitic basalt having MgO contents ranging from more than 20 percent to less than 4 per cent. Most eruptive vents are located either within the central caldera or on two rift zones extending to the east and southwest from each volcano’s summit. Mauna Loa also has a few isolated vents on its northwest slope that are apparently unrelated to any rift zone.
You can read the complete study at this address :

https://pubs.usgs.gov/pp/0735/report.pdf

As far as the Kilauea lava is concerged, you cal also read two posts on this blog, following personal reaserch work I performed within the National Park :

Lava cooling process on Kilauea Volcano :

https://claudegrandpeyvolcansetglaciers.com/processus-de-refroidissement-de-la-lave-sur-le-kilauea-hawaii/https://claudegrandpeyvolcansetglaciers.com/processus-de-refroidissement-de-la-lave-sur-le-kilauea-hawaii/

The geochemistry of Kilauea’s lava :

https://claudegrandpeyvolcansetglaciers.com/2021/01/26/la-geochimie-de-la-lave-du-kilauea-the-geochemistry-of-kilaueas-lava/

Fracture active et coulées de lave sur le Mauna Loa en 2022 (Crédit photo: HVO)

Fracture active et coulées de lave sur le Kilauea en 2018 (Crédit photo: HVO)