Plus d’exceptions à la fonte des glaciers // No more exceptions to glacial melt

Au cours de ma conférence « Glaciers en péril : les effets du réchauffement climatique », j’explique que la plupart des glaciers fondent à une vitesse alarmante à travers le monde, à l’exception de deux d’entre eux : le mont Shasta en Californie et le Perito Moreno en Argentine, qui ont fait preuve d’une certaine résilience jusqu’à présent. Or, il semble aujourd’hui que ces deux glaciers ne soient plus des exceptions et fondent au même rythme que leurs homologues.
Une nouvelle étude publiée dans la revue Nature Climate Change estime que nous perdons environ 1 000 glaciers par an, un chiffre qui risque d’augmenter d’ici le milieu du siècle. Avec la mort de chaque glacier, ce sont des écosystèmes vulnérables qui disparaissent également.
Si cette disparition constante des glaciers constitue une tendance préoccupante à l’échelle de la planète, il existe une région du monde où, pendant des décennies, cette déglaciation a semblé s’inverser. La calotte glaciaire de Kon-Chukurbashi, située en haute altitude dans les monts Pamir, principalement au Tadjikistan, en Asie centrale, culmine à 5 810 mètres d’altitude. Alors que le reste des glaciers du monde fondaient et disparaissaient, cette calotte glaciaire progressait, et les scientifiques cherchent à comprendre la cause de cette résilience surprenante.
Début 2025, une équipe internationale de scientifiques s’est rendue sur la calotte glaciaire de Kon-Chukurbashi pour y prélever deux carottes de glace d’au moins 100 mètres de long. La première carotte a été transportée jusqu’en Antarctique à la Fondation pour la Mémoire de la Glace (Ice Memory Foundation). La seconde a été acheminée à l’Institut des Sciences des Basses Températures de l’Université d’Hokkaido à Sapporo (Japon), où des chercheurs ont tenté de comprendre cette anomalie.
La mission prévoyait initialement de prélever des échantillons du célèbre glacier Vanch-Yakh, anciennement connu sous le nom de glacier Fedchenko, qui est le plus long glacier en dehors des régions polaires, mais l’accès à la zone par hélicoptère s’est avéré trop difficile.

Malgré tout, le glacier Kon-Chukurbashi est loin d’être négligeable, car ses innombrables couches de poussière recèlent jusqu’à 30 000 ans d’informations sur les conditions atmosphériques, les chutes de neige et les températures du passé dans l’une des chaînes de montagnes les moins étudiées au monde.
Malheureusement, les données qui pourront être extraites de ces échantillons risquent d’arriver trop tard pour de nombreux glaciers, notamment ceux du Pamir. Début 2025, une étude menée par des scientifiques de l’Institut des sciences et technologies d’Autriche a révélé que la diminution récente des chutes de neige dans le Pamir compromet sa résilience légendaire. Les chercheurs ont même écrit: « Quelle que soit la méthode d’analyse du modèle, nous avons constaté un point de basculement important au plus tard en 2018 », en référence au glacier Kyzylsu, un autre glacier du Pamir.
Cela montre que même le dernier refuge des glaciers ne peut résister au réchauffement climatique d’origine anthropique.
Source : Popular Mechanics.

 Source : Wikipedia

—————————————–

In my conference « Glaciers at risk, the effects of global warming », I explain that most glaciers are melting at an incredible speed around the world, but there were two exceptions : Mount Shasta in California and Perito Moreno in Argentina that showed some resilience. However, it seems today that both are no longer exceptions and are malting just like their counterparts.

A new study published in the journal Nature Climate Change estimates that we are losing roughly 1,000 glaciers a year, a number that is likely to increase as we reach mid-century. With each glacier lost, vulnerable ecosystems are disappearing too,

While this steady disappearance of glaciers is an overwhelming global trend, there is at least one part of the world where, for decades, this inevitable deglaciation appeared to be in reverse. The Kon-Chukurbashi high-altitude ice cap in the Pamir Mountains, located primarily in the central Asian country of Tajikistan, rests at 5,810 meters. While the rest of the world’s glaciers are melting and disappearing, this ice cap actually has been growing in size, and scientists want to understand this unexpected resilience.

Earlier this year, an international team of scientists traveled to the ice cap to secure two ice core samples measuring at least 100 meters in length. The first core traveled to an underground sanctuary in Antarctica called the Ice Memory Foundation. The other core traveled to the Institute of Low Temperature Science at Hokkaido University in Sapporo where researchers tried to understand this particular ice cap’s anomaly.

This mission originally planned to extract samples from the famous Vanch-Yakh Glacier, previously known as the Fedchenko Glacier, which was the longest glacier that survived outside of the world’s polar regions, but the mission proved too difficult for helicopters to access the area.

However, the Kon-Chukurbashi is by no means second-rate, as the untold layers of compacted dust will tell scientists up to 30,000 years of information regarding past atmospheric conditions, snowfall, and temperature for one of the least-studied mountain ranges in the world.

Sadly, whatever data can be derived from the samples may come too late for many glaciers, including the Pamir region itself. Earlier this year, a study led by scientists at the Institute of Science and Technology Austria revealed that recent snowfall decrease in the Pamir region is undermining its storied resiliency, even stating that “whichever way we analyzed the model, we saw an important tipping point in 2018 at the latest,” in reference to the Kyzylsu Glacier, another glacier in the Pamir Mountains.

It turns out even the world’s last refuge for glaciers can’t withstand the rapid warming driven by anthropogenic global warming..

Source :Popular Mechanics.

Les glaciers antarctiques sous la menace de tourbillons sous-marins // Underwater eddies threaten Antarctic glaciers

En Antarctique de l’ouest, le Thwaites est un vaste glacier qui se jette dans la baie de Pine Island à une vitesse de surface dépassant les 2 kilomètres par an près de sa ligne d’échouage. Il est fortement affecté par le réchauffement climatique et constitue l’un des exemples les plus frappants du recul glaciaire. Le glacier Thwaites fait l’objet d’une surveillance étroite en raison de son potentiel d’élévation du niveau de la mer.

Une nouvelle étude, publiée en novembre 2025 dans Nature Geoscience, nous apprend que des « tempêtes sous-marines tourbillonnantes » provoquent « une fonte agressive des plateformes glaciaires » devant les glaciers Pine Island et Thwaites, avec des conséquences potentiellement importantes sur l’élévation du niveau de la mer à l’échelle mondiale.

Source : Antarctic Glaciers

Au cours des dernières décennies, ces immenses glaciers ont connu une fonte rapide, accélérée par le réchauffement des eaux océaniques, notamment à l’endroit où ils remontent des fonds marins et forment des plateformes glaciaires. La nouvelle étude est la première à analyser systématiquement la fonte des plateformes glaciaires sur une échelle de temps de quelques heures ou quelques jours, et non en fonction des saisons ou des années.
Les auteurs expliquent que ces tourbillons sous-marins se comportent, un peu comme lorsqu’on remue de l’eau dans une tasse. Cependant, dans l’océan, ils sont beaucoup plus vastes et peuvent couvrir une dizaine de kilomètres. On peut lire dans l’étude : « Ils se forment lorsque des eaux chaudes et froides se rencontrent. Pour reprendre l’analogie de la tasse, c’est le même principe que lorsqu’on verse du lait dans une tasse de café et qu’on observe de minuscules tourbillons qui mélangent le tout. » Ce phénomène ressemble également à la formation des tempêtes atmosphériques qui résultent de la collision d’air chaud et d’air froid ; comme les tempêtes atmosphériques, ces tourbillons peuvent être très dangereux.

Source : Antarcyic Glaciers

Les tourbillons se forment en haute mer et s’engouffrent sous les plateformes glaciaires. Pris en étau entre la base de la plateforme et le fond marin, ils font remonter à la surface des eaux plus chaudes, ce qui accélère la fonte lorsqu’elles rencontrent la glace de la plateforme..
Les scientifiques ont utilisé des modèles informatiques ainsi que des données provenant d’instruments océanographiques pour analyser l’impact de ces tempêtes sous-marines. Ils ont constaté que, combinées à d’autres processus de courte durée, elles ont causé 20 % de la fonte du Thwaites et du Pine Island sur une période de neuf mois.
Les chercheurs ont également mis en évidence une boucle de rétroaction positive inquiétante. Lorsque ces tempêtes sous-marines font fondre la glace, elles augmentent la quantité d’eau froide et douce qui se déverse dans l’océan. Cette eau se mélange à l’eau plus chaude et plus salée située en dessous, ce qui génère davantage de turbulence océanique et accélère ainsi la fonte de la glace. Les chercheurs ajoutent que cette boucle de rétroaction positive pourrait s’intensifier avec le réchauffement climatique.
Les conséquences de ce phénomène pourraient être dramatiques car les plateformes glaciaires jouent un rôle de rempart essentiel en retenant les glaciers en amont et en ralentissant leur écoulement vers l’océan. Le glacier Thwaites, à lui seul, contient suffisamment d’eau pour faire monter le niveau de la mer de plus de 60 centimètres. Mais, comme il retient également l’immense calotte glaciaire antarctique, sa fonte pourrait à terme entraîner une élévation du niveau de la mer d’environ 3 mètres. Comme je l’ai expliqué dans une note précédente, les différents systèmes glaciaires de l’Antarctique occidental sont interconnectés.

Source: BAS

De grandes incertitudes persistent autour des causes du réchauffement de l’Antarctique occidental. Les plateformes glaciaires antarctiques figurent parmi les endroits les moins accessibles de la planète, ce qui oblige les scientifiques à s’appuyer la plupart du temps sur des simulations. Des études comme celle-ci reposent en grande partie sur des modèles informatiques. Il faudra beaucoup plus de données réelles, récoltées sur le terrain, pour bien comprendre l’impact de ces tourbillons, ainsi que d’autres phénomènes météorologiques océaniques.
Source : CNN via Yahoo News.

————————————————

In West Antarctica, Thwaites is a broad and vast glacier that flows into Pine Island Bay at surface speeds which exceed 2 kilometres per year near its grounding line. It is adversely affected by global warming, and provides one of the more notable examples of the retreat of glaciers.Thwaites Glacier is closely monitored for its potential to elevate sea levels.

A new study, published in November 2025 in Nature Geosciences explains that swirling underwater “storms” are aggressively melting the ice shelves of both Pine Island and Thwaites glaciers, with potentially “far-reaching implications” for global sea level rise.

Over the past few decades, these huge glaciers have experienced rapid melting driven by warming ocean water, especially at the point where they rise from the seabed and come afloat as ice shelves.

The new study is the first to systematically analyze how the ocean is melting ice shelves over just hours and days, rather than seasons or years.

The authors of the study explain that swirling underwater “storms” – or eddies – are « like little water twirls that spin around really fast, kind of like when you stir water in a cup.” However, in the ocean, these eddies are much larger and can span up to around 10 kilometers. « They form when warm and cold water meet. To return to the cup analogy, it’s the same principle as when you pour milk into a cup of coffee and see tiny swirls spinning around, mixing everything together. »

The phenomenon is similar to how storms form in the atmosphere, when warm and cold air collide ; like atmospheric storms, they can be very dangerous.

The eddies spin up in the open ocean and race underneath ice shelves. Sandwiched between the, rough base of the ice shelf and the seafloor, the eddies churn up warmer water from deeper in the ocean, which enhances melting when it “hits” vulnerable ice.

The scientists used computer models as well as data from ocean instruments to analyze the impact of these underwater storms. They found that, together with other short-lived processes, the storms caused 20% of the melting at the two glaciers over a nine-month period.

The researchers also highlighted a worrying feedback loop. As the storms melt the ice, they increase the amount of cold, fresh water entering the ocean. This mixes with warmer, saltier water beneath, generating more ocean turbulence, which in turn increases ice melting.They add that this positive feedback loop could gain intensity in a warming climate.

The consequences could be grave as the ice shelves play a vital role holding back the glaciers, slowing their flow into the ocean. Thwaites Glacier alone holds enough water to raise sea levels by more than 60 centimeters. But, because it also acts as a cork holding back the vast Antarctic ice sheet, its collapse could ultimately lead to around 3 meters of sea level rise. As I explained in a previous post, the different glacial systems in West Antarctica are interconnected.

There are still huge uncertainties. Antarctic ice shelves are among the least accessible places on Earth, meaning scientists have to rely heavily on simulations. Studies like this one largely rely on computer models. Much more real-world data will be needed to really understand the impact of these eddies, along with other ocean weather features.

Source : CNN via Yahoo News.

La Niña : le retour, avec quel impact ? // La Niña is back, with what impact?

Toutes les quelques années, des variations dans l’océan Pacifique tropical affectent la météo à travers le globe. Ces variations font partie du cycle El Niño–Oscillation Australe (ENSO), qui alterne entre deux phases principales : El Niño, lorsque les eaux océaniques sont plus chaudes que la normale dans la partie orientale de l’équateur, et La Niña, lorsqu’elles sont plus froides.

Cette année, les prévisionnistes confirment le retour des conditions de La Niña. Alors que El Niño apporte souvent des hivers doux et humides dans certaines régions, La Niña a généralement l’effet inverse ; elle entraîne des températures plus froides dans les zones nordiques et des conditions plus sèches plus au sud.

La Niña, « La Petite Fille » en espagnol, se développe lorsque des alizés exceptionnellement forts poussent les eaux chaudes de surface vers l’ouest à travers le Pacifique. Cela permet aux eaux plus froides de remonter le long de la côte de l’Amérique du Sud, refroidissant une large étendue de l’océan Pacifique tropical. Ce processus modifie la pression atmosphérique et les schémas de circulation dans les tropiques, influençant à leur tour les systèmes de vent et les jet streams dans le monde. Bien que ce phénomène commence dans le Pacifique, La Niña a une portée mondiale ; elle affecte les précipitations, la température et les schémas orageux dans de nombreuses régions.

En Amérique du Nord, elle amène souvent des hivers plus froids et plus enneigés au Canada et dans le nord des États-Unis, tandis que les états du sud connaissent des conditions plus chaudes et plus sèches.

En Europe, la connexion est moins directe mais toujours significative. Selon la position du jet stream de l’Atlantique Nord, La Niña peut apporter des masses d’air plus froides en hiver dans le nord et le centre de l’Europe, tandis que le sud de l’Europe connaît généralement un temps plus doux et stable. En Asie et en Océanie, La Niña augmente les précipitations, avec le risque d’inondations dans le nord de l’Australie et en Indonésie, comme on l’a vu ces dernières semaines. Pendant ce temps, l’Amérique du Sud connaît souvent des conditions plus humides au nord et plus sèches au sud. Ces contrastes régionaux montrent comment un événement océanique unique peut influencer les climats de plusieurs continents.

Selon les dernières prévisions, La Niña devrait persister tout au long de l’hiver et s’affaiblir graduellement au printemps 2026. Pour l’Europe, cela pourrait signifier une saison contrastée – alternant entre des épisodes froids et orageux et des phases plus calmes et douces, selon l’évolution du jet stream. Les zones du nord et du centre devraient plus probablement connaître des vagues de froid, tandis que le sud restera relativement sec et doux. Il faut toutefois être très prudent. Lors du dernier épisode La Niña, les températures globales de la planète n’ont pas cessé d’augmenter. Cela montre que le réchauffement climatique actuel a un impact sur El Niño et La Niña.

Selon les scientifiques, mais il faut parler au conditionnel, certaines preuves laissent supposer qu’à mesure que les températures globales augmentent, les événements La Niña pourraient devenir plus intenses ou plus fréquents, pouvant entraîner des extrêmes plus marqués tels que des inondations, des sécheresses et des vagues de froid. Toutefois, notre capacité à anticiper des événements comme La Niña est limitée car de nombreux processus sous-jacents dans le système océan-atmosphère restent très complexes.

Source : Meteoblue.

Dernière minute : D’après les dernières prévisions de la NOAA, un épisode El Niño devrait aooaraître en 2026, marquant la transition avec l’épisode actuel La Niña de faible intensité. Cette transition devrait influencer le comportement du jet stream et les anomalies de température aux États-Unis, au Canada et en Europe, et potentiellement modifier la répartition des précipitations et l’activité des tempêtes hivernales dans l’hémisphère Nord.

————————————————

Every few years, variations in the tropical Pacific Ocean affect weather across the globe. These variations are part of the El Niño–Southern Oscillation (ENSO) cycle, which alternates between two main phases: El Niño, when ocean waters are warmer than normal in the eastern part of the equator, and La Niña, when they are cooler.
This year, forecasters are confirming the return of La Niña conditions. While El Niño often brings mild, wet winters to some regions, La Niña generally has the opposite effect; it brings colder temperatures to northern areas and drier conditions further south. La Niña, meaning « Little Girl » in Spanish, develops when unusually strong trade winds push warm surface waters westward across the Pacific. This allows cooler waters to move up the coast of South America, cooling a large area of ​​the tropical Pacific Ocean. This process alters atmospheric pressure and circulation patterns in the tropics, in turn influencing wind systems and jet streams worldwide. Although it originates in the Pacific, La Niña has a global reach; it affects rainfall, temperature, and storm patterns in many regions.
In North America, La Niña often brings colder, snowier winters to Canada and the northern United States, while the southern states experience warmer, drier conditions.

In Europe, the connection is less direct but still significant. Depending on the position of the North Atlantic jet stream, La Niña can bring colder air masses to northern and central Europe in winter, while southern Europe typically experiences milder, more stable weather. In Asia and Oceania, La Niña increases rainfall, with the risk of flooding in northern Australia and Indonesia, as seen in recent weeks. Meanwhile, South America often experiences wetter conditions in the north and drier conditions in the south. These regional contrasts demonstrate how a single oceanic event can influence the climates of multiple continents.
According to the latest forecasts, La Niña is expected to persist throughout the winter and gradually weaken in the spring of 2026. For Europe, this could mean a season of contrasts—alternating between cold, stormy spells and calmer, milder phases, depending on the evolution of the jet stream. Northern and central areas are more likely to experience cold snaps, while the south will remain relatively dry and mild. However, caution is advised. During the last La Niña event, global temperatures continued to rise. This shows that the current global warming is impacting both El Niño and La Niña.

According to scientists, though this is still tentative, some evidence suggests that as global temperatures rise, La Niña events could become more intense or more frequent, potentially leading to more pronounced extremes such as floods, droughts, and cold waves. However, our ability to predict events like La Niña is limited because many underlying processes in the ocean-atmosphere system remain highly complex.
Source: Meteoblue.

Last minute : According to NOAA’s latest forecast models, El Niño conditions are likely to develop during 2026, marking a shift from the ongoing weak La Niña. The transition is expected to influence jet stream patterns and temperature anomalies across the United States, Canada, and Europe, potentially reshaping rainfall distribution and winter storm activity in the Northern Hemisphere.

Réchauffement climatique : des bilans toujours aussi inquiétants en 2025 // Global warming : the situation remains alarming in 2025

Selon l’observatoire européen Copernicus, novembre 2025 a été « le troisième mois de novembre le plus chaud à l’échelle mondiale. » D’après le bulletin mensuel publié le 9 décembre 2025, le thermomètre de la Terre a dépassé de 1,54 °C les niveaux préindustriels au cours du mois de novembre. Il s’agit du deuxième mois, après octobre 2025, à dépasser 1,50 °C depuis avril 2025.

On sait maintenant que le réchauffement climatique généré par l’activité humaine rend les phénomènes météorologiques extrêmes plus fréquents, plus meurtriers et plus destructeurs. Novembre 2025 a été marqué par plusieurs phénomènes de ce type, avec notamment des cyclones tropicaux en Asie du Sud-Est, qui ont provoqué des inondations catastrophiques à grande échelle et causé des pertes humaines.

°°°°°°°°°°

Toujours selon Copernicus, l’année 2025 est en passe de devenir la deuxième année la plus chaude jamais enregistrée, à égalité avec 2023. Le mois de décembre déterminera avec précision laquelle de ces deux se hissera juste en dessous de l’année 2024, au sommet de ce triste podium.

De janvier à novembre, la température moyenne mondiale a dépassé déjà largement les références climatiques d’avant l’ère industrielle. Cette tendance s’inscrit dans une accélération continue du réchauffement observée ces dernières années, avec des phénomènes extrêmes de plus en plus fréquents à l’échelle mondiale.

Entre janvier et novembre 2025, l’anomalie de température mondiale est de +1,48 °C en comparaison à la période de référence de 1850 à 1900. Il est encore trop tôt pour savoir si le seuil des 1,5 °C, franchi pour la première fois en 2024, sera de nouveau dépassé en 2025. Dix ans après la signature de l’Accord de Paris, cet objectif de limitation du réchauffement climatique est plus que jamais menacé.

————————————————

According to the European Copernicus climate agency, November 2025 was « the third warmest November on record globally. » According to the monthly bulletin published on December 9, 2025, the Earth’s temperature exceeded pre-industrial levels by 1.54°C during the month of November. This was the second month, after October 2025, to exceed 1.50°C since April 2025. It is now known that global warming caused by human activity is making extreme weather events more frequent, more deadly, and more destructive. November 2025 was marked by several such events, including tropical cyclones in Southeast Asia, which caused widespread and catastrophic flooding and loss of life.

°°°°°°°°°°

According to Copernicus, the year 2025 is on track to become the second warmest year on record, tied with 2023. December will determine precisely which of these two will surpass 2024, topping this grim list.
From January to November, the average global temperature has already far exceeded pre-industrial climate levels. This trend is part of a continuous acceleration of warming observed in recent years, with increasingly frequent extreme weather events worldwide.
Between January and November 2025, the global temperature anomaly is +1.48°C compared to the reference period of 1850 to 1900. It is still too early to know if the 1.5°C threshold, crossed for the first time in 2024, will be exceeded again in 2025. Ten years after the signing of the Paris Agreement, this objective of limiting global warming is more threatened than ever.