La source magmatique du Mauna Loa et du Kilauea (Hawaï) // The magma source of Mauna Loa and Kilauea (Hawaii)

En utilisant près de 200 années d’archives sur la chimie de la lave du Kilauea et du Mauna Loa, des scientifiques de l’Université d’Hawaï à Manoa et leurs collègues ont montré que les deux volcans les plus actifs d’Hawaï partagent une source magmatique commune au sein du panache mantellique hawaïen. Leur étude a été publiée dans le Journal of Petrology.
On pensait autrefois que la composition chimique distincte des laves du Kilauea et du Mauna Loa correspondait à des conduits d’alimentation magmatique complètement distincts depuis leur source dans le manteau jusqu’à la surface. Cependant, les dernières études montrent que c’est inexact. La matière en fusion provenant d’une source commune dans le manteau au sein du panache hawaïen peut alimenter alternativement le Kilauea ou le Mauna Loa sur une échelle de temps de plusieurs décennies.
Les chercheurs ont obtenu sur le long terme un modèle d’activité éruptive alternée entre le Kilauea et le Mauna Loa en analysant près de deux siècles de données sur la chimie de la lave. Les données indiquent que lorsqu’un volcan connaît une période prolongée d’activité, l’autre a tendance à rester en sommeil. Ce schéma semble lié à des changements dans le transport du magma en provenance de la source commune sous l’archipel hawaïen.
Le Mauna Loa est entré en éruption en 2022 après sa plus longue période d’inactivité connue. Cette période a en grande partie coïncidé avec l’éruption du Pu’uO’o sur le Kilauea, de 1983 à 2018. Elle s’est terminée par un effondrement de la caldeira sommitale et une éruption qui a détruit quelque 700 structures. Les fontaines de lave atteignaient jusqu’à 80 mètres de hauteur.
Les chercheurs ont observé que les variations dans la chimie de la lave correspondent aux changements dans la fréquence et l’intensité des éruptions. Le Kilauea est resté très actif pendant que le Mauna Loa est resté relativement calme entre le milieu du 20ème siècle et 2010. Au cours de cette période, la composition chimique de la lave du Kīlauea a ressemblé de plus en plus à celle de la lave typique du Mauna Loa. Ce changement tend à montrer que le magma s’est déplacé du Mauna Loa vers le Kilauea.
Depuis 2010, la composition chimique de la lave du Kilauea a de nouveau commencé à changer, ce qui indique que le magma se dirige maintenant vers le Mauna Loa. Ce changement a d’abord été observé dans les rapports d’éléments traces tels que le niobium et l’yttrium (Nb/Y), qui reflètent le degré de fusion du manteau. L’étude montre que ces changements chimiques pourraient être un précurseur d’une hausse d’activité éruptive au Mauna Loa dans les décennies à venir.
La nouvelle étude propose une nouvelle approche pour prévoir les éruptions sur la Grande Île d’Hawaï. Selon les chercheurs, la surveillance à long terme de la composition chimique de la lave pourrait permettre de savoir quel volcan est susceptible de devenir plus actif à l’avenir. «Notre étude montre que la surveillance de la composition chimique de la lave est un outil susceptible d’être utilisé pour prévoir la fréquence des éruptions de ces volcans voisins sur une échelle de temps de plusieurs décennies. Une hausse future de l’activité éruptive du Mauna Loa est probable si la composition chimique de la lave continue de changer sur le Kilauea. »

Les résultats de l’étude ont des implications pour l’évaluation des risques et les stratégies de surveillance. Les scientifiques pourraient être en mesure de fournir des prévisions plus précises sur le moment et le lieu de la prochaine éruption majeure si le mouvement du magma provenant de la source commune peut être suivi grâce à la chimie de la lave. Ces connaissances pourraient permettre de mieux gérer les risques dans les localités à proximité de ces volcans.
Source : Big Island Now.

Coulée de lave sur le Kilauea (Photo: C. Grandpey)

Dernière éruption du Mauna Loa en 2022 (Crédit photo: USGS)

—————————————————-

Using a nearly 200-year record of lava chemistry from Kīlauea and Mauna Loa, scientists from the University of Hawaiʻi at Mānoa and their colleagues revealed that Hawaii’s two most active volcanoes share a magma source within the Hawaiian plume. Their discovery was published in the Journal of Petrology.

In the past, the distinct chemical compositions of lavas from Kīlauea and Mauna Loa were thought to require completely separate magma pathways from their source in the mantle to the surface. However, the latest research shows that this is incorrect. Melt from a shared mantle source within the Hawaiian plume may be transported alternately to Kīlauea or Mauna Loa on a timescale of decades.

Researchers identified a long-term pattern of alternating eruptive activity between Kīlauea and Mauna Loa by analyzing nearly 2 centuries of lava chemistry data. The data indicates that when one volcano experiences an extended period of heightened activity, the other tends to remain dormant. The pattern has been linked to shifts in the transport of magma from the shared source beneath the Hawaiian Islands.

Mauna Loa erupted in 2022 after its longest-known dormancy period. The period of inactivity largely coincided with the prolonged Pu’uO’o eruption at Kīlauea which lasted from 1983 to 2018. It ended with a summit caldera collapse and a voluminous eruption. Lava fountains were as tall as 80 meters

Researchers have observed that variations in lava chemistry correspond to changes in the frequency and intensity of eruptions. Kīlauea was highly active while Mauna Loa remained relatively quiet between the mid-20th century and 2010. During this period, the chemical composition of Kīlauea’s lava became increasingly similar to typical Mauna Loa lava. The shift suggests that magma transport had moved from Mauna Loa to Kīlauea.

Since 2010, lava chemistry at Kīlauea has once again begun to change which indicates that magma is now being redirected back to Mauna Loa. The shift was first observed in trace element ratios such as niobium to yttrium (Nb/Y) which reflect the degree of mantle melting. The study suggests that these chemical shifts could be a precursor to increased eruptive activity at Mauna Loa in the coming decades.

The new study provides a new approach to forecasting volcanic eruptions on Hawaii Big Island. It suggests that long-term monitoring of lava chemistry could serve as an indicator of which volcano is likely to become more active in the future. “Our study suggests that monitoring of lava chemistry is a potential tool that may be used to forecast the eruption rate and frequency of these adjacent volcanoes on a timescale of decades. A future increase in eruptive activity at Mauna Loa is likely if the chemistry of lava continues to change at Kīlauea.”

The findings of the study have implications for hazard assessment and monitoring strategies.

Scientists may be able to provide more accurate predictions about when and where the next major eruption will occur if magma movement from the shared source can be tracked through lava chemistry. The knowledge could help mitigate risks for the communities living near these volcanoes.

Source : Big Island Now.

https://bigislandnow.com/

Les laves du Mauna Loa (Hawaii) // Mauna Loa lavas

Plusieurs visiteurs de mon blog m’ont demandé si j’avais des informations sur la chimie de la lave émise par l’éruption en cours du Mauna Loa. Selon l’Observatoire des Volcans d’Hawaii (le HVO) qui vient de me transmettre ce qui suit, la lave émise en ce moment par le Mauna Loa n’est pas un vestige de l’éruption de 1984.
Les scientifiques expliquent que la lave provient d’une nouvelle intrusion magmatique au sommet et sur la zone de rift nord-est. Les coulées de lave sont dépourvues de cristaux près des bouches éruptives et présentent une abondance de petits cristaux (<0.01 mm) sur les fronts de coulées. Ces cristaux d’olivine et de plagioclase se sont développés pendant le refroidissement des coulées. Ces échantillons ont une teneur en MgO (oxyde de magnésium) de 6,0 à 6,8 % en poids, ce qui est typique des magmas du Mauna Loa. La température moyenne calculée à partir des teneurs en oxyde de magnésium est de 1156°C. Les scientifiques du HVO et de l’Université d’Hawai indiquent que la poursuite des analyses chimiques en laboratoire leur permettra de comprendre comment l’éruption évolue. De nouveaux instruments ont été déployés le long des fractures dynamiques et des coulées de lave afin de contrôler l’éruption et d’analyser des échantillons.
Dans le même temps, les scientifiques expliquent que les éruptions du passé sur la zone de rift nord-est du Mauna Loa ont généralement duré quelques semaines. Cependant, dans un cas, une éruption sur cette zone de rift s’est poursuivie pendant plus d’un an.
Source : USGS/HVO que je remercie sincèrement.

On peut lire dans une étude publiée en 1983 et intitulée Homogeneity of Lava Flows: Chemical Data for Historic Mauna Loan Eruptions que les analyses chimiques des basaltes échantillonnés lors des principales éruptions historiques du Mauna Loa montrent que de nombreux champs d’écoulement de la lave sont remarquablement homogènes dans leur composition. Malgré leur grande taille et différentes durées d’éruption (1 à 450 jours), de nombreux champs de lave ont une variabilité de composition qui est à l’intérieur ou proche de l’erreur analytique pour la plupart des éléments. Les champs de coulées qui ne sont pas homogènes varient principalement en teneur en olivine dans une lave par ailleurs homogène. Certains sont des champs de lave composites constitués de plusieurs sous-unités apparemment homogènes qui ont été émises à différentes altitudes le long de rifts actifs. Il faut toutefois noter que tous les volcans ne produisent pas des laves homogènes comme celles du Mauna Loa.

Une étude précédente publiée en 1971 fait référence aux laves émises par le Mauna loa et le Kilauea voisin. Les auteurs expliquent que le Kilauea et le Mauna Loa, deux volcans boucliers actifs, sont composés de basalte tholéiitique ayant des teneurs en oxyde de magnésium ( MgO) allant de plus de 20% à moins de 4%. La plupart des bouches éruptives sont situées soit dans la caldeira centrale, soit sur deux zones rift s’étendant à l’est et au sud-ouest du sommet de chaque volcan. Le Mauna Loa possède également quelques bouches éruptives isolées sur son versant nord-ouest; elles ne sont apparemment pas liées aux zones de rift.
Vous pourrez lire l’étude complète à cette adresse :
https://pubs.usgs.gov/pp/0735/report.pdf

S’agissant de la lave du Kilauea, vous pourrez lire également ces deux notes sur mon blog, suite à un travail personnel effectué par le Parc des Volcans :

Processus de refroidissement de la lave sur le Kilauea :

https://claudegrandpeyvolcansetglaciers.com/processus-de-refroidissement-de-la-lave-sur-le-kilauea-hawaii/

La géochimie de la lave du Kilauea :

https://claudegrandpeyvolcansetglaciers.com/2021/01/26/la-geochimie-de-la-lave-du-kilauea-the-geochemistry-of-kilaueas-lava/

 ———————————————–

Several visitors to my blog have asked me if I had information about the chemistry of the lava emitted by the Mauna Loa current eruption. According to the Hawaiian Volcano Observatory (HVO) which has just sent me what follows, the lava spewing from Mauna Loa is not left over from the 1984 eruption.

Scientists explain that the lava represents a new intrusion of magma into the summit and northeast rift zone. The lava flows remain crystal free near the vents and full of small crystals (<0.01 mm) at the flow fronts. These crystals of plagioclase and olivine grew during cooling of the lava flows. These samples have an MgO (magnesium oxide) content of 6.0-6.8 weight percent, which is very typical of Mauna Loa magmas. The average temperature calculated from these collected magnesium oxide contents is 1156°C. HVO and University of Hawaii scientists say that continued chemical analyses in the lab will help them understand how the eruption is evolving. New instruments have been deployed along the dynamic fissures and lava flows so as to monitor the eruption and analyze samples of the eruption.

Meanwhile, experts also explain that past Mauna Loa northeast rift zone eruptions have typically lasted a few weeks. However, in one instance, a northeast rift zone eruption continued for over a year.

Source: USGS / HVO I sincerely thank. .

One can read in a 1983 study entitled Homogeneity of Lava Flows: Chemical Data for Historic Mauna Loan Eruptions that chemical analyses of basalts collected from the major historic eruptions of Mauna Loa show that many of the flow fields are remarkably homogeneous in composition. Despite their large size and various durations of eruption (1-450 days), many of the flow fields have compositional variability that is within, or close to, the analytical error for most elements. The flow fields that are not homogeneous vary mainly in olivine content in an otherwise homogeneous melt. Some are composite flow fields made up of several, apparently homogeneous subunits erupted at different elevations along the active volcanic rifts. Not all volcanoes produce lavas that are homogeneous like those of Mauna Loa.

A previous study published in 1971 refers to lavas emitted both by Mauna loa and meighbouring Kilauea. The authors explain that Kilauea and Mauna Loa, two active shield volcanoes, are composed of tholeiitic basalt having MgO contents ranging from more than 20 percent to less than 4 per cent. Most eruptive vents are located either within the central caldera or on two rift zones extending to the east and southwest from each volcano’s summit. Mauna Loa also has a few isolated vents on its northwest slope that are apparently unrelated to any rift zone.
You can read the complete study at this address :

https://pubs.usgs.gov/pp/0735/report.pdf

As far as the Kilauea lava is concerged, you cal also read two posts on this blog, following personal reaserch work I performed within the National Park :

Lava cooling process on Kilauea Volcano :

https://claudegrandpeyvolcansetglaciers.com/processus-de-refroidissement-de-la-lave-sur-le-kilauea-hawaii/https://claudegrandpeyvolcansetglaciers.com/processus-de-refroidissement-de-la-lave-sur-le-kilauea-hawaii/

The geochemistry of Kilauea’s lava :

https://claudegrandpeyvolcansetglaciers.com/2021/01/26/la-geochimie-de-la-lave-du-kilauea-the-geochemistry-of-kilaueas-lava/

Fracture active et coulées de lave sur le Mauna Loa en 2022 (Crédit photo: HVO)

Fracture active et coulées de lave sur le Kilauea en 2018 (Crédit photo: HVO)

Origine des dépôts de tephra sur la Grande Ile d’Hawaii // Origin of tephra deposits on Hawaii Big Island

Le Mauna Loa et le Kilauea sont les deux volcans les plus actifs de la Grande Ile d’Hawaï et leurs histoires éruptives se chevauchent. Ils sont situés à faible distance d’un de l’autre; leurs cratères sommitaux ne sont éloignés que d’environ 34 kilomètres.De plus, une partie du Kilauea s’est édifiée sur le flanc sud-est du Mauna Loa, le plus ancien des deux volcans.
Le Mauna Loa et le Kilauea produisent des coulées de lave qui peuvent parcourir plusieurs kilomètres depuis la source. De plus, ils émettent des panaches de tephra qui peut monter haut dans l’atmosphère et parcourir de longues distances en étant poussés par le vent. C’est pourquoi il peut parfois être difficile de déterminer quel volcan est responsable d’une coulée de lave ou d’un dépôt de tephra.
Connaître la source des matériaux émis, qu’il s’agisse du Mauna Loa ou du Kilauea, est important pour évaluer les risques volcaniques sur la Grande Ile d’Hawaï. Les géologues se tournent vers les événements du passé, qu’ils soient effusifs ou explosifs, pour comprendre la fréquence des éruptions volcaniques. Le calcul des intervalles de récurrence permet de déterminer la fréquence à laquelle des événements effusifs ou explosifs se produisent, et cela peut aider à prévoir quand ils sont susceptibles de se produire à l’avenir.
Par exemple, si les géologues observent un affleurement dans lequel six couches de tephra sont prises en sandwich entre une coulée de lave supérieure datée d’il y a 800 ans et une coulée de lave inférieure datée d’il y a 2 000 ans – donc avec une période de temps de 1 200 ans entre les deux coulées – ils peuvent conclure que l’intervalle de récurrence minimum serait de 200 ans (1 200 ans divisés par six éruptions explosives). Cela signifie qu’un événement éruptif explosif s’est produit, en moyenne, tous les 200 ans au cours de cette période de 1 200 ans. Si on sait qu’il y a six couches de tephra, mais si on ne sait pas si elles proviennent du Mauna Loa ou du Kilauea, il est difficile de comprendre à quelle fréquence les éruptions se sont produites à partir de chacun de ces volcans.
Par exemple, si une seule des couches de tephra provient du Mauna Loa, l’intervalle de récurrence minimum est de 240 ans pour le Kilauea et de plus de 1 200 ans pour le Mauna Loa. Mais si trois des couches de tephra proviennent du Mauna Loa, l’intervalle de récurrence minimum est de 400 ans pour le Kilauea et de 400 ans pour le Mauna Loa.
Afin de déterminer quel volcan a produit telle coulée ou tel couche de tephra, les géologues ont recours à plusieurs méthodes. Ils utilisent souvent une cartographie détaillée. En effet, une éruption explosive laisse généralement des dépôts plus épais près de la source et ils s’amincissent en s’éloignant de cette même source.
Les géologues peuvent également avoir recours à la géochimie pour déterminer si un produit éruptif particulier provient du Mauna Loa ou du Kilauea. Des études ont montré que les deux volcans ont des signatures géochimiques différentes. Par exemple, les laves du Mauna Loa contiennent généralement plus de silice (Si) et moins de calcium (Ca), de titane (Ti) et de potassium (K) à une teneur donnée en magnésium (Mg) que les laves du Kilauea.
Par ailleurs, les deux volcans et leurs prédécesseurs plus anciens ont généralement des concentrations d’éléments traces et des signatures isotopiques différentes. Les géochimies définissent deux familles différentes le long de l’archipel hawaiien. Sur la Grande Ile d’Hawaï, le Mauna Loa et le Hualalai forment une famille, tandis que le Kilauea, le Mauna Kea et le Kohala en forment une autre. On pense que les différences chimiques proviennent du panache du point chaud et démontrent que les systèmes magmatiques des deux volcans ne sont pas interconnectés.
Une nouvelle étude a appliqué ces différences chimiques entre le Mauna Loa et le Kilauea pour comprendre la source volcanique des couches dans un dépôt de tephra de deux mètres d’épaisseur sur le flanc sud-est du Mauna Loa. Le dépôt de tephra se trouve à environ 19 kilomètres au sud de Moku’āweoweo, la caldeira sommitale du Mauna Loa, et à 35 kilomètres au sud-ouest de l’Halema’uma’u, le cratère sommital du Kilauea. En raison de la variation des directions du vent, l’un ou l’autre des volcans pourrait potentiellement être la source du dépôt de tephra. Les premières analyses chimiques d’éclats de verre volcanique prélevés dans les couches de tephra laissent supposer que des tephra du Kilauea et du Mauna Loa sont présents sur le site. Les tephra de l’ancienne éruption du Keanakākoʻi et de celle du Kulanaokuaiki, émis par le Kilauea, semblent être présents, ainsi qu’au moins une couche de tephra en provenance du Mauna Loa.
Les nouvelles données ainsi obtenues seront importantes pour déterminer les calculs d’intervalle de récurrence pour les événements explosifs sur le Mauna Loa et le Kilauea et permettront aux scientifiques du HVO de fournir des évaluations des risques plus fiables pour la Grande Ile d’Hawaï.
Source : USGS, HVO.

——————————————-

Mauna Loa and Kilauea are the two most active volcanoes on the Island of Hawaii, and they have overlapping eruption histories. They are located in close proximity, with their summit craters only about about 34 kilometers apart. In fact, part of Kilauea is built on the southeast flank of Mauna Loa, which is the older of the two volcanoes.

Both volcanoes produce lava flows that can travel many kilometers from the volcanic vent. Additionally, they produce tephra that can rise high into the atmosphere and travel long distances by wind. With this in mind, it can sometimes be difficult to determine which volcano is responsible for a specific lava flow or tephra layer.

Knowing the source of the erupted material, whether from Mauna Loa or Kilauea, is important for assessing volcanic hazards on Hawaii Big Island. Geologists look to past eruptions, both effusive and explosive, to understand the frequency of volcanic eruptions. Recurrence intervals can be calculated to determine how often effusive or explosive events occur, which can help forecast when they may occur in the future.

For example, if geologists observe an outcrop with six tephra layers sandwiched between an upper lava flow dated at 800 years ago and a lower lava flow dated at 2,000 years ago – a time period of 1,200 years preserved between the two flows – the minimum recurrence interval would be 200 years (1,200 years divided by six explosive eruptions). This means that an explosive eruptive event occurred, on average, every 200 years within that 1,200 year time period. If we know that there are six tephra layers, but we don’t know if they erupted from Mauna Loa or Kilauea, it is difficult to understand how often eruptions occurred from the individual volcanoes.

For example, if only one of the tephra layers were from Mauna Loa, the minimum recurrence interval would be 240 years for Kilauea and over 1,200 years for Mauna Loa. But if three of the tephra layers were from Mauna Loa, the minimum recurrence interval would be 400 years for Kilauea and 400 years for Mauna Loa.

In order to determine which volcano produced a certain flow or tephra, geologists resort to several methods. They often use detailed mapping. An explosive eruption, for example, will generally have thicker deposits near the source and thin out away from the source.

Geologists can also use geochemistry to determine if a particular eruptive product is from Mauna Loa or Kilauea. Studies have shown that the two volcanoes have different geochemical signatures. For example, Mauna Loa lavas generally have higher silica (Si) and lower calcium (Ca), titanium (Ti), and potassium (K) at a given magnesium (Mg) content than Kilauea lavas.

The two volcanoes and their older predecessors generally have different trace element concentrations and isotope signatures as well, with the geochemistries defining two different families along the island chain. On the Island of Hawaii, Mauna Loa and Hualalai form one family, while Kilauea, Mauna Kea, and Kohala form another. The chemical differences are thought to originate in the hotspot plume and demonstrate that the magma systems for the two volcanoes are not interconnected.

A new study is applying these geochemical differences between Mauna Loa and Kilauea to understand the volcanic source of individual layers within a two-meter-thick tephra exposure on the southeast flank of Mauna Loa. The exposure is located approximately 19 kilometers south of Moku‘āweoweo, the summit caldera of Mauna Loa, and 35 kilometers southwest of Halema’uma’u, the summit crater of Kilauea. Due to varying wind directions, either volcano could potentially be the source of the tephra.

Initial geochemistry obtained from fresh glass shards found in the tephra layers suggests that tephra from both Kilauea and Mauna Loa are present at the field site. Tephras from both the Keanakākoʻi Ash (circa 1500–1820 CE) and the Kulanaokuaiki Tephra (circa 400–1000 CE), which erupted from Kilauea, appear to be present, as well as at least one tephra layer from Mauna Loa.

The new data will be important for constraining recurrence interval calculations for explosive events on Mauna Loa and Kilauea and will help the USGS Hawaiian Volcano Observatory provide more robust hazard assessments for the Island of Hawaii.

Source : USGS, HVO.

Sommet du Mauna Loa (Crédit photo : USGS)

Caldeira sommitale du Mauna Loa (Photo : C. Grandpey)

Caldeira sommitale du Kilauea en 2006 (Photo: C. Grandpey)

Caldeita sommitale du Kilauea après l’éruption de 2018 (Crédit photo: HVO)

Première bougie pour le lac au fond de l’Halema’uma’u (Hawaii) // Halema’uma’u’s lake (Hawaii) is one year old

Le 25 juillet 2020 a marqué le premier anniversaire du petit lac qui est apparu ce même jour de 2019 au fond du cratère de l’Halema’uma’u, au sommet du Kilauea. Au cours des douze derniers mois, l’Observatoire des Volcans d’Hawaii (HVO) a scruté cette surprenante étendue d’eau qui, après avoir été une petite mare est devenue un petit étang puis un véritable lac, le premier observé dans la caldeira du Kilauea depuis au moins 200 ans.
Le HVO observe et analyse attentivement ce lac en utilisant plusieurs méthodes. Des caméras classiques et thermiques suivent l’évolution de la couleur et de la température à la surface du lac. La couleur est changeante et la température de surface se situe généralement entre 70°C et 85°C. Les mesures effectuées au télémètre laser permettent de suivre l’évolution du niveau du lac qui s’élève régulièrement d’environ 75 centimètres chaque semaine. De plus, deux missions d’échantillonnage de l’eau ont été effectuées à l’aide d’un drone.

On observe de nombreux lacs de cratère sur les volcans de la planète, mais très peu d’entre eux se trouvent sur des volcans basaltiques comme le Kilauea. Le cratère de l’Halema’uma’u, qui s’est effondré lors de l’éruption de 2018, est si profond (environ 500 m) que le plancher se trouve en dessous de la nappe phréatique. En tant que tel, il offre au HVO une fenêtre unique sur une partie du volcan normalement invisible.
Les eaux souterraines n’ont pas rempli tout de suite le cratère de l’Halema’uma’u. C’est normal car il faut du temps pour que l’eau pénètre lentement à travers les pores et les fissures de la roche environnante, et aussi parce que la chaleur du volcan peut faire s’évaporer les eaux souterraines comme elle le fait avec les eaux de surface. Avec le temps, les eaux souterraines ont réussi à se frayer un chemin et le sous-sol s’est refroidi suffisamment pour que l’eau puisse rester à l’état liquide. De la sorte, l’eau peut maintenant s’infiltrer dans le cratère qui continuera à se remplir jusqu’à ce qu’un point d’équilibre soit atteint.
Pendant les premiers mois, l’origine de cette eau est restée un mystère. Les scientifiques du HVO ne savaient pas si elle provenait des eaux souterraines, elles-mêmes alimentées par les précipitations, ou si elle provenait de la condensation de la vapeur d’eau émise par le         magma. La réponse a été apportée par les missions d’échantillonnage à l’aide du drone. L’analyse des isotopes a indiqué que l’eau était d’origine météorique, et provenait donc des précipitations. Alors qu’une petite quantité de pluie tombe directement dans le cratère de l’Halema’uma’u, la majeure partie de l’eau provient des eaux souterraines (des précipitations qui ont percolé à travers le sol) qui s’infiltrent jusqu’au niveau où la nappe phréatique rencontre le cratère.
Avec le temps, les minéraux et les gaz volcaniques se dissolvent dans l’eau et la chimie du lac évolue. Au début, lorsque le lac s’est formé, l’eau était de couleur bleu-vert clair, une couleur que l’on peut encore voir dans certaines zones du lac où l’apport d’eau est le plus important. La surface du lac montre aujourd’hui surtout des nuances d’orange et de marron, probablement en raison des minéraux sulfatés dissous qui sont riches en fer. L’eau n’est pas brassée uniformément et des poches de couleurs, de chimie et de température différentes circulent à l’intérieur du lac.
En plus d’être rare en raison de son existence même, ce lac montre la particularité d’avoir une faible acidité, avec un pH d’environ 4,0, tandis que la plupart des lacs volcaniques sont soit fortement acides (comme le Kawah Ijen en Indonésie, dont le pH est voisin de 0), soit fortement alcalins. A titre de comparaison, le jus d’orange est également légèrement acide avec un pH de 3,5. Il se peut que l’acidité de l’eau soit modérée à ce stade précoce du développement du lac et qu’elle augmentera par la suite.
Au bout d’une année d’existence, le lac couvre désormais une superficie de plus de 2,5 hectares et atteint une profondeur de plus de 40 m.
Source: USGS / HVO.

—————————————

July 25th, 2020 was the first anniversary of the water pond that appeared on that same day of 2019 at the bottom of Halema‘uma‘u at the summit of Kilauea Volcano. Over the past twelve months, the Hawaiian Volcano Observatory (HVO) has watched this surprising body of water grow from a tiny pond into a real lake, the first ever observed within the Kilauea caldera in at least 200 years.

HVO closely monitors the lake using a variety of methods. Visual and thermal cameras track the lake’s surface colour and temperature. Colour is variable and the lake surface temperature is hot, usually between 70°C and 85°C. Laser rangefinder measurements track the surface level, which has risen steadily by about 75 centimetres each week. Moreover, two water-sampling missions have been flown using unoccupied aircraft systems.

Crater lakes occur at volcanoes around the world, but very few of those crater lakes occur at basaltic volcanoes like Kilauea. Halema‘uma‘u, which collapsed and deepened during Kilauea’s 2018 eruption, is so deep (about 500 m) that the bottom is actually below the local water table, providing HVO with a unique window into a realm that is normally hidden from direct view.

Groundwater did not rush in and fill the crater immediately because it takes time for water to squeeze through the pores and cracks of the surrounding rock, and because volcanic heat can evaporate groundwater just as it does surface water. With time, the surrounding groundwater slowly squeezed through the voids, and the subsurface cooled enough for water to be able to remain in liquid form and accumulate within this newly exposed subaerial space. Water will continue to flow into the crater, and the lake will continue to get deeper until a point of equilibrium is reached.

For the first few months, the source of the water was not known. HVO scientists did not know whether it came from groundwater, in turn, fed by rainfall, orif it came from the condensation of water vapour released directly from magma. Thee answer was brought by the water sampling missions. Analysis of the isotopes in the water indicated that it was meteoric in origin, meaning that it originally came from rainfall. While a small amount of rain falls directly into the crater, most of the water is coming from groundwater (that started off as rainfall that percolated into the ground) seeping in where the water table intersects the crater.

With time, minerals and volcanic gases dissolve into the water and the lake’s chemistry changes. When the lake first formed it was light blue-green in colour, a colour that is still seen in parts of the lake where there is a higher influx. The surface water is mostly shades of orange and brown now, likely due to dissolved iron-rich sulfate minerals. The water within the lake is not uniformly mixed, and cells of water with different colours, chemistry and temperature are seen to circulate.

Besides being uncommon because of its very existence, this lake is unique in that it is only mildly acidic, with a pH of about 4.0, while most volcanic lakes are either strongly acidic or strongly alkaline. For reference, orange juice is also mildly acidic with a pH of 3.5. The water’s acidity is likely to be moderated at this early stage of development, and it may become more acidic in the future.

Following a year of steady growth, the lake now covers an area of more than 2.5 hectares and reaches a depth of more than 40 m.

Source: USGS / HVO.

Graphique montrant l’évolution du niveau de l’eau dans le lac au cours de l’année écoulée. Les mesures par télémètre laser ont été effectuées 2 à 3 fois par semaine. Les photos permettent de comparer le lac entre le 27 août 2019, alors qu’il avait une profondeur d’environ 7 mètres, et le 7 juillet 2020, jour où il présentait une profondeur d’environ 40 mètres. (Source: USGS).