Nouvelle éruption du Lewotobi Laki-Laki (Indonésie) // New eruption of Lewotobi Laki-Laki (Indonesia)

Le Lewotobi Laki-Laki est actuellement l’un des volcans les plus actifs au monde. J’ai déjà évoqué plusieurs épisodes éruptifs dans des notes précédentes. Après trois semaines de calme relatif, une nouvelle puissante éruption a débuté vers 12h48 UTC le 1er août 2025, avec un panache de cendres qui est monté jusqu’à 11,2 km d’altitude. Cette éruption fait suite à plusieurs événements survenus en juin et juillet 2025 ; certains avaient généré des panaches de cendres jusqu’à 18 km d’altitude, entraînant la fermeture de plusieurs aéroports. Lors de sa dernière éruption, le Lewotobi a produit des nuages de cendres, des éclairs et des émissions de lave. L’éruption a été précédée d’une forte augmentation de l’activité sismique. Les projections ont atteint des distances de 3 à 4 km du cratère. L’éruption a été suivie d’un autre événement, encore plus puissant, à 17h05 UTC, avec un panache de cendres qui s’est élevé jusqu’à 19,2 km d’altitude.

Aucune victime ni perturbation aérienne n’ont été signalées. La couleur de l’alerte aérienne reste Rouge et le niveau d’alerte volcanique est maintenu à IV (Awas), le maximum. Il est conseillé à la population et aux touristes d’éviter une zone d’exclusion de 6 km autour du sommet et jusqu’à 7 km dans le secteur sud-ouest-nord-est. Les autorités ont émis des alertes aux lahars dans les vallées radiales autour du volcan, en particulier en cas de fortes pluies.

Source : PVMBG.

———————————————

Lewotobi Laki-Laki is currently one of the most active volcanoes in the world.I have mentioned several eruptive episodes in previous posts. After three weeks of relative calm, a major explosive eruption started around 12:48 UTC on August 1st, 2025, ejecting ash up to 11.2 km above sea level. The eruption follows multiple events in June and July 2025, some of which ejected ash plumes up to 18 km a.s.l., causing airport closures.

During the latest eruption, Lewotobi produced ash clouds, lightning and lava emissions. The eruption was preceded by a sharp increase in seismic activity. Ejecta reached distances of 3–4 km from the crater.

The explosion was followed by another, more powerful eruption at 17:05 UTC, with ash rising to an estimated 19.2 km a.s.l.

No casualties or aviation disruptions have been reported.The Aviation Color Code remains at Red and the Alert Level at IV (Awas) — the highest.

Residents and tourists are advised to avoid a 6 km exclusion zone around the summit, and up to 7 km in the southwest–northeast sector.

Authorities have issued lahar warnings for river valleys originating at the volcano, particularly in the event of heavy rainfall.

Source : PVMBG.

Nouvelle éruption du Lewotobi (Indonésie) // New eruption of Lewotobi (Indonesia)

Une éruption explosive majeure s’est produite sur le Lewotobi Laki-laki (Indonésie) le 7 juillet 2025, avec une colonne de cendres qui est montée à plus de 19 km au-dessus du niveau de la mer. C’est la plus haute altitude depuis l’éruption meurtrière de novembre 2024. La couleur de l’alerte aérienne est passé au Rouge, entraînant l’annulation de plusieurs vols à destination et en provenance de Bali. D’importantes retombées de cendres ont été observées dans les villages sous le vent, ce qui a déclenché des alertes sanitaires et des recommandations de port du masques. L’éruption a également provoqué des coulées pyroclastiques atteignant jusqu’à 5 km de longueur.
Cette éruption est le troisième événement majeur sur le Lewotobi Laki-laki en 2025. Le volcan reste en alerte maximale et une zone d’exclusion de 7 km est toujours en vigueur en raison du risque persistant de lahars et d’activité sismique.
Aucune victime ni dommage aux infrastructures n’ont été signalés. Cependant, les habitants et les autorités locales sont invités à rester vigilants en raison du risque de lahars, notamment en période de fortes pluies. Une activité antérieure du Laki-laki, fin 2024, a entraîné des décès et d’importantes retombées de cendres dans la régence de Flores Est. Le sommet du Lewotobi présente un système avec deux pics : un cônes mâle (« Laki-laki ») et femelle (« Perempuan »).

Voici une vidéo montrant le panache émis par le Lewotobi le 7 juillet 2025.
https://twitter.com/i/status/1942099190697615701

Vue du double sommet du Lewotobi (Source: GVN)

————————————————

A major explosive eruption occurred at Mount Lewotobi Laki-laki (Indonesia) on July 7th, 2025, producing an ash column that rose to over 19 km above sea level. This was the highest since the deadly November 2024 eruption. The Aviation Color Code was raised to Red, resulting in the cancellation of multiple flights to and from Bali. Heavy ashfall was observed over the downwind villages, prompting health warnings and mask advisories. The eruption also produced pyroclastic flows up to 5 km down its slopes.

This eruption marks the third major event at Lewotobi Laki-laki in 2025, with the volcano remaining at the highest alert level and a 7 km exclusion zone still in effect due to continued risk of lahars and seismic activity.

No casualties or infrastructure damage have been reported as of the latest updates. However, residents and local officials were advised to remain vigilant due to the potential for secondary hazards such as lahars, especially during periods of heavy rainfall.

Previous activity at Laki-laki in late 2024 resulted in fatalities and extensive ashfall across East Flores Regency. Lewotobi’s summit area shows a twin-peaked system, comprising the male (“Laki-laki”) and female (“Perempuan”) cones.

Here is a video showing the plume emitted by Lewotobi on July 7th, 2025.

https://twitter.com/i/status/1942099190697615701

Kilauea (Hawaï) : L’éruption de 2018 a déclenché la plus grande prolifération de phytoplancton du Pacifique // Kilauea (Hawaii) : The 2018 eruption triggered the biggest Pacific phytoplankton bloom

En mai 2018, le Kīlauea (Hawaï) est entré en éruption*, avec un panache de cendres de près de 8 km de hauteur. Cette éruption, parmi les plus importantes depuis plus de 200 ans, a émis environ 50 kilotonnes de dioxyde de soufre et 77 kilotonnes de dioxyde de carbone par jour.

Crédit photo: USGS

Soufflant de l’est, les alizés ont transporté les cendres vers l’ouest et les ont déposées dans le gyre subtropical du Pacifique Nord, pauvre en nutriments, à environ 2 000 km du volcan. [NDLR : Un gyre océanique (gyre : du grec « rotation ») est un gigantesque tourbillon d’eau océanique formé d’un ensemble de courants marins. Ces vortex sont provoqués par la force de Coriolis. Le gyre subtropical du Pacifique nord est situé entre l’équateur et la latitude 50° N et occupe une surface d’environ 3,4 millions de km². Son courant suit le sens des aiguilles d’une montre. ]
Une étude menée par des scientifiques de l’Université d’Hawaï à Mānoa, de l’Universiti Malaya et de l’Université océanique nationale de Taïwan, publiée en mars 2025 dans le Journal of Geophysical Research: Oceans, fournit des informations sur cet événement qui a déclenché une très importante prolifération de phytoplancton.
Des observations satellitaires ont révélé une importante prolifération de phytoplancton en juin 2018, sur une surface de 1,5 million de km². Cette prolifération, identifiée par les changements de couleur de l’océan, a culminé en juillet et s’est poursuivie jusqu’au début août. À titre de comparaison, la superficie de la prolifération avait environ 5 fois la taille de la Malaisie ou cinquante fois celle de Taïwan.

Les cendres du Kilauea (image du haut) se sont déposées dans la zone où la prolifération de phytoplancton a eu lieu (image du bas) [Source : Université d’Hawaï à Mānoa]

Les cendres ont apporté des nutriments essentiels, notamment du fer et du phosphate, qui ont stimulé la croissance du phytoplancton. Les microbes fixateurs d’azote, capables de survivre sans sources externes d’azote, ont été les principaux responsables de la prolifération. Les eaux pauvres en nutriments du gyre subtropical du Pacifique Nord, combinées à l’apport de cendres, ont créé des conditions favorables à l’événement.
Les facteurs atmosphériques, notamment les précipitations, ont favorisé le dépôt de cendres dans l’océan. Les précipitations locales et les régimes de vent ont influencé la répartition des cendres, contribuant à l’apparition de la prolifération de phytoplancton, à environ 5° au nord de la zone où les cendres s’étaient déposées.
Les conditions océaniques ont également contribué au maintien de la prolifération qui a eu une influence significative sur le cycle du carbone océanique. Les estimations satellitaires ont indiqué qu’elle a produit 1,91 Tg de carbone net, dont 0,34 Tg exporté de la zone euphotique vers des eaux plus profondes. Cette exportation a éliminé près de la moitié du dioxyde de carbone initialement émis par l’éruption, le séquestrant dans l’océan. [NDLR :1 téragramme (Tg) = 1012 grammes ou 106 tonnes.]

Les précédentes éruptions du Kīlauea n’avaient pas provoqué d’efflorescences phytoplanctoniques en haute mer, malgré une activité volcanique régulière au cours des 40 dernières années. Des recherches ont montré que la lave de l’éruption de 2018 a réchauffé les eaux profondes riches en nutriments près de la Grande Île d’Hawaï, déclenchant également un panache phytoplanctonique à proximité. Le transport de cendres sur de longues distances a caractérisé l’événement de 2018.

Source : Journal of Geophysical Research : Oceans – 15 mars 2025, relayé par le site web The Watchers.

*[NDLR : L’éruption de 2018 fut très spectaculaire, mais frustrante pour les volcanophiles. Jugée trop dangereuse par les scientifiques, son accès a été interdit. La plateforme d’observation promise par les autorités n’a jamais existé.]

°°°°°°°°°°

Dernière minute : Le HVO vient de m’envoyer un message indiquant que l’activité annonciatrice de l’Episode 24 a débuté dans l’Halemaʻumaʻu le matin du 3 juin 2025. Un dégazage important de SO2, une lueur nocturne et une activité de spattering dans la bouche nord indiquent que le magma est proche de la surface. L’Episode 24 devrait commencer aujourd’hui ou demain.

 ————————————————-

In May 2018, Kīlauea volcano (Hawaii) erupted, releasing a plume of ash nearly 8 km high. The eruption, among the largest in over 200 years, emitted about 50 kilotons of sulfur dioxide and 77 kilotons of carbon dioxide per day. The easterly trade winds transported the ash westward, depositing it into the nutrient-poor North Pacific Subtropical Gyre, approximately 2 000 km from the volcano. [Editor’s note: An ocean gyre (from the Greek « rotation ») is a gigantic whirlpool of ocean water formed by a set of ocean currents. These vortices are caused by the Coriolis force. The North Pacific Subtropical Gyre is located between the equator and latitude 50° N and occupies an area of ​​approximately 3.4 million km². Its current follows a clockwise direction.]

A study by scientists from the University of Hawaiʻi at Mānoa, Universiti Malaya, and National Taiwan Ocean University, published in March 2025 in the Journal of Geophysical Research: Oceans, gives information about the event which triggered a massive phytoplankton bloom.

Satellite observations revealed a large phytoplankton bloom in June 2018, covering 1.5 million km2. The bloom, identified by changes in ocean color, peaked in July and continued until early August. As a comparison, researchers reported that the bloom’s area was approximately five times that of Malaysia or 50 times that of Taiwan.

The ash provided essential nutrients, particularly iron and phosphate, which stimulated phytoplankton growth. Nitrogen-fixing microbes, capable of surviving without external nitrogen sources, were primarily responsible for the bloom. The nutrient-poor waters of the North Pacific Subtropical Gyre, combined with the ash input, created favorable conditions for the event.

Atmospheric factors, including precipitation, aided the deposition of ash into the ocean. Local rainfall and wind patterns influenced ash distribution, contributing to the bloom’s occurrence about 5° north of the deposition site.

Oceanic conditions also contributed to the bloom’s maintenance. The bloom significantly influenced the ocean’s carbon cycle. Satellite estimates indicated it produced 1.91 Tg of net carbon, with 0.34 Tg exported from the euphotic zone to deeper waters. This export removed nearly half of the carbon dioxide initially emitted by the eruption, sequestering it in the ocean.

Prior eruptions of Kīlauea had not been connected to open ocean phytoplankton blooms, despite regular volcanic activity over the past 40 years. However, previous research found that lava from the 2018 eruption warmed nutrient-rich deep waters near Hawaiʻi Island, initiating a local phytoplankton plume. The long-distance transport of ash distinguished the 2018 event.

Source : Journal of Geophysical Research: Oceans – March 15, 2025, relayed by the website The Watchers.

°°°°°°°°°°

Breaking news : HVO has just sent me a message indicating that Episode 24 precursory activity started within Halemaʻumaʻu during the morning of June 3 2025. Vigorous SO2 degassing, nighttime glow, and intermittent lava spattering in the north vent indicate that magma is close to the surface. Episode 24 is likely to begin today or tomorrow.

Le risque volcanique en Alaska : les avions en première ligne // Volcanic risk in Alaska : planes on the front line

Chaque fois qu’une éruption se produit dans les îles Aléoutiennes (Alaska), l’Observatoire Volcanologique d’Alaska (AVO) adapte le niveau d’alerte volcanique et la couleur de l’alerte aérienne en fonction de l’activité volcanique. Les volcans des Aléoutiennes sont souvent situés sur des îles inhabitées ou peu peuplées, mais ils se trouvent sur la trajectoire des avions entre les États-Unis et l’Asie. L’émission d’un panache de cendres par l’un de ces volcans pourrait mettre les pilotes en difficulté, car les cendres peuvent endommager les moteurs des aéronefs et provoquer des catastrophes. Plusieurs d’entre elles ont été évitées de justesse par le passé. C’est pourquoi la surveillance des volcans est essentielle dans cette région du monde.
L’Alaska compte plus de 100 volcans, dont 54 sont considérés comme historiquement actifs. De plus, de nombreux volcans ne sont pas considérés historiquement actifs, mais sont susceptibles d’entrer en éruption à l’avenir. Pour surveiller tous ces volcans, l’AVO dispose de 212 stations sismiques réparties dans 34 réseaux couvrant 2,736 km :

Source: AVO

Les nuages ​​de cendres constituent le principal danger pour le trafic aérien. Ils se forment lorsqu’une éruption explosive fragmente le magma, et projette de petites particules dans l’atmosphère, parfois jusqu’à 10 à 20 km de hauteur, voire plus, en moins d’une heure. Les cendres sont très abrasives et les particules peuvent gravement endommager les avions, éroder et adhérer aux moteurs et aux composants électriques, et endommager les hublots, les ailes et le train d’atterrissage. Les perturbations électriques et les gaz présents dans un nuage de cendres peuvent altérer la capacité de l’avion à transmettre des messages et provoquer des problèmes respiratoires chez les personnes à bord. De nombreux avions en Alaska assurent des liaisons locales et volent généralement à des altitudes où les cendres volcaniques sont les plus susceptibles d’être présentes (3 à 6 km au-dessus du niveau de la mer).

Nuage de cendres émis par le Pavlof (Aléoutiennes) en 2016 (Crédit photo : AVO)

De nombreuses éruptions volcaniques historiques ont produit des nuages ​​de cendres et entraîné des retombées qui ont affecté, et continuent parfois d’affecter, de vastes zones au-delà de leurs limites. Les cendres de l’éruption du Novarupta-Katmai de 1912, la plus volumineuse du 20ème siècle, constituent périodiquement un danger lorsqu’elles sont remobilisées par des vents très violents et pendant des conditions sèches.

L’éruption du volcan Aniakchak en 1931 a provoqué des retombées de cendres de plusieurs millimètres jusqu’à l’île Kodiak.

Lors de l’éruption du Redoubt en 1989-1990, plusieurs avions de ligne ont rencontré le panache de cendres, dont un qui a atteint le Texas. Un Boeing 747-400 a traversé par inadvertance le nuage de cendres du Redoubt près d’Anchorage, ce qui a occasionné temporairement la perte de puissance de ses quatre moteurs. Bien que l’avion ait atterri sans encombre, il a subi des dégâts s’élevant à 80 millions de dollars. Cet événement a conduit à l’expansion de l’AVO et montre la nécessité d’une surveillance volcanique rigoureuse et d’une communication sur les risques.

 Panache de cendres du Mt Redoubt le 21 avril 1990 (Crédit photo : USGS)

Les risques volcaniques proches de la zone éruptive sont moins susceptibles de perturber le trafic aérien. Ils comprennent les projections de blocs, les lahars, les coulées pyroclastiques, les coulées et dômes de lave, les glissements de terrain, les avalanches de débris et les gaz volcaniques. Il convient toutefois de noter que les retombées de cendres sur les pistes d’un aéroport peuvent entraîner des retards, voire des annulations de vols.

Les dernières nouvelles à propos des volcans actifs en Alaska concernent le volcan Atka et le mont Spurr.
Une petite explosion de courte durée a été détectée sur le complexe volcanique de l’Atka le 25 avril 2025 grâce aux données infrasonores et sismiques locales qui ont montré que l’explosion provenait du cratère sommital Korovin, l’un des nombreux cônes actifs du complexe volcanique. En conséquence, la couleur de l’alerte aérienne a été relevée au Jaune et le niveau d’alerte volcanique est passé à Advisory (surveillance conseillée).

L’activité sismique sur le Mont Spurr reste élevée, bien qu’elle ait légèrement diminué au cours du mois dernier. La déformation du sol a également ralenti au cours des trois dernières semaines. Les satellites n’ont pas détecté d’émissions de SO2 en provenance du mont Spurr depuis le 3 avril 2025, probablement en raison d’un temps trop nuageux. Compte tenu du peu d’évolution constaté ces derniers temps dans les données de surveillance et de l’impossibilité de mesurer les émissions de gaz au cours du dernier mois, il est difficile d’établir des prévisions sur l’activité volcanique à venir. Globalement, la probabilité d’une éruption a diminué depuis mars, mais le volcan reste à un niveau d’activité élevé et une éruption explosive comme celles de 1953 et 1992 est toujours possible.
Source : Alaska Volcano Observatory, National Park Service.

————————————————-

Each time an eruption occurs in the Aleutians (Alaska), the Alaska Volcano Observatory (aVO) is careful to shift the volcano alert level and the aviation color code according to the volcanic activity. Volcanoes in the Aleutians are often located on uninhabited or poorly inhabited islands, but they stand in the path of airlies metween the U.S. and Asia. Should an ash plume be emeitted by one of these volcanoes, it could put the pilots in trouble as ash can disrupt plane engines and cause a disasters. Several of thme were shortly avoided in the past. This is why volcano monitoring is very important in that part of the world. There are over 100 volcanoes in Alaska, 54 of which are considered historically active. In addition, there are numerous volcanoes that are not considered historically active, but which could erupt at some point in the future.

Ash clouds are the main hazard to air trafic. They are formed when an explosive eruption fragments magma, rapidly injecting small particles into the atmosphere, sometimes up to 10–20 km or more above the volcano within less than an hour. Ash is highly abrasive and the particles can severely damage aircraft, eroding and adhering to engine and electrical parts and abrading windows, wings, and landing gear. Electrical disturbances and gases within an ash cloud may impair the aircraft’s ability to transmit messages and cause respiratory problems for those on board. Many visitors to Alaska arrive via small aircraft that typically travel at altitudes where volcanic ash is most likely to be present (3–6 km above sea level).
Multiple historical eruptions of volcanoes have produced ash clouds and resulted in ashfall that affected and sometimes continue to affect large areas beyond their boundaries. Ash from the 1912 eruption of Novarupta-Katmai, which was the most voluminous of the twentieth century, poses an ongoing seasonal hazard due to resuspension during very high winds and dry conditions.

The 1931 eruption of Aniakchak volcano resulted in millimeters of ashfall as far as Kodiak Island.

During the 1989-1990 eruption of Redoubt, multiple jetliners encountered the ash cloud, in one case as far away as Texas. A 747-400 jet aircraft inadvertently flew through the 1989-1990 Redoubt ash cloud near Anchorage and temporarily lost power in all four engines. Although the plane landed safely, it incurred 80 million dollars in damages. This event led to the expansion of AVO and remains an important example of the need for vigorous volcano monitoring and hazard communication.

Proximal volcanic hazards are less likeky to disturb air trafic. They include ballistics, lahars, pyroclastic flows, lava flows and domes, rockfalls, landslides, debris avalanches, and volcanic gases. However, it should be noted that ashfall on the runw ays in an airport may lead to dealys or even cancellations of the flights.

The latest news about active volcanoes in Alaska concern Atka Volcano and Mount Spurr.

A small, short-lived explosion was detected at the Atka volcanic complex on April 25 2025 in local infrasound and seismic data which indicates the explosion originated from the summit crater of Korovin, one of several volcanoes within the Atka volcanic complex. As a consequence, the Aviation Color Code was raised to YELLOW and the Volcano Alert Level to ADVISORY.

Shallow seismic activity underneath Mount Spurr remains elevated, though it has declined slightly over the past month. Ground deformation has also slowed over the past three weeks. Satellites have not detected SO2 from Mount Spurr since April 3 2025, most likely due to cloudy weather.

Based on the recent modest changes in monitoring data and the inability to measure gas for the last month, the outcome of the current unrest is less certain. Overall, the likelihood of an eruption has decreased from March, but the volcano remains at an elevated level of unrest and an explosive eruption like those that occurred in 1953 and 1992 is still possible.

Source : Alaska Volcano Observatory, National park Service.