Nouvelle carte des planchers océaniques dans le monde // New map of ocean floors in the world

Une étude récente révèle qu’un satellite nouvelle génération a cartographié les fonds océaniques sur Terre avec un niveau de détail sans précédent.
La première année de mesures de la mission satellitaire SWOT (Surface Water and Ocean Topography), lancée en décembre 2022 et mise au point par la NASA aux États Unis et le Centre national d’études spatiales (CNES) en France, a permis d’étudier les frontières entre les continents et d’identifier des collines et des volcans sous-marins qui étaient trop petits pour être détectés jusqu’à présent par les satellites. Les chercheurs affirment que ces découvertes géologiques feront avancer la science, notamment dans le domaine de la tectonique. La nouvelle cartographie pourrait également fournir des informations inédites sur les courants océaniques, le transport des nutriments dans l’eau de mer et l’histoire géologique des océans sur Terre.

Grâce à une résolution de 8 kilomètres et un survol de 21 jours couvrant la majeure partie de la planète, une seule année de données fournie par la mission satellitaire SWOT offre une image plus claire et précise des fonds océaniques que 30 ans de données recueillies jusqu’à aujourd’hui par des navires et des satellites.
Pour repérer les reliefs sous-marins, SWOT mesure la hauteur de la surface de l’océan. Malgré les apparences, cette surface n’est pas plate. En effet, l’attraction gravitationnelle des structures sous-marines telles que les collines et les volcans fait que l’eau s’accumule et s’étale à leur sommet. Les variations de hauteur de la surface de la mer indiquent donc ce qui se trouve en profondeur.

Source: ESA

L’équipe scientifique s’est concentrée sur trois types de reliefs sous-marins : les collines abyssales, les petits volcans sous-marins et les marges continentales. Les collines abyssales – des dorsales parallèles de quelques centaines de mètres de hauteur – sont formées par les mouvements des plaques tectoniques. À l’aide des données SWOT, les chercheurs ont cartographié des collines de manière individuelle et ont repéré certains endroits où l’orientation des dorsales a changé, ce qui laisse supposer qu’à un moment donné de l’histoire de la Terre, la plaque tectonique qui les a formées a modifié son mouvement. Les chercheurs ne s’attendaient pas à voir autant de collines en si peu de temps.
L’étude s’est attardée sur les volcans sous-marins (seamounts en anglais), qui affectent les courants océaniques et jouent souvent le rôle de points chauds pour la biodiversité. Les anciens satellites avaient cartographié les volcans sous-marins les plus imposants, mais dans les données SWOT les scientifiques en ont repéré des milliers d’autres plus petits, et jusqu’alors inconnus, de moins de 1000 mètres de hauteur.
Les nouvelles données ont permis à l’équipe scientifique d’affiner les frontières tectoniques et de mieux définir les courants océaniques à proximité des zones côtières. Ces derniers sont intéressants car, avec les marées, ils apportent des nutriments et des sédiments terrestres à l’océan et influencent la biodiversité et l’écologie des zones côtières.
Pendant le reste de sa mission scientifique de trois ans, SWOT continuera de collecter des données sur les courants océaniques, de cartographier le fond des océans et d’évaluer la disponibilité en eau douce à l’échelle de la planète.
Source : Live Science via Yahoo News.

Nouvelle cartographie des océans (Source : NASA / SWOT)

—————————————————

A recent study reveals that a new satellite has mapped Earth’s ocean floors in unprecedented detail.

The first year of measurements from NASA’s Surface Water and Ocean Topography (SWOT) satellite mission, launched in December 2022 and developed by NASA and France’s Centre National D’Etudes Spatiales (CNES), enabled researchers to study the boundaries between continents and identify underwater hills and volcanoes that were too small to be detected by earlier satellites. The researchers say that these features will push scientific developments forward, including tectonic theories. The findings could also provide new information about ocean currents, nutrient transport in seawater and the geologic history of Earth’s oceans.

With an 8-kilometer resolution and 21-day path covering most of the planet, just one year of data from SWOT gives a clearer picture of the ocean floor than 30 years of data gathered by ships and older satellites.

To spot underwater features, SWOT measures the height of the ocean surface. Despite appearances, that surface is not flat. The gravitational pull of underwater structures like hills and volcanoes causes water to pile atop those structures in spread-out lumps. Changes in the sea surface height therefore point to what lies deep beneath the surface.

The scientific team focused on three types of underwater features: abyssal hills, small seamounts and continental margins. Abyssal hills – parallel ridges that are just a few hundred meters tall – are formed by the movements of tectonic plates. Using SWOT data, the researchers mapped individual hills and spotted a few places where the direction of the ridges changed, suggesting that at some point in Earth’s history, the tectonic plate that formed them changed the direction of its movement. The researchers were not expecting to see so many hills in so little time.

The study lingered on seamounts, or underwater volcanoes, which affect ocean currents and often act as hotspots for biodiversity. Older satellites have mapped large seamounts, but the scientists spotted thousands of smaller, previously unknown seamounts less than 1,000 meters tall in the SWOT data.

The new data helped the scientific team to further refine maps of tectonic boundaries and ocean currents near coastal areas. These features are interesting because the ocean currents and tides bring nutrients and sediments from the land to the ocean and influence the biodiversity and ecology in the coastal areas.

In the remainder of its three-year science mission, SWOT will continue to collect data on ocean currents, map the ocean floor and assess global freshwater availability throughout the year.

Source : Live Science via Yahoo News.

La cartographie géologique : une science et un art // Geological mapping: a science and an art

L’un des derniers épisodes de la série « Volcano Watch » publié par l’Observatoire Volcanologique d’Hawaï (HVO) est consacré à la cartographie géologique, qui est à la fois une science et un art.

La cartographie géologique était l’une des principales fonctions dévolues à l’U.S. Geological Survey (USGS) lors de sa création par le Congrès américain en 1879. L’agence était tenue d’ « établir une classifications des terres publiques et d’examiner la structure géologique, les ressources minérales et les produits à l’intérieur et à l’extérieur du domaine national ».
Les premières cartes géologiques étaient de taille uniforme ; elles contenaient toutes les informations disponibles sur la topographie et la géologie d’un site, avec un texte d’accompagnement décrivant la géologie cartographiée.
Les cartes modernes ont tendance à être plus polyvalentes et plus faciles à interpréter ; elles affichent les gisements géologiques et les caractéristiques présentant un intérêt particulier pour un projet ou une étude.
Dans le cas de la cartographie géologique du HVO sur l’île d’Hawaï, les principales caractéristiques intéressantes concernent le relief volcanique avec les fissures et les cônes de scories, ainsi que les coulées de lave et les dépôts de téphra associés ; ils sont répertoriés en fonction de l’âge.
Il est facile de faire apparaître ces caractéristiques pour les dernières éruptions. Les éruptions des dernières années sont cartographiées quelques heures ou quelques jours après le début de l’activité à l’aide d’un logiciel d’information géographique. Les techniques de télédétection utilisant l’imagerie aérienne et satellitaire rendent également cette opération beaucoup plus rapide.
Si certaines coulées de lave plus anciennes peuvent être cartographiées à l’aide de la télédétection, d’autres qui ont été exposées aux éléments pendant des centaines ou des milliers d’années sont parfois plus difficiles à distinguer. C’est pourquoi des critères de diagnostic sur le terrain ou en laboratoire sont généralement nécessaires pour déterminer leur étendue géographique.
Les géologues se rendent sur le terrain pour documenter les minéraux présents dans les coulées de lave et ils collectent des échantillons pour analyser la chimie, les âges radiométriques et le paléomagnétisme. En général, une combinaison de ces éléments est nécessaire pour faire apparaitre une image complète sur une carte.
Il existe un ensemble normalisé de symboles, de motifs et de couleurs pour les cartes géologiques publiées par l’USGS : c’est le schéma de carte géologique, ou GeMS.
Alors que les symboles et les lignes ont tendance à être objectifs sur une carte géologique, les couleurs utilisées peuvent être plus subjectives. Les cartes géologiques représentent souvent des terrains volcaniques avec de jeunes coulées de lave et des téphras en utilisant des couleurs «chaudes» telles que le rouge et l’orange, et ces couleurs deviennent progressivement plus «froides», passant au vert, au bleu et au violet, à mesure que les éléments représentés vieillissent.
Il est ainsi facile d’observer une carte géologique et d’avoir une idée rapide de l’âge relatif de l’activité volcanique.
Ces cartes géologiques de l’USGS sont généralement sur papier, mais toutes sont désormais également publiées sous forme numérique et disponibles gratuitement en téléchargement.
Source : USGS / HVO.

Cette carte géologique a été créée par le HVO le 17 septembre 2024, quelques heures après la télédétection (survol en hélicoptère) de l’éruption qui a eu lieu du 15 au 20 septembre dans la Middle East Rift Zone du Kilauea. Les différents âges des coulées de lave sont indiqués par des changements de couleur ; celles qui ont été émises entre 1790 et 2018 sont en violet (les coulées de lave plus anciennes sont grises) ; celles qui ont été émises le 15 septembre sont en rose et celles qui ont été émises les 16 et 17 septembre sont en rouge. La fissure active apparaît sous le forme d’une ligne jaune. Cette carte montre également les routes et la limite du Parc national des volcans d’Hawaï. (Source : HVO)

———————————————-

One of the last « Volcano Watch » episodes by the Hawaiian Volcano Observatory (HVO) was dedicated to geological mapping which is both a science and an art.

Geological mapping has been one of the most fundamental mandates of the U.S. Geological Survey since its establishment by Congress in 1879. The aim of the agency was to “classify the public lands and examine the geological structure, mineral resources and products within and outside the national domain.”

The first geological maps were uniform in size and contained all available information on topography and geology, with accompanying text describing mapped geology.

Modern maps tend to be more versatile, displaying geologic deposits and features of special interest for a project or investigation.

In the case of Hawaiian Volcano Observatory geological mapping on the Island of Hawaii, the primary features of interest are volcanic vents, such as fissures and scoria cones, and their associated lava flows and tephra deposits divided by age.

It is easy to make these determinations for young eruptions that have been witnessed, with eruptions during the past few years being mapped within hours or days of activity starting using geographic information systems software.

Remote sensing techniques using aerial and satellite imagery have also made this much quicker.

While some older lava flows can be mapped using remote sensing, others exposed to the elements for hundreds or thousands of years can be harder to tell apart. Therefore, diagnostic criteria from the field or lab is usually required to distinguish their geographic extents.

Geologists make field excursions to document minerals present in the lava flows and their abundances, and collect samples to analyze chemistry, radiometric ages and paleomagnetism. Usually, a combination of these is needed to put together a full picture on a map sheet.

There is a standardized set of symbols, patterns and colors that are used for geologic maps published by the USGS : the Geologic Map Schema, or GeMS for short.

Whereas symbols and lines tend to be objective on a geologic map, colors used for geological map units can be more subjective. It is common for geological maps that portray volcanic terrains with young lava flows and tephras to have the “hottest” colors, such as reds and oranges, and those colors gradually get “cooler,” shifting to greens, blues and purples, as the map units get older.

This makes it easy to glance at a geological map and get a quick sense of the relative age of volcanic activity.

These USGS geological maps are generally printed, but all are now also published as geographic information systems digital databases and freely available to be downloaded.

Source : USGS / HVO.

L’éruption du Hunga-Tonga Hunga-Haʻapai (Tonga) a bouleversé le plancher océanique // The eruption of Tonga’s Hunga-Tonga Hunga-Haʻapai totally changed the seafloor

J’ai écrit plusieurs notes sur les effets de l’éruption cataclysmale du volcan sous-marin Hunga-Tonga Hunga-Haʻapai (archipel des Tonga) en janvier 2022. L’explosion a envoyé des cendres et de la vapeur d’eau jusque dans la mésosphère à57 km d’altitude; c’est la plus haute colonne éruptive jamais observée. Elle a généré des vagues de tsunami à travers la planète.
Une menée à partir de navires néo-zélandais et britanniques a permis de cartographier dans sa totalité la zone autour du volcan. On se rend compte que le plancher océanique a été chamboulé par de puissantes coulées de matériaux sur une distance de plus de 80 km. La mission de cartographie de l’Hunga-Tonga Hunga-Ha’apai a été dirigée par l’Institut national de recherche sur l’eau et l’atmosphère (NIWA) de Nouvelle-Zélande. Les données recueillies indiquent qu’au moins 9,5 kilomètres cubes de matériaux ont été déplacés au cours de l’événement. Le NIWA ajoute qu’il s’agit d’un volume quasi équivalent à celui de 4 000 pyramides égyptiennes. Les deux tiers des matériaux étaient constitués de cendres et de roches éjectées par la caldeira du volcan.
Ce transport de matériaux a pris la forme de coulées pyroclastiques. Dans l’eau, leur température très élevée les a enveloppées d’un coussin de vapeur grâce auquel elles ont pu se déplacer sans frottement à très grande vitesse. C’est ainsi que ces coulées pyroclastiques ont réussi à franchir des obstacles de plusieurs centaines de mètres de hauteur. Cela explique, par exemple, la section du câble sous-marin reliant les Tonga au réseau Internet. Une grande partie du cable a été coupée, bien qu’elle se trouve à 50 km au sud de Hunga-Tonga et au-delà d’une grande colline sur le plancher océanique.
Les coulées pyroclastiques ont également joué un rôle dans le déclanchementdu tsunami lors de l’éruption du Hunga-Tonga. Des vagues ont été enregistrées dans tout le Pacifique mais aussi dans d’autres bassins océaniques comme l’Atlantique et même la Méditerranée.
L’équipe du NIWA explique que l’eau a pu se déplacer de quatre façons pour générer ces tsunamis : 1) déplacement de l’eau sous l’effet des coulées pyroclastiques; 2) puissance explosive de l’éruption qui a fait se déplacer l’eau ; 3) affaissement de 700 mètres du sol de la caldeira; 4) ondes de pression du souffle atmosphérique avec effet sur la surface de la mer. Au cours de certaines phases de l’éruption, ces mécanismes ont probablement agi ensemble. Un bon exemple est la principale vague de tsunami qui a frappé l’île de Tongatapu à 65 km au sud du Hunga-Tonga. L’événement s’est produit un peu plus de 45 minutes après la première explosion majeure du volcan. Un mur d’eau de plusieurs mètres de hauteur s’est abattu sur la péninsule de Kanokupolu, détruisant au passage plusieurs stations balnéaires. Une anomalie de la pression atmosphérique peut avoir contribué à augmenter la hauteur des vagues du tsunami.
La cartographie du plancher océanique autour du volcan par le NIWA a été réalisée en deux parties. La première étape, qui a cartographié et échantillonné le fond marin autour du volcan, a été effectuée à partir du navire de recherche néo-zélandais Tangaroa. La deuxième étage, directement à l’aplomb du volcan sous-marin, a été confiée au robot britannique USV Maxlimer. Télécommandé depuis une salle de contrôle située à à Tollesbury (Royaume-Uni), à 16 000 km de distance, ce robot a détecté une activité volcanique en cours. L’engin s’est déplacé à la surface d’une couche de cendres vitreuses dans la caldeira, jusqu’à sa source, une nouvelle bouche éruptive située à environ 200 mètres sous la surface de l’océan.
Cette cartographie du fond de l’océan autour du volcan sous-marin Hunga-Tonga Hunga-Haʻapai permettra aux pays du Pacifique proches de la zone volcanique – qui s’étend de l’île du Nord de la Nouvelle-Zélande jusqu’aux Samoa – de mieux savoir où construire des infrastructures et comment les protéger; et, surtout, d’apprécier l’ampleur du risque auquel ils sont confrontés.
Source : La BBC.

———————————————

I have written several posts about the powerful eruption of the Hunga-Tonga Hunga-Haʻapai seamount in January 2022. It sent ash and water vapour at incredible heights into the mesosphere (57km in altitude), the highest recorded eruption column in human history, and generated tsunami waves across the globe.

A survey by New Zealand and UK vessels has now fully mapped the area around the Pacific volcano. It shows the seafloor was scoured and sculpted by violent debris flows out to a distance of over 80km. The mapping exercise at Hunga-Tonga Hunga-Haʻapai was led by New Zealand’s National Institute of Water and Atmospheric Research (NIWA). The gathered data indicates that at least 9.5 cubic kilometers of material were displaced during the event. NIWA adds that this is a volume equivalent to something approaching 4,000 Egyptian pyramids. Two-thirds of that material was the ash and rock ejected out through the volcano’s caldera.

This transport of material took the form of pyroclastic flows. In water, their searing heat enveloped them in a frictionless steam cushion on which they could simply run at very high speed. The survey work tracked flows that managed to travel up and over elevations of several hundred metres. This explains, for example, the loss of the submarine cable connecting Tonga to the global internet. A large section was cut out of this data link despite lying 50km to the south of Hunga-Tonga and beyond a large hill on the seafloor.

The pyroclastic flows also have a part in the tsunami story of Hunga-Tonga. Waves were recorded across the Pacific but also in other ocean basins, in the Atlantic and even in the Mediterranean Sea.

The NIWA team says there were essentially four ways water was displaced to generate these tsunamis: by the density flows pushing the water out of the way; through the explosive force of the eruption also pushing on the water; as a result of the dramatic 700-meter collapse of the caldera floor; and by pressure waves from the atmospheric blast acting on the sea surface. At certain phases during the eruption, these mechanisms likely worked in tandem. A good example is the biggest wave to hit Tonga’s main island, Tongatapu, 65km to the south of Hunga-Tonga. This occurred just over 45 minutes after the first major eruptive blast. A wall of water several metres high washed over the Kanokupolu peninsula, destroying beach resorts in the process. An atmospheric pressure anomaly may have increased the height of the tsunami waves.

The NIWA mapping of the ocean floor around the volcano was carried out in two parts. The first stage, which mapped and sampled the seafloor around the volcano, was conducted from New Zealand’s Research Vessel (RV) Tangaroa. The second stage, directly above the seamount, was given over to the British robot boat USV Maxlimer. Operated from a control room 16,000 km away in Tollesbury, UK, this uncrewed vehicle was able to identify ongoing, volcanic activity. The boat did this by tracing a persistent layer of glassy ash in the caldera back to a new vent cone some 200 meters under water.

All the results from the mapping of the ocean floor around Hunga-Tonga Hunga-Haʻapai will help Pacific nations close to the volcanic zone that runs from New Zealand’s North Island all the way to Samoa to know better now where to build infrastructure and how to protect it; and, importantly, to appreciate the scale of the risk they face.

Source: The BBC.

 Source: USGS

 Cartographie du plancher océanique avec le volcan qui se dresse à plus de 1,5 km de hauteur (Source: NIWA)

Cartographie des zones naturelles en Islande // Mapping of wilderness in Iceland

Les scientifiques islandais ont cartographié les zones naturelles de leur pays avec un maximum de détails. Un nouveau rapport accompagne le projet; il a été préparé par le Wildland Research Institute (WRI) pour le compte de l’Óbyggð kortlagning et fournit des informations qui peuvent aider les décideurs politiques et les défenseurs de la nature à préserver ces zones de la meilleure des façons. Des études antérieures pour le compte du Registre des zones naturelles (Wildnerness Register) de l’Union européenne ont montré que l’Islande recèle environ 43 % des 1 % de zones naturelles d’Europe.
Environ la moitié des hautes terres du centre de l’Islande correspondent à la définition de « zone naturelle inhabitée », et le rapport divise la région en 17 zones distinctes. Un tiers des zones naturelles inhabitées cartographiées dans le cadre du projet appartient à des propriétaires privés, tandis que les deux autres tiers se trouvent sur des terres publiques. Les zones ont été cartographiées et définies selon les normes internationales.
Il est important pour les Islandais de pouvoir faire clairement la distinction entre les zones de nature sauvage et les autres. Alors que les zones de nature sauvage diminuent à l’échelle mondiale, celles encore présentes en Islande deviendront de plus en plus précieuses. Une fois qu’une ligne a été tracée sur une carte, cette distinction peut être légalement mise en oeuvre sur le terrain. Il est alors possible de prendre des décisions concernant l’implantation des lignes électriques et la construction de centrales hydroélectriques afin de ne pas gâcher cette ressource importante.
Le rapport identifie quatre principales menaces pour les zones naturelles en Islande : l’impact des infrastructures géothermiques et hydroélectriques ; le tourisme; les 4×4 et la conduite hors route. C’est à cause de cela que les zones de nature sauvage se sont réduites en Islande au cours des 80 dernières années. Bon nombre de ces menaces perdurent avec l’expansion de la production d’électricité et des infrastructures de transmission qui y sont liées.
Selon les auteurs du rapport, les propositions d’expansion de l’hydroélectricité, de l’énergie géothermique et éolienne sur les hautes terres du centre de l’Islande sont « particulièrement préoccupantes » car elles sont « toutes susceptibles d’avoir un impact considérable sur les qualités de la nature sauvage ».
Les personnes intéressées peuvent consulter le rapport complet à cette adresse :.
https://wildlandresearch.org/wp-content/uploads/sites/39/2022/03/Iceland-Wilderness-Report_FINAL_March16-3_compressed-med.pdf

——————————————–

Scientists have mapped Iceland’s uninhabited wilderness in more detail than ever before. A new report on the project, prepared by the Wildland Research Institute (WRI) on behalf of Icelandic initiative Óbyggð kortlagning provides information that can help policymakers and nature conservationists preserve these areas in their best possible form. Previous studies for the European Union Wilderness Register have shown that Iceland retains approximately 43% of Europe’s top one percent wildest areas.

Around half of Iceland’s Central Highland falls under the definition of uninhabited wilderness, and the report divides it into 17 distinct areas. One third of the uninhabited wilderness mapped in the project is privately owned, while the other two thirds are on public land. The areas were mapped and defined according to international standards.

It is important for Icelanders to be able to clearly distinguish between wilderness and other areas. As wild areas diminish globally, Iceland’s wilderness will become still more valuable. Once a line has been drawn on a map, it can be put into context legally. Then, it will be possible to make decisions about where to build, where power lines can be laid, and where hydropower plans can be built so as not to spoil this important resource.

The report identifies four main historical threats to wilderness in Iceland: impacts from geothermal and hydropower infrastructure; tourism; recreational 4×4 driving; and off-road driving. These have resulted in the steady attrition of wilderness areas over the last 80 years. Many of these threats are ongoing with further expansion of electrical power generation and associated transmission infrastructure.

Proposals to expand hydropower, geothermal power, and wind power generation in the Central Highlands are “of particular concern,” according to the report’s authors, as they are “all capable of vastly impacting wilderness qualities.”

Interested readers can view the full report at this address:.

https://wildlandresearch.org/wp-content/uploads/sites/39/2022/03/Iceland-Wilderness-Report_FINAL_March16-3_compressed-med.pdf

Le Landmannalaugar fait partie des zones naturelles les plus populaires en Islande (Photo: C. Grandpey)