2025, nouvelle année catastrophique pour l’Arctique // 2025, another disastrous year for the Arctic

  Dans son rapport annuel sur l’Arctique, avec référence à des données remontant à 1900, la NOAA vient d’informer le public qu’en 2025 l’Arctique a connu son année la plus chaude jamais enregistrée, avec des conséquences en cascade : fonte des glaciers et de la banquise, verdissement des paysages et perturbations du climat mondial.
Entre octobre 2024 et septembre 2025, les températures ont dépassé de 1,60°C la moyenne de la période 1991-2020, un réchauffement « forcément alarmant » sur une période aussi courte.
L’année 2025 a connu dans l’Arctique l’automne le plus chaud, le deuxième hiver le plus chaud et le troisième été le plus chaud depuis 1900. Sous l’effet de la combustion des énergies fossiles par l’Homme, l’Arctique se réchauffe beaucoup plus vite que la moyenne mondiale, un phénomène connu sous le nom d’« amplification arctique ».

On a des conséquences en chaîne : la hausse des températures augmente la quantité de vapeur d’eau dans l’atmosphère, qui elle-même se transforme en une couverture absorbant la chaleur et l’empêchant de s’échapper dans l’espace. Parallèlement, la disparition de la banquise réduit l’albédo ; elle expose des eaux océaniques plus sombres qui absorbent davantage la chaleur du Soleil.
Au printemps, période où la banquise arctique atteint son maximum annuel, on a observé en mars 2025 le plus faible pic jamais enregistré en 47 années de relevés satellitaires. Il s’agit d’un problème pour les ours polaires, les phoques et les morses, qui utilisent la glace comme plateforme pour se déplacer, chasser et mettre bas.
Les modélisations montrent que l’Arctique pourrait connaître son premier été pratiquement sans banquise d’ici 2040, voire plus tôt. La fonte de la banquise arctique perturbe la circulation océanique en injectant de l’eau douce dans l’Atlantique Nord par la fonte des glaces et l’augmentation des précipitations. Les eaux de surface deviennent ainsi moins denses et moins salées, ce qui entrave leur capacité à plonger et à alimenter la circulation méridienne de retournement atlantique (AMOC), notamment le Gulf Stream, qui contribue à la douceur des hivers en Europe. Voir également ma note du 2 novembre 2024 à ce sujet :

https://claudegrandpeyvolcansetglaciers.com/2024/06/27/rechauffement-climatique-des-rivieres-virent-a-lorange-en-alaska-global-warming-some-rivers-are-turning-orange-in-alaska/

La fonte continue de la calotte glaciaire du Groenland apporte également de l’eau douce à l’océan Atlantique Nord, stimulant la productivité du plancton mais créant aussi des décalages entre la disponibilité de nourriture et les périodes où les espèces qui en dépendent peuvent s’en nourrir.

La fonte des glaces terrestres du Groenland contribue de manière significative à l’élévation du niveau de la mer, exacerbant l’érosion côtière et les inondations provoquées par les tempêtes.
Par ailleurs, le réchauffement plus rapide de l’Arctique que du reste de la planète affaiblit le contraste de température qui contribue à maintenir l’air froid confiné près du pôle. Cette fragilisation du vortex polaire permet aux vagues de froid de se propager plus fréquemment vers les latitudes plus basses.
Le cycle hydrologique de l’Arctique s’intensifie lui aussi. La période d’octobre 2024 à septembre 2025, aussi connue sous le nom d’« année hydrologique » 2024/25, a enregistré des précipitations printanières record et figure parmi les cinq années les plus humides pour les autres saisons, selon les relevés remontant à 1950.
Des conditions plus chaudes et plus humides favorisent la « boréalisation », ou le verdissement, de vastes étendues de toundra arctique. En 2025, ce verdissement de la toundra circumpolaire était le troisième plus élevé des 26 années de relevés satellitaires. Les cinq valeurs les plus élevées ont toutes été observées au cours des six dernières années.
Parallèlement, le dégel du pergélisol provoque des changements biogéochimiques, tels que le phénomène des « rivières couleur de rouille », causé par le fer libéré par le dégel des sols. Les images satellitaires ont permis d’identifier plus de 200 cours d’eau de couleur orangée, ce qui dégrade la qualité de l’eau par une hausse de l’acidité et des concentrations de métaux, et contribue à la perte de biodiversité aquatique. J’ai consacré une note à ce phénomène le 27 juin 2024 :

https://claudegrandpeyvolcansetglaciers.com/2024/06/27/rechauffement-climatique-des-rivieres-virent-a-lorange-en-alaska-global-warming-some-rivers-are-turning-orange-in-alaska/

Source : NOAA.

Vue aérienne de la Kutuk, dans le nord de l’Alaska, où la belle couleur bleue de la rivière doit cohabiter avec l’eau orange due au dégel du pergélisol (Crédit photo : National Park Service)

————————————————

In its annual Arctic Report Card, which draws on data going back to 1900, the National Oceanic and Atmospheric Administration ‘NOAA) informs the public that in 2025 the Arctic experienced its hottest year since records began, with cascading impacts from melting glaciers and sea ice to greening landscapes and disruptions to global weather.

Between October 2024 and September 2025, temperatures were 1.60 degrees Celsius above the 1991–2020 mean, a « certainly alarming » warming over so short a timespan.

2025 included the Arctic’s warmest autumn, second-warmest winter, and third-warmest summer since 1900. Driven by human-caused burning of fossil fuels, the Arctic is warming significantly far faster than the global average, with a number of reinforcing feedback loops : a phenomenon known as « Arctic Amplification. »

For example, rising temperatures increase water vapor in the atmosphere, which acts like a blanket absorbing heat and preventing it from escaping into space. At the same time, the loss of bright, reflective sea ice exposes darker ocean waters that absorb more heat from the Sun.

Springtime – when Arctic sea ice reaches its annual maximum – saw the smallest peak in the 47-year satellite record in March 2025. This is an immediate issue for polar bears and for seals and for walrus, that they use the ice as a platform for transportation, for hunting, for birthing pups.

Modeling suggests the Arctic could see its first summer with virtually no sea ice by 2040 or even sooner. The loss of Arctic sea ice also disrupts ocean circulation by injecting freshwater into the North Atlantic through melting ice and increased rainfall. This makes surface waters less dense and salty, hindering their ability to sink and drive the Atlantic Meridional Overturning Circulation (AMOC), including the Gulf Stream, which help keep Europe’s winters milder. See my post of 2 November 2024 on this topic :

https://claudegrandpeyvolcansetglaciers.com/2024/06/27/rechauffement-climatique-des-rivieres-virent-a-lorange-en-alaska-global-warming-some-rivers-are-turning-orange-in-alaska/

Ongoing melt of the Greenland Ice Sheet also adds freshwater to the North Atlantic Ocean, boosting plankton productivity but also creating mismatches between when food is available and when the species that depend on it are able to feed.

Greenland’s land-based ice loss is also a major contributor to global sea-level rise, exacerbating coastal erosion and storm-driven flooding.

And as the Arctic warms faster than the rest of the planet, it weakens the temperature contrast that helps keep cold air bottled up near the pole, allowing outbreaks of frigid weather to spill more frequently into lower latitudes.

The Arctic’s hydrological cycle is also intensifying. The October 2024 – September 2025 period – also known as the 2024/25 « water year » – saw record-high spring precipitation and ranked among the five wettest years for other seasons in records going back to 1950.

Warmer, wetter conditions are driving the « borealization, » or greening, of large swaths of Arctic tundra. In 2025, circumpolar mean maximum tundra greenness was the third highest in the 26-year modern satellite record, with the five highest values all occurring in the past six years.

Permafrost thaw, meanwhile, is triggering biogeochemical changes, such as the « rusting rivers » phenomenon caused by iron released from thawing soils. Satellite images allowed to identify more than 200 discolored streams and rivers that appeared visibly orange, degrading water quality through increased acidity and metal concentrations and contributing to the loss of aquatic biodiversity. I dedicated a post to this phenomenon on June 27th, 2024 :

https://claudegrandpeyvolcansetglaciers.com/2024/06/27/rechauffement-climatique-des-rivieres-virent-a-lorange-en-alaska-global-warming-some-rivers-are-turning-orange-in-alaska/

Source : NOAA.

Puissant séisme à la frontière Alaska / Yukon le 6 décembre 2025 // Powerful earthquake at the Alaska / Yukon border on December 6, 2025

En l’absence de victimes, les médias européens n’en ont pas parlé. Pourtant, un puissant séisme de magnitude M7,0 s’est produit le 6 décembre 2025 le long de la chaîne de montagnes Saint-Élie (St Elias mountain range), à la frontière entre le Yukon (Canada) et l’Alaska (États Unis), une région que j’apprécie particulièrement pour la beauté de ses paysages.

Photos: C. Grandpey

Selon l’USGS, l’épicentre du séisme se situait à environ 370 km au nord-ouest de Juneau (Alaska) et à 250 km à l’ouest de Whitehorse (Yukon, Canada). Des centaines de répliques ont été enregistrées après la secousse initiale ; la plus forte d’entre elles atteignait une magnitude de M5,7.
Aucune alerte tsunami n’a été émise et, heureusement, aucun dégât ni blessé n’a été signalé. Cependant, des habitants jusqu’à Whitehorse ont ressenti la secousse. Les localités les plus proches de l’épicentre du séisme sont Haines Junction, au Yukon (130 km), et Yakutat, en Alaska (90 km), qui regroupent respectivement un peu plus de 1 000 et 662 habitants.
Bien qu’aucune catastrophe n’ait été déplorée dans les localités voisines, le séisme a eu des répercussions sur la chaîne de Saint-Élie. Il a été provoqué par un décrochement, phénomène géologique bien connu, lorsque les deux côtés d’une faille glissent horizontalement l’un par rapport à l’autre. Dans le cas précis, le mouvement s’est produit à l’extrémité nord de la faille de Fairweather, une zone où l’activité sismique est peu documentée.
L’hypocentre du séisme a été localisé à 10 km sous le glacier Hubbard, le plus grand glacier d’Amérique du Nord à terminer sa course dans l’océan.

Les photos aériennes prises par le YGS à proximité de l’épicentre du séisme du 6 décembre, près du glacier Hubbard, montrent d’importants glissements de terrain, des avalanches et les dégâts subis par la glace.

Le vendredi 12 décembre, le Yukon Geological Survey (YGS) s’est rendu sur le site du séisme afin de répertorier les glissements de terrain et les avalanches provoqués par la secousse et déterminer si la faille avait fracturé la surface du sol. Certains débris étaient répandu sur une zone de cinq kilomètres de long sur un kilomètre et demi de large.
Le YGS n’a toutefois trouvé aucun signe de fracture en surface, bien qu’il soit possible que cela ait été masqué par la glace. Le séisme a néanmoins déclenché de nombreux glissements de terrain, principalement sur les pentes du mont King George.
Des glissements ont également été observés sur les pentes voisines du mont Logan, du mont Vancouver et d’autres sommets environnants. Plus loin de l’épicentre du séisme, les avalanches de neige et de glace ont été observées plus fréquemment que les glissements de terrain. Des restes d’effondrements de séracs ont également été fréquemment observés.

Les images partagées par YGS montrent des glissements de terrain et des avalanches du mont King George et des sommets environnants, avec des coulées de débris atteignant 6 km de long et 1 800 mètres de large.

Selon des témoins locaux, c’est une chance que cet événement ne se soit pas produit pendant la saison d’alpinisme, car les chutes de séracs et les avalanches déclenchées par les secousses ont déjà causé des décès. Une alpiniste argentine qui se trouvait dans le secteur au moment su séisme n’a pas compris ce qui se passait. Elle a  cru à des avalanches en cascade. Elle a toutefois pu être mise en sécurité.

Dans les prochains mois, les dégâts causés à la glace dans la région et la poursuite des chutes de pierres pourraient constituer de nouveaux dangers pour les expéditions d’alpinisme et de ski dans la zone. Les chaînes de Wrangell-St. Elias et de Chugach, situées à proximité, sont deux destinations de ski de randonnée réputées en Alaska, connues pour leurs nombreux sommets, et leurs longues descentes à ski du sommet jusqu’à à la mer.
Source : Yukon Geological Survey.

———————————————–

As there were no casualties, European news media did not even mention it, but a powerful M7.0 earthquake occurred on December 6, 2025 along the St. Elias mountain range on the Canadian Yukon/ Alaska border, an area I particularly appreciate for the beauty of its landscape. .

According to the U.S.G.S., the quake’s epicenter was roughly 370 km northwest of Juneau, Alaska, and 250 km west of Whitehorse, Yukon, Canada. Hundreds of aftershocks were recorded following the initial quake, with the largest measuring M5.7.
There was no Tsunami warning with the quake and, luckily, no immediate reports of damage or injury, but folks as far as Whitehorse reportedly felt it. The closest communities to the earthquake’s epicenter are Haines Junction, Yukon (130 km), and Yakutat, Alaska (90 km), which have small populations of just over 1,000 and 662 people, respectively.
Despite no catastrophic outcomes to the nearby communities, the earthquake certainly didn’t leave the St. Elias range unscathed. The earthquake was caused by a strike-slip event, a well-known geological one, when the two sides of a fault slide past one another horizontally. In this case, movement occurred on the northernmost end of the Fairweather Fault, which does not have much previously recorded seismic activity.
The earthquake’s hypocenter was recorded to be 10 km below the Hubbard Glacier, which is North America’s largest tidewater glacier.

On Friday, December 12th, the Yukon Geological Survey (YGS) flew to the site of the earthquake to document landslide and avalanche activity caused by the quake, and to determine if the fault ruptured the ground surface. Some of the debris was dispersed over a five-kilometer-long by one and a half-kilometer-wide area.

However, YGS didn’t find any evidence of surface rupture, although it’s possible a rupture was hidden by glacial ice. The earthquake did, however, trigger numerous landslides, largely on the slopes of Mt. King George.
There were also slides observed on the nearby slopes of Mt. Logan, Mt. Vancouver, and other surrounding sub-peaks. Further from the quake’s epicenter, snow and ice avalanches were observed more frequently than landslides. Seracs and ice falls were also frequently seen toppled and broken, and the earthquake caused widespread damage to glacial ice.

Local observers say it is fortunate that this event did not occur during mountaineering season, as earthquake-triggered serac falls and avalanches have caused fatalities in the past. In the future, the damage to ice in the region and persistent rockfall from landslides scars may pose new additional hazards for mountaineering and skiing expeditions in the area. The Wrangell- St. Elias range and nearby Chugach range are both famous ski mountaineering destinations in Alaska, known for having numerous massive peaks, remote access, and length peak-to-sea ski descents.

Source : Yukon Geological Survey.

Les glaciers antarctiques sous la menace de tourbillons sous-marins // Underwater eddies threaten Antarctic glaciers

En Antarctique de l’ouest, le Thwaites est un vaste glacier qui se jette dans la baie de Pine Island à une vitesse de surface dépassant les 2 kilomètres par an près de sa ligne d’échouage. Il est fortement affecté par le réchauffement climatique et constitue l’un des exemples les plus frappants du recul glaciaire. Le glacier Thwaites fait l’objet d’une surveillance étroite en raison de son potentiel d’élévation du niveau de la mer.

Une nouvelle étude, publiée en novembre 2025 dans Nature Geoscience, nous apprend que des « tempêtes sous-marines tourbillonnantes » provoquent « une fonte agressive des plateformes glaciaires » devant les glaciers Pine Island et Thwaites, avec des conséquences potentiellement importantes sur l’élévation du niveau de la mer à l’échelle mondiale.

Source : Antarctic Glaciers

Au cours des dernières décennies, ces immenses glaciers ont connu une fonte rapide, accélérée par le réchauffement des eaux océaniques, notamment à l’endroit où ils remontent des fonds marins et forment des plateformes glaciaires. La nouvelle étude est la première à analyser systématiquement la fonte des plateformes glaciaires sur une échelle de temps de quelques heures ou quelques jours, et non en fonction des saisons ou des années.
Les auteurs expliquent que ces tourbillons sous-marins se comportent, un peu comme lorsqu’on remue de l’eau dans une tasse. Cependant, dans l’océan, ils sont beaucoup plus vastes et peuvent couvrir une dizaine de kilomètres. On peut lire dans l’étude : « Ils se forment lorsque des eaux chaudes et froides se rencontrent. Pour reprendre l’analogie de la tasse, c’est le même principe que lorsqu’on verse du lait dans une tasse de café et qu’on observe de minuscules tourbillons qui mélangent le tout. » Ce phénomène ressemble également à la formation des tempêtes atmosphériques qui résultent de la collision d’air chaud et d’air froid ; comme les tempêtes atmosphériques, ces tourbillons peuvent être très dangereux.

Source : Antarcyic Glaciers

Les tourbillons se forment en haute mer et s’engouffrent sous les plateformes glaciaires. Pris en étau entre la base de la plateforme et le fond marin, ils font remonter à la surface des eaux plus chaudes, ce qui accélère la fonte lorsqu’elles rencontrent la glace de la plateforme..
Les scientifiques ont utilisé des modèles informatiques ainsi que des données provenant d’instruments océanographiques pour analyser l’impact de ces tempêtes sous-marines. Ils ont constaté que, combinées à d’autres processus de courte durée, elles ont causé 20 % de la fonte du Thwaites et du Pine Island sur une période de neuf mois.
Les chercheurs ont également mis en évidence une boucle de rétroaction positive inquiétante. Lorsque ces tempêtes sous-marines font fondre la glace, elles augmentent la quantité d’eau froide et douce qui se déverse dans l’océan. Cette eau se mélange à l’eau plus chaude et plus salée située en dessous, ce qui génère davantage de turbulence océanique et accélère ainsi la fonte de la glace. Les chercheurs ajoutent que cette boucle de rétroaction positive pourrait s’intensifier avec le réchauffement climatique.
Les conséquences de ce phénomène pourraient être dramatiques car les plateformes glaciaires jouent un rôle de rempart essentiel en retenant les glaciers en amont et en ralentissant leur écoulement vers l’océan. Le glacier Thwaites, à lui seul, contient suffisamment d’eau pour faire monter le niveau de la mer de plus de 60 centimètres. Mais, comme il retient également l’immense calotte glaciaire antarctique, sa fonte pourrait à terme entraîner une élévation du niveau de la mer d’environ 3 mètres. Comme je l’ai expliqué dans une note précédente, les différents systèmes glaciaires de l’Antarctique occidental sont interconnectés.

Source: BAS

De grandes incertitudes persistent autour des causes du réchauffement de l’Antarctique occidental. Les plateformes glaciaires antarctiques figurent parmi les endroits les moins accessibles de la planète, ce qui oblige les scientifiques à s’appuyer la plupart du temps sur des simulations. Des études comme celle-ci reposent en grande partie sur des modèles informatiques. Il faudra beaucoup plus de données réelles, récoltées sur le terrain, pour bien comprendre l’impact de ces tourbillons, ainsi que d’autres phénomènes météorologiques océaniques.
Source : CNN via Yahoo News.

————————————————

In West Antarctica, Thwaites is a broad and vast glacier that flows into Pine Island Bay at surface speeds which exceed 2 kilometres per year near its grounding line. It is adversely affected by global warming, and provides one of the more notable examples of the retreat of glaciers.Thwaites Glacier is closely monitored for its potential to elevate sea levels.

A new study, published in November 2025 in Nature Geosciences explains that swirling underwater “storms” are aggressively melting the ice shelves of both Pine Island and Thwaites glaciers, with potentially “far-reaching implications” for global sea level rise.

Over the past few decades, these huge glaciers have experienced rapid melting driven by warming ocean water, especially at the point where they rise from the seabed and come afloat as ice shelves.

The new study is the first to systematically analyze how the ocean is melting ice shelves over just hours and days, rather than seasons or years.

The authors of the study explain that swirling underwater “storms” – or eddies – are « like little water twirls that spin around really fast, kind of like when you stir water in a cup.” However, in the ocean, these eddies are much larger and can span up to around 10 kilometers. « They form when warm and cold water meet. To return to the cup analogy, it’s the same principle as when you pour milk into a cup of coffee and see tiny swirls spinning around, mixing everything together. »

The phenomenon is similar to how storms form in the atmosphere, when warm and cold air collide ; like atmospheric storms, they can be very dangerous.

The eddies spin up in the open ocean and race underneath ice shelves. Sandwiched between the, rough base of the ice shelf and the seafloor, the eddies churn up warmer water from deeper in the ocean, which enhances melting when it “hits” vulnerable ice.

The scientists used computer models as well as data from ocean instruments to analyze the impact of these underwater storms. They found that, together with other short-lived processes, the storms caused 20% of the melting at the two glaciers over a nine-month period.

The researchers also highlighted a worrying feedback loop. As the storms melt the ice, they increase the amount of cold, fresh water entering the ocean. This mixes with warmer, saltier water beneath, generating more ocean turbulence, which in turn increases ice melting.They add that this positive feedback loop could gain intensity in a warming climate.

The consequences could be grave as the ice shelves play a vital role holding back the glaciers, slowing their flow into the ocean. Thwaites Glacier alone holds enough water to raise sea levels by more than 60 centimeters. But, because it also acts as a cork holding back the vast Antarctic ice sheet, its collapse could ultimately lead to around 3 meters of sea level rise. As I explained in a previous post, the different glacial systems in West Antarctica are interconnected.

There are still huge uncertainties. Antarctic ice shelves are among the least accessible places on Earth, meaning scientists have to rely heavily on simulations. Studies like this one largely rely on computer models. Much more real-world data will be needed to really understand the impact of these eddies, along with other ocean weather features.

Source : CNN via Yahoo News.

Cher Antonio…

Cher Antonio…

Depuis le 14 décembre 2007 où tu nous as quittés, je ressens un grand vide chaque fois que je vois apparaître ton nom qui s’ajoute à ceux de Garouk (Haroun Tazieff) et Fanfan (François Le Guern), eux aussi disparus et avec qui j’avais tissé de solides liens d’amitié.

Tu as guidé mes premiers pas sur l’Etna, m’accompagnant ou me laissant aller seul après m’avoir conseillé. Tu m’as incité à pénétrer dans des sites où je n’aurais jamais osé m’aventurer : diaphragme entre la Bocca et la Voragine (il fallait être complètement fou!), grotte de soufre à l’intérieur du Nouveau Cratère Sud-Est secouée par des explosions…

Ta plus grande folie à toi fut de descendre faire une petite promenade sur le plancher de la Bocca Nuova…

https://www.facebook.com/watch/?v=274030789671573

En ce mois de décembre 2025, je ne peux m’empêcher de penser à toi et à son frère Orazio, mais aussi aux guides de l’Etna avec lesquels j’ai passé des moments inoubliables.

Je ne retourne plus sur l’Etna. Le volcan m’a gâté et j’y ai laissé trop de souvenirs…

Photo: C. Grandpey