Islande : pas d’éruption en vue…mais on ne sait jamais ! // Iceland : no eruption in sight…but you never know!

Selon un professeur de géophysique de l’Université d’Islande, la majeure partie de l’intrusion magmatique dans le secteur de Svartsengi s’est solidifiée et la probabilité d’une éruption diminue, d’autant plus que l’inflation du sol dans la région a ralenti. Le géophysicien explique que le dyke a une épaisseur d’environ deux mètres dans la plupart des endroits, mais avec un peu plus de largeur ailleurs. Maintenant que deux semaines se sont écoulées depuis la formation du dyke, 90 % se sont solidifiés. La probabilité d’une éruption s’éloigne donc considérablement.
Cependant, selon le scientifique, « on ne peut exclure le risque d’une éruption. La zone la plus sensible se trouve au milieu de l’intrusion magmatique, à l’est de la montagne Sýlingarfell. Il pense qu’un nouveau processus pourrait démarrer dans un avenir proche, car le magma afflue toujours à une profondeur de 5 à 6 km sous Svartsengi. Toutefois, il n’y a actuellement aucune contrainte et très peu d’activité sismique.
Le professeur affirme que rien n’indique aujourd’hui qu’une éruption va débuter au niveau de la fracture qui traverse Grindavik, car il n’y a aucun signe d’accumulation de magma dans le secteur.
Source :Iceland Monitor.

————————————————

According to a professor of geophysics at the University of Iceland, the majority of the magma channel at Svartsengi has solidified. The likelihood of a volcanic eruption is decreasing and the land rising at Svartsengi has slowed down. The geophysicist explains that the dike is about two metres thick in most places, but somewhat wider elsewhere. Now that two weeks have passed since the dike was formed, 90% of it is solidified. Thus, the likelihood of an eruption has become considerably lower.

However, in his opinion, “there is no way to exclude that there will be an eruption. The most likely area is in the middle of the tunnel, east of Sýlingarfell mountain.”. He thinks a new process can start in the near future because magma is still inflowing into a storage chamber at a depth of 5-6 km below Svartsengi, but there is currently no tension and very little earthquake activity.

The professor says that there are no longer any indications that an eruption will begin in the Grindavik fissure as there are no signs of any magma accumulating there.

Source : Iceland Monitor.

Eruptions volcaniques, météo et climat // Volcanic eruptions, weather and climate

Suite à la publication de ma note sur l’éruption du Laki (Islande) en 1783, deux abonnés de mon blog m’ont demandé dans quelle mesure une éruption volcanique pouvait affecter la météo, voire le climat.
Lorsqu’un volcan entre en éruption, les volumineux panaches de cendres et de gaz envoyés dans l’atmosphère peuvent provoquer des variations de température à grande échelle et, à long terme, affecter les conditions météorologiques pendant plusieurs mois après une éruption. On a pu l’observer récemment avec les effets de l’éruption du volcan tongien Hunga Tong-Hunga Ha’apai. J’ai décrit les impacts de cette éruption dans plusieurs notes sur ce blog.

 

Panache éruptif du Hunga Tonga-Hunga Ha’apai (Source: NASA)

La conséquence la plus significative d’une éruption volcanique majeure est un refroidissement de la température, localement et même dans le monde entier, avec la présence d’importants nuages de dioxyde de soufre (SO2) dans la stratosphère. Ce phénomène a été observé après l’éruption du Pinatubo aux Philippines en 1991, avec un abaissement de la température mondiale. de quelques dixièmes de degrés (0,72°C) pendant plusieurs mois. Le nuage de SO2 du Pinatubo a été le plus important jamais observé dans la stratosphère depuis le début des observations par satellite en 1978. Il a probablement provoqué la plus grande perturbation par aérosols dans la stratosphère au 20ème siècle, même si ces perturbations ont probablement été moindres que celles provoquées par les éruptions du Krakatau en 1883 et du Tambora en 1815.

 

Panache éruptif et aérosols du Pinatubo (Source: Wikipedia)

Comme je l’ai écrit il y a quelques jours, l’éruption fissurale du Laki en Islande en 1783-1784 a libéré une énorme quantité de dioxyde de soufre, bien supérieure à celle émise par le Pinatubo (environ 120 millions de tonnes contre 20 millions de tonnes pour le volcan philippin). Bien que les deux éruptions aient été différentes en termes de durée et de style, le SO2 atmosphérique émis a provoqué un refroidissement du temps dans des proportions similaires, pendant des périodes de temps semblables, en Europe et en Amérique du Nord.

Lakagigar (Photo: C. Grandpey)

L’US Geological Survey affirme qu’une nouvelle éruption majeure de Yellowstone modifierait probablement les conditions météorologiques mondiales et aurait un impact sur la production agricole pendant de nombreuses années.

L’éruption du Tambora (Indonésie) en 1815 fut l’éruption la plus puissante enregistrée dans les temps historiques. Le nuage volcanique émis lors de l’événement a abaissé la température de la planète de 1,6°C. L’Europe et l’Amérique du Nord ont connu des températures plus basses que la normale tout au long de l’été 1816.

 

Caldeira du Tambora vue depuis l’ISS

On sait depuis longtemps que les volumineux nuages d’éruptions volcaniques, ou pyrocumulus, qui contiennent beaucoup de particules de cendres, peuvent produire des éclairs et des vortex – ou tourbillons de vent. Semblables aux nuages d’orages et leurs particules de glace, les nuages volcaniques contiennent des particules de cendre qui entrent en collision les unes avec les autres à grande vitesse. Ces collisions peuvent provoquer la séparation des charges dans les nuages et donner naissance à des éclairs.

Eclairs pendant l’éruption du Rinjani (Crédit photo: Wikipedia)

De plus, lors d’une éruption, les panaches peuvent également produire des événements météorologiques semblables à des tornades, mais qui ne sont pas de véritables tornades. L’air à l’intérieur du panache éruptif est si chaud et si léger qu’à mesure qu’il s’élève, il aspire davantage d’air du dessous. Au fur et à mesure que le vent éloigne le panache, davantage d’air est aspiré sur le côté, ce qui crée un vortex.

Vortex dans le cratère de l’Halema’umau ‘Source: HVO)

Il convient de noter que la poussière et le dioxyde de soufre provenant d’une éruption majeure peuvent également donner naissance à de spectaculaires couchers et levers de soleil car les particules diffusent la lumière à différentes longueurs d’onde. De tels événements ont inspiré des peintres célèbres comme Ashcroft et Turner qui ont peint les magnifiques couchers de soleil provoqués par l’éruption du Tambora en avril 1815.

Sunset (William Turner)

S’agissant du réchauffement climatique que nous connaissons actuellement, les volcans sont parfois tenus pour responsables, mais c’est faux. Selon l’USGS, toutes les études réalisées à ce jour sur les émissions volcaniques de CO2 indiquent que les volcans subaériens et sous-marins de la planète libèrent moins de 1 % du dioxyde de carbone actuellement rejeté par les activités humaines. Le dégazage volcanique global a été estimé entre 0,13 gigatonne et 0,44 gigatonne par an.

—————————————————

Following the release of my post about the 1783 Laki eruption, two followers of my blog asked me how far a volcanic eruption can affect the weather or even the climate.

When a volcano erupts, the massive plumes of ash and gases sent high into the atmosphere can cause global temperature changes and, in the long term, affect weather for months after an eruption. This could be seen recently with the effects of the Hunga Tong-Hunga Ha’apai volcano in the Tonga archipelago. I have described the impacts of this eruption in several posts on this blog.

The most significant way a volcanic eruption can affect the weather is by cooling the temperature locally and worldwide with the giant clouds of sulfur dioxide sent into the stratosphere.This phenomenon was observed after the 1991 eruption of Mt Pinatubo in the Philippines which lowered the world temperature by a few tenths of degrees (0.72°C) for several months.The Pinatubo cloud was the largest SO2cloud ever observed in the stratosphere since the beginning of such observations by satellites in 1978. It caused what was probably the largest aerosol disturbance of the stratosphere in the 20th century, though probably smaller than the disturbances from eruptions of Krakatau in 1883 and Tambora in 1815.

As I put it a few days ago, the 1783-1784 Laki fissure eruption in Iceland released a huge amount more sulfur dioxide than Pinatubo (approximately 120-million tons vs. 20). Although the two eruptions were significantly different in length and style, the added atmospheric SO2 caused regional cooling of Europe and North America by similar amounts for similar periods of time.

The U.S. Geological Survey says another major Yellowstone eruption would probably alter global weather patterns and impact agricultural production for many years.

The eruption of the Tambora (Indonesia) in 1815 was the most powerful eruption recorded in history. The volcanic cloud emitted during the event lowered global temperatures by 1.6°C, and Europe and North America experienced cooler temperatures throughout the summer of 1816.

It is well known that massive volcanic eruption clouds, or pyrocumulus clouds with a lot of ash particles, can produce lightning and wind vortices. Similar to a thunderstorm with ice particles, volcanic ones collide with one another at high speeds. These collisions can cause the separation of charges in volcanic clouds, creating lightning.

Moreover, during an eruption, the plumes can also produce weather events that look like tornadoes, but are not true tornadoes. The air inside the eruption plume is so hot and buoyant that as it rises, it draws more air from underneath. As the wind blows the plume away, more air gets pulled in from the side, creating a vortex.

It should be noted that the dust and sulfur dioxide from a major eruption can also create vibrant sunsets and sunrises as the particles scatter light at different wavelengths. Such events inspired famous painters like Ashcroft and Turner who painted vivid sunsets caused by the April 1815 eruption of Tambora.

As far as the current global warming is concerned, volcanoes are sometimes held responsible for contributing to it, which is totally wrong. According to USGS, all studies to date about global volcanicCO2 emissions indicate that today’s subaerial and submarine volcanoes release less than one percent of the carbon dioxide released currently by human activities. The global volcanic degassing has been estimated between 0.13 gigaton and 0.44 gigaton per year.