Un nouveau laboratoire pour le HVO (Hawaii) // New lab for HVO (Hawaii)

L’Observatoire des Volcans d’Hawaii (HVO), géré par l’USGS, vient d’acquérir un nouveau laboratoire qui permettra aux scientifiques de mieux comprendre les propriétés physiques des téphras. Le mot « tephra » ou « téphra » fait référence à tous les types et toutes les tailles de fragments de roche projetés par un volcan en empruntant une trajectoire aérienne lors d’une éruption. Les téphras incluent les cendres, les bombes, les scories ou même les cheveux et les larmes de Pelé.

Ce nouveau laboratoire d’analyse de téphras permettra au HVO de déterminer la densité, la taille et la forme des particules, ainsi que les différents types de téphras émis par un volcan. En utilisant ces informations, les géologues du HVO seront en mesure d’analyser toute une gamme de phénomènes, depuis l’ascension du magma et le processus éruptif jusqu’aux dépôts de cendres laissés par les  éruptions du passé. Il est important d’obtenir ces mesures aussi précisément et rapidement que possible lors d’une éruption.

Le nouveau laboratoire du HVO est unique par sa capacité à analyser une vaste gamme d’échantillons, de un mètre à un micron (10-6 m). Le traitement des échantillons est non destructif et l’analyse est rapide. Chaque type de mesure ne prend que quelques minutes, et on estime que l’ensemble des mesures prend 1 à 2 heures. La méthode non destructive d’utilisation de ces nouveaux instruments est révolutionnaire ; elle permet aux chercheurs d’effectuer une suite complète d’analyses sur le même échantillon – au lieu d’utiliser différents échantillons du même matériau – pour une compréhension plus complète des éruptions. Cela permet également de préserver dans leur intégrité tous les  échantillons.

La première étape consiste à étudier les composants de l’échantillon afin de comprendre à quel type d’éruption les scientifiques sont confrontés.

Pour les échantillons de téphras prélevés directement sur le terrain, le HVO dispose de deux nouveaux stéréoscopes à lumière réfléchie. Lors de leur utilisation, les géologues peuvent séparer manuellement les différents composants de l’échantillon, tels que la lave juste prélevée, les cristaux, ou les petits morceaux de la paroi du cratère.

Au cours de l’étape suivante, les chercheurs mesurent la densité des échantillons. Pour les échantillons de lave, la mesure de la densité permet de comprendre quelle était la consistance du magma lors de son émission ; cela renseigne sur la dynamique de l’éruption. La densité de l’échantillon est déterminée en mesurant sa masse et son volume. Pour les morceaux de téphra de plus de cinq centimètres, le volume est calculé à l’aide d’un scanner 3D, puis l’échantillon est pesé. Les grains plus petits, depuis les lapilli jusqu’à la poudre de cendre, sont placés dans un pycnomètre à gaz, une machine qui calcule la densité directement en utilisant le principe d’Archimède de déplacement du volume en injectant de l’azote gazeux. Les pycnomètres fonctionnent aussi bien avec des scories et de la pierre ponce qu’avec des cendres ; ils permettent de comprendre la dynamique des éruptions.

La troisième étape est la mesure de la taille des échantillons, ce qui donne des informations sur la façon dont le magma s’est fragmenté pour produire des téphras pendant les épisodes de fontaines de lave et les explosions. Les fragments de plus de 3 centimètres sont tamisés à la main, de manière traditionnelle, tandis que les grains plus petits sont soumis à un Camsizer, un appareil de dernière génération qui photographie chaque fragment et convertit l’image en mesure de la taille. Le flux de particules passe devant une source de lumière stroboscopique LED ultra lumineuse et plane. Les Camsizers peuvent mesurer des dizaines de milliers de fragments en seulement 5 minutes. De plus, ils utilisent les images pour mesurer la forme 2D des fragments en utilisant des paramètres mathématiques établis. Les informations concernant la taille des fragments sont essentielles pour les modèles de fontaines de lave et de cendres.

L’étape finale peut prendre des semaines, voire des mois. Elle consiste à découper les échantillons en fines lamelles et à les étudier au microscope pétrographique. Le HVO possède deux nouveaux microscopes pétrographiques avec différents ensembles de lentilles: l’un peut évaluer la taille des bulles, la texture des bulles ainsi que la texture de mélanges de magmas, tandis que l’autre peut se concentrer sur les cristaux et les inclusions.

Les nouveaux instruments d’analyse de téphras que vient d’acquérir le HVO sont actuellement en cours d’étalonnage. Les échantillons prélevés pendant l’éruption en cours seront les premiers analysés. Ce nouveau laboratoire permet une analyse quasiment en temps réel des produits émis et donc une meilleure surveillance des éruptions.

Source: USGS / HVO.

——————————————

The USGS Hawaiian Volcano Observatory (HVO) has been granted a new laboratory that will allow scientists to better understand the physical properties of tephra.

Tephra is any type and size of rock fragment that is ejected from a volcano and travels an airborne path during an eruption. Examples include ash, bombs, scoria, or Pele’s hair and Pele’s tears.

The tephra lab will help HVO determine the density, size, and shape of individual tephra particles along with types of tephra. Using this information, HVO geologists can analyse a range of topics, from magma ascent and eruption processes to ashfall deposits from past explosive eruptions. It is important to get these measurements as accurately and quickly as possible during an eruption.

HVO’s new lab is unique in its ability to analyze a wide size range of samples, from one metre to one micron (10-6 m). The sample processing is non-destructive and analysis is fast with each type of measurement taking only minutes, and all measurements are estimated to take 1–2 hours total. The non-destructive nature of these new instruments and methods is revolutionary and allows researchers to perform a full suite of analyses on the same sample, instead of different samples of the same material for a more integrated understanding of eruptions. This also allows samples to be fully preserved.

The first step consists in studying the sample components. Componentry helps understand what type of eruption scientists are dealing with.

For tephra samples straight from the field, HVO has two new stereoscopes that use reflected light. Looking through them, geologists can manually separate the different components that might make up the sample, such as fresh glassy lava, crystals, and small pieces of the crater wall.

Next, the researchers measure density. For pieces of lava, measuring density helps understand how frothy the magma was when it erupted, which tells us about eruption dynamics.

Sample density is determined by measuring its mass and volume. For pieces of tephra larger than five centimetres, the volume is calculated using a 3D scanner, and then the sample is weighed. Smaller grains from gravel to powdery ash sizes will be placed in a pycnometer, a machine that calculates density directly using Archimedes principle of volume displacement with nitrogen gas. The pycnometers work with foams (scoria and pumice) as well as ash and helps understand eruption dynamics.

Then, the samples will be measured for size, which give information about how magma gets ripped apart to produce tephra from lava fountains and explosions. Fragments larger than 3 centimetres are sieved in the traditional manual way, while smaller grains will run through one of the new Camsizers ; this is a machine that photographs each fragment and converts the image to a size measurement. The Camsizers can measure tens of thousands of fragments in as little as 5 minutes. Additionally, they use the images to measure the 2D shape of fragments using established mathematical parameters. Size information is essential for models of lava fountaining and ashfall.

A final step that may take weeks to months. It consists in turning pieces into a thin section for final analysis on a petrographic microscope. HVO has two new petrographic microscopes with different sets of lenses: one can assess bubble sizes, bubble textures, and magma-mixing textures, while the other can focus on crystals and melt inclusions within them.

HVO’s new tephra lab instruments currently being calibrated. Samples from the current eruption will be the first analyzed. The HVO tephra lab brings physical volcanology monitoring of eruptions to near-real time analysis.

Source : USGS / HVO.

Photo : C. Grandpey

Etna : L’épisode éruptif du 18 janvier vu par Boris Behncke // Mt Etna: The 18 January eruptive episode as seen by Boris Behncke

Boris Behncke (INGV Catane) a publié une description très détaillée de l’épisode éruptif observe sur l’Etna dans la soirée du 18 janvier 2021.

L’histoire de cette dernière éruption est à relier à des événements qui se sont produits en amont.

Après les paroxysmes des 13-14, 21 et 22 décembre 2020, l’activité au niveau des cratères sommitaux de l’Etna s’est poursuivie sous une forme réduite au niveau du Cratère Sud-Est (CSE) et, de manière plus intermittente, dans la Voragine, la Bocca Nuova et le Cratère Nord-Est.

Dans la matinée du 17 janvier 2021, un petit débordement de lave a été observé au niveau de la bouche orientale du CSE ; il a alimenté une coulée de lave qui s’est dirigée vers la Valle del Bove (voir la note du 17 janvier sur ce blog). Ce débordement s’est probablement terminé entre l’après-midi du 17 et le matin du 18 janvier,

En fin d’après-midi le 18 janvier, deux bouches situées dans la partie orientale du CSE ont poursuivi leur activité strombolienne, tandis que la coulée de lave de la veille s’était arrêtée et était en cours de refroidissement.

Entre 19h30 et 20h00, au moment où l’on observait une hausse soudaine de l’amplitude du tremor volcanique, l’activité explosive du CSE a progressivement augmenté.

Vers 20heures, un nouveau débordement de lave a été émis par la bouche la plus à l’est en direction de la Valle del Bove. Cette coulée a bifurqué à la base du cône et de violentes explosions se sont produites suite à l’interaction de la lave avec la neige tombée pendant la journée.

Au cours de la phase d’activité la plus intense, entre 21h20 et 21h30, un deuxième débordement de lave s’est produit à partir d’une ouverture apparue sur la lèvre du cratère lors de l’épisode éruptif du 18-20 juillet 2019. Cette coulée de lave a, elle aussi, fortement interagi avec la neige. L’activité explosive a généré une colonne éruptive, qui s’est élevée à quelques kilomètres au-dessus du sommet de l’Etna avant d’être poussée par le vent en direction du sud-est où des retombées de cendre ont été observées ; elles ont atteint la côte ionienne dans la région d’Acicastello-Acireale.

Après 21h30, l’activité explosive a rapidement diminué ; l’amplitude du tremor volcanique a montré une forte baisse; et l’alimentation des coulées de lave a cessé.

Pendant la nuit et le matin du 19 janvier, une faible activité strombolienne s’est poursuivie dans le CSE, parfois accompagnée d’émissions de cendres, tandis que des explosions sporadiques se produisaient dans la Voragine.

Le matin du 19 janvier, le satellite Sentinel 2 a acquis une nouvelle image de l’Etna montrant des anomalies thermiques à l’intérieur des quatre cratères sommitaux et des coulées de lave émises la veille au soir.

Les manifestations éruptives de ces derniers mois se sont produites dans une période d’activité sommitale classique qui a débuté sur l’Etna au printemps 2019. Ces épisodes, également appelés «paroxysmes», sont un phénomène très courant dans l’activité récente de l’Etna.

———————————————

Boris Behncke (INGV Catania) has given a very detailed description of the eruptive episode observed on Etna on the evening of January 18, 2021.

The story of this latest eruption can be traced back to events that happened several months before. After the paroxysms of 13-14, 21 and 22 December 2020, the activity at Mt Etna’s summit craters continued in a reduced form at the South-East Crater (SEC) and, more intermittently, in the Voragine, the Bocca Nuova and the Northeast Crater.

On the morning of January 17th, 2021, a small lava overflow was observed at the eastern vent of the SEC; it fed a lava flow that headed towards the Valle del Bove (see the January 17th post on this blog). This overflow probably ended between the afternoon of January 17th and the morning of January 18th,

In the late afternoon of January 18th, two vents in the eastern part of the CSE continued their Strombolian activity, while the lava flow of the previous day had stopped and was cooling.

Between 7:30 p.m. and 8:00 p.m., when a sudden increase in the amplitude of the volcanic tremor was observed, the explosive activity of the SEC gradually increased.

At around 8 p.m., a new lava overflow was emitted from the easternmost vent towards the Valle del Bove. This flow bifurcated at the base of the cone and violent explosions occurred as a result of the interaction of the lava with the snow that fell during the day.

During the most intense phase of activity, between 9:20 p.m. and 9:30 p.m., a second lava overflow occurred from an opening that had appeared on the crater rim during the eruptive episode of July 18-20, 2019 This lava flow also strongly interacted with the snow. The explosive activity generated an eruptive column, which rose a few kilometers above the summit of Mt Etna before being blown by the wind in a south-easterly direction where ashfall was observed. It reached the Ionian coast in the region of Acicastello-Acireale.

After 9:30 p.m., the explosive activity quickly subsided; the amplitude of the volcanic tremor showed a strong decrease; and the supply of lava flows ceased.

During the night and morning of January 19th, weak Strombolian activity continued in the SEC, sometimes accompanied by ash emissions, while sporadic explosions occurred in the Voragine.

On the morning of January 19th, the Sentinel 2 satellite acquired a new image of Mt Etna showing thermal anomalies within the four summit craters and lava flows emitted the night before.

The eruptive events of the last few months have occurred in a period of classic summit activity which began on Mt Etna in the spring of 2019. These episodes, also called « paroxysms », are a very common phenomenon in Mt Etna’s recent activity.