Un nouveau laboratoire pour le HVO (Hawaii) // New lab for HVO (Hawaii)

L’Observatoire des Volcans d’Hawaii (HVO), géré par l’USGS, vient d’acquérir un nouveau laboratoire qui permettra aux scientifiques de mieux comprendre les propriétés physiques des téphras. Le mot « tephra » ou « téphra » fait référence à tous les types et toutes les tailles de fragments de roche projetés par un volcan en empruntant une trajectoire aérienne lors d’une éruption. Les téphras incluent les cendres, les bombes, les scories ou même les cheveux et les larmes de Pelé.

Ce nouveau laboratoire d’analyse de téphras permettra au HVO de déterminer la densité, la taille et la forme des particules, ainsi que les différents types de téphras émis par un volcan. En utilisant ces informations, les géologues du HVO seront en mesure d’analyser toute une gamme de phénomènes, depuis l’ascension du magma et le processus éruptif jusqu’aux dépôts de cendres laissés par les  éruptions du passé. Il est important d’obtenir ces mesures aussi précisément et rapidement que possible lors d’une éruption.

Le nouveau laboratoire du HVO est unique par sa capacité à analyser une vaste gamme d’échantillons, de un mètre à un micron (10-6 m). Le traitement des échantillons est non destructif et l’analyse est rapide. Chaque type de mesure ne prend que quelques minutes, et on estime que l’ensemble des mesures prend 1 à 2 heures. La méthode non destructive d’utilisation de ces nouveaux instruments est révolutionnaire ; elle permet aux chercheurs d’effectuer une suite complète d’analyses sur le même échantillon – au lieu d’utiliser différents échantillons du même matériau – pour une compréhension plus complète des éruptions. Cela permet également de préserver dans leur intégrité tous les  échantillons.

La première étape consiste à étudier les composants de l’échantillon afin de comprendre à quel type d’éruption les scientifiques sont confrontés.

Pour les échantillons de téphras prélevés directement sur le terrain, le HVO dispose de deux nouveaux stéréoscopes à lumière réfléchie. Lors de leur utilisation, les géologues peuvent séparer manuellement les différents composants de l’échantillon, tels que la lave juste prélevée, les cristaux, ou les petits morceaux de la paroi du cratère.

Au cours de l’étape suivante, les chercheurs mesurent la densité des échantillons. Pour les échantillons de lave, la mesure de la densité permet de comprendre quelle était la consistance du magma lors de son émission ; cela renseigne sur la dynamique de l’éruption. La densité de l’échantillon est déterminée en mesurant sa masse et son volume. Pour les morceaux de téphra de plus de cinq centimètres, le volume est calculé à l’aide d’un scanner 3D, puis l’échantillon est pesé. Les grains plus petits, depuis les lapilli jusqu’à la poudre de cendre, sont placés dans un pycnomètre à gaz, une machine qui calcule la densité directement en utilisant le principe d’Archimède de déplacement du volume en injectant de l’azote gazeux. Les pycnomètres fonctionnent aussi bien avec des scories et de la pierre ponce qu’avec des cendres ; ils permettent de comprendre la dynamique des éruptions.

La troisième étape est la mesure de la taille des échantillons, ce qui donne des informations sur la façon dont le magma s’est fragmenté pour produire des téphras pendant les épisodes de fontaines de lave et les explosions. Les fragments de plus de 3 centimètres sont tamisés à la main, de manière traditionnelle, tandis que les grains plus petits sont soumis à un Camsizer, un appareil de dernière génération qui photographie chaque fragment et convertit l’image en mesure de la taille. Le flux de particules passe devant une source de lumière stroboscopique LED ultra lumineuse et plane. Les Camsizers peuvent mesurer des dizaines de milliers de fragments en seulement 5 minutes. De plus, ils utilisent les images pour mesurer la forme 2D des fragments en utilisant des paramètres mathématiques établis. Les informations concernant la taille des fragments sont essentielles pour les modèles de fontaines de lave et de cendres.

L’étape finale peut prendre des semaines, voire des mois. Elle consiste à découper les échantillons en fines lamelles et à les étudier au microscope pétrographique. Le HVO possède deux nouveaux microscopes pétrographiques avec différents ensembles de lentilles: l’un peut évaluer la taille des bulles, la texture des bulles ainsi que la texture de mélanges de magmas, tandis que l’autre peut se concentrer sur les cristaux et les inclusions.

Les nouveaux instruments d’analyse de téphras que vient d’acquérir le HVO sont actuellement en cours d’étalonnage. Les échantillons prélevés pendant l’éruption en cours seront les premiers analysés. Ce nouveau laboratoire permet une analyse quasiment en temps réel des produits émis et donc une meilleure surveillance des éruptions.

Source: USGS / HVO.

——————————————

The USGS Hawaiian Volcano Observatory (HVO) has been granted a new laboratory that will allow scientists to better understand the physical properties of tephra.

Tephra is any type and size of rock fragment that is ejected from a volcano and travels an airborne path during an eruption. Examples include ash, bombs, scoria, or Pele’s hair and Pele’s tears.

The tephra lab will help HVO determine the density, size, and shape of individual tephra particles along with types of tephra. Using this information, HVO geologists can analyse a range of topics, from magma ascent and eruption processes to ashfall deposits from past explosive eruptions. It is important to get these measurements as accurately and quickly as possible during an eruption.

HVO’s new lab is unique in its ability to analyze a wide size range of samples, from one metre to one micron (10-6 m). The sample processing is non-destructive and analysis is fast with each type of measurement taking only minutes, and all measurements are estimated to take 1–2 hours total. The non-destructive nature of these new instruments and methods is revolutionary and allows researchers to perform a full suite of analyses on the same sample, instead of different samples of the same material for a more integrated understanding of eruptions. This also allows samples to be fully preserved.

The first step consists in studying the sample components. Componentry helps understand what type of eruption scientists are dealing with.

For tephra samples straight from the field, HVO has two new stereoscopes that use reflected light. Looking through them, geologists can manually separate the different components that might make up the sample, such as fresh glassy lava, crystals, and small pieces of the crater wall.

Next, the researchers measure density. For pieces of lava, measuring density helps understand how frothy the magma was when it erupted, which tells us about eruption dynamics.

Sample density is determined by measuring its mass and volume. For pieces of tephra larger than five centimetres, the volume is calculated using a 3D scanner, and then the sample is weighed. Smaller grains from gravel to powdery ash sizes will be placed in a pycnometer, a machine that calculates density directly using Archimedes principle of volume displacement with nitrogen gas. The pycnometers work with foams (scoria and pumice) as well as ash and helps understand eruption dynamics.

Then, the samples will be measured for size, which give information about how magma gets ripped apart to produce tephra from lava fountains and explosions. Fragments larger than 3 centimetres are sieved in the traditional manual way, while smaller grains will run through one of the new Camsizers ; this is a machine that photographs each fragment and converts the image to a size measurement. The Camsizers can measure tens of thousands of fragments in as little as 5 minutes. Additionally, they use the images to measure the 2D shape of fragments using established mathematical parameters. Size information is essential for models of lava fountaining and ashfall.

A final step that may take weeks to months. It consists in turning pieces into a thin section for final analysis on a petrographic microscope. HVO has two new petrographic microscopes with different sets of lenses: one can assess bubble sizes, bubble textures, and magma-mixing textures, while the other can focus on crystals and melt inclusions within them.

HVO’s new tephra lab instruments currently being calibrated. Samples from the current eruption will be the first analyzed. The HVO tephra lab brings physical volcanology monitoring of eruptions to near-real time analysis.

Source : USGS / HVO.

Photo : C. Grandpey

Réchauffement climatique et stratification des océans // Climate change and ocean stratification

Vous ne vous en rendez pas compte quand vous faites trempette dans l’Océan Atlantique ou la Mer Méditerranée, mais les océans et les mers de la planète sont devenus plus stratifiés et plus stables au cours des dernières décennies à cause du réchauffement climatique.

Il faut savoir que les océans présentent une stratification verticale selon trois couches principales : 1) eaux de surface, 2) thermocline, et 3) eaux profondes. La thermocline est la couche d’eau qui organise la transition entre les deux autres couches.

L’augmentation de la stratification des océans est importante. D’une part, elle a des conséquences majeures pour la vie dans l’océan en réduisant les échanges de nutriments et d’oxygène. D’autre part, la stratification est une rétroaction positive qui risque en retour d’aggraver le réchauffement climatique.

Une nouvelle étude publiée dans  Nature Climate Change  montre que l’océan mondial est devenu plus stratifié, ce qui implique des différences de densité, avec une eau plus chaude, plus légère et moins salée qui se superpose à une eau plus lourde, plus froide et plus salée. Le mélange entre ces couches se produit lorsque la chaleur s’infiltre lentement plus profondément dans l’océan, phénomène qui se combine à l’action des courants, des vents et des marées. Le problème, c’est que plus la différence de densité entre les couches est grande, plus le mélange est lent et difficile et plus l’océan devient stratifié et stable.

La densité de l’eau de mer ne dépend pas seulement de la température ; elle dépend aussi de la salinité. L’eau douce est plus légère que l’eau salée, et la fonte des glaces entraîne une accumulation d’eau douce et légère à la surface, en particulier aux latitudes plus élevées.

Cette configuration stratifiée stable agit comme une barrière. Elle tend à empêcher le mélange avec des eaux froides plus profondes. Cela a donc un impact sur l’efficacité des échanges verticaux de chaleur, de carbone, d’oxygène et d’autres constituants.

La dernière étude montre que la stratification de l’océan a augmenté de 5,3% depuis 1960 pour les 2000 m supérieurs. De 1960 à 2018, les données IAP (Institute of Atmospheric Physics) montrent un renforcement de la stratification de 5 à 18% dans les 150 premiers mètres.

La stratification, cependant, n’a pas augmenté uniformément dans tous les bassins océaniques. La plus forte augmentation a été observée dans l’océan Austral (9,6%), suivi de l’océan Pacifique (5,9%), de l’océan Atlantique (4,6%) et de l’océan Indien (4,2%).

La modification de la stratification va avoir des conséquences importantes. En effet, avec une stratification accrue, la chaleur du réchauffement climatique ne peut pas pénétrer aussi facilement dans l’océan profond, ce qui contribue à augmenter la température de surface. Le phénomène réduit également la capacité de stockage du carbone dans l’océan, exacerbant le réchauffement climatique dans une boucle de rétroaction. L’eau de surface chaude n’absorbe pas le dioxyde de carbone aussi efficacement que l’eau froide et ne l’enfouit pas en profondeur.

Enfin, la stratification contrarie les échanges verticaux de nutriments et d’oxygène et impacte l’approvisionnement alimentaire de l’ensemble des écosystèmes marins. Les régions avec l’augmentation maximale de la stratification correspondent aux régions où la désoxygénation a été observée. Une eau plus chaude peut absorber moins d’oxygène, et l’oxygène qui est absorbé ne peut pas se mélanger aussi facilement avec les eaux océaniques plus froides du dessous. Plus de 80% du déclin mondial observé en oxygène des océans est associé à une stratification accrue et à un affaiblissement consécutif de la ventilation en eau profonde.

Source : Nature Climate Change, global-climat.

————————————————-

You don’t realize it when you take a dip in the Atlantic Ocean or the Mediterranean Sea, but the oceans and seas of the planet have become more stratified and more stable in recent decades due to global warming.
It should be noted that the oceans have a vertical stratification according to three main layers: 1) surface water, 2) thermocline, and 3) deep water. The thermocline is the layer of water that organizes the transition between the other two layers.
The increase in ocean stratification is significant. On the one hand, it has major consequences for life in the ocean by reducing the exchange of nutrients and oxygen. On the other hand, stratification is positive feedback that in turn mau make global warming worse.
A new study published in Nature Climate Change shows that the global ocean has become more stratified, implying differences in density, with warmer, lighter and less salty water superimposed on heavier, colder and more salty water. The mixing between these layers occurs as heat slowly seeps deeper into the ocean, a phenomenon that combines with the action of currents, winds and tides. The problem is, the greater the difference in density between the layers, the slower and more difficult the mixing and the more layered and stable the ocean becomes.
The density of seawater is not just a function of temperature; it also depends on the salinity. Fresh water is lighter than salt water, and melting ice results in a buildup of fresh, light water on the surface, especially at higher latitudes.
This stable layered configuration acts as a barrier. It tends to prevent mixing with colder deeper waters. This therefore has an impact on the efficiency of the vertical exchanges of heat, carbon, oxygen and other constituents.
The latest study shows that ocean stratification has increased by 5.3% since 1960 for the top 2000 m. From 1960 to 2018, IAP (Institute of Atmospheric Physics) data shows an increase in stratification of 5 to 18% in the first 150 meters.
Stratification, however, did not increase uniformly in all ocean basins. The largest increase was observed in the Southern Ocean (9.6%), followed by the Pacific Ocean (5.9%), the Atlantic Ocean (4.6%) and the Indian Ocean ( 4.2%).
The modification of the stratification will have important consequences. This is because with increased stratification, the heat from global warming cannot penetrate as easily into the deep ocean, which helps to increase the surface temperature. The phenomenon also reduces carbon storage capacity in the ocean, exacerbating global warming in a feedback loop. Hot surface water does not absorb carbon dioxide as effectively as cold water and does not bury it deeply.
Finally, stratification thwarts the vertical exchange of nutrients and oxygen and impacts the food supply of all marine ecosystems. The regions with the maximum increase in stratification correspond to the regions where deoxygenation was observed. Warmer water can absorb less oxygen, and the oxygen that is absorbed cannot mix as easily with the cooler ocean waters below. More than 80% of the observed global decline in ocean oxygen is associated with increased stratification and the consequent weakening of ventilation in deep water.
Source: Nature Climate Change, global-climat.

Evolution de la stratification entre 0 et 2000 mètres de 1960 à 2018 (Source : Nature Climate Change)

L’aspect trompeur des panaches volcaniques // The confusing aspect of volcanic plumes

drapeau-francaisL’Observatoire des Volcans d’Hawaï (HVO), géré par l’USGS, a publié un article très intéressant sur les panaches volcaniques qui peuvent parfois être source de confusion. L’Observatoire indique qu’il reçoit de temps à autre des appels d’Hawaiiens qui sont inquiets parce qu’ils pensent que les panaches de l’Halema’uma’u ou du Pu’uO’o deviennent «énormes». En fait, il n’y a rien à craindre, du moins pour le moment. L’éruption au sommet du Kilauea et sur l’East Rift Zone continue sans grand changement, comme c’est le cas depuis de nombreux mois.
Les personnes qui observent attentivement les panaches de gaz et de vapeur du Kilauea savent que leur apparence et leur étendue dépendent de plusieurs facteurs tels que la quantité émise par les bouches éruptives, la direction et la vitesse du vent, mais aussi la température et l’humidité relative de l’air dans le secteur du volcan. Une émission de gaz plus importante entraîne généralement un panache d’apparence plus volumineuse. Une température plus basse de l’air et une humidité relative plus élevée peuvent produire un résultat similaire. Par ailleurs, les alizés, vents dominants à Hawaii, ont tendance à rabattre les panaches de gaz et de particules vers le sol et les envoient généralement vers des zones peu peuplées au sud-ouest des bouches actives du Kilauea.
Il convient de noter que les conditions atmosphériques au cours des derniers mois ont contribué à donner l’impression que les émissions du sommet et des zones de rift du Kilauea étaient plus denses. Il y a plusieurs explications à ce phénomène.
Tout d’abord, depuis le mois de novembre, l’hiver hawaiien a fait chuter les alizés, comme cela se produit régulièrement à cette saison. Les vents du sud, moins soutenus, ont pris le relais, ce qui a dirigé les émissions du Kilauea vers les zones voisines situées à l’est, entre Volcano et Hilo, et au-delà.
Ensuite, le phénomène El Niño, qui est le plus intense des 20 dernières années, a joué un rôle non négligeable. Les conditions météo générées par El Niño à Hawaii entraînent en général des inversions venteuses qui entraînent une sécheresse. Selon les dernières prévisions, El Niño devrait se poursuivre jusqu’au début de l’été. Si cette prédiction se réalise, il est probable que de grands panaches éruptifs vont continuer à monter verticalement au-dessus du Kilauea.

Il y a quelques années, tout en effectuant des mesures de température sur l’île sicilienne de Vulcano*, j’ai remarqué que le volume des panaches de gaz émis par le cratère de la Fossa pouvaient devenir particulièrement volumineux, surtout aux premières heures de la journée. J’ai également eu l’impression que leur apparence était différente en fonction des conditions météorologiques. Malgré cela, la température constante des fumerolles prouvait que la densité des panaches de gaz et de vapeur n’était pas été liée à une activité volcanique. Je décidai alors de faire une étude de la situation, à l’aide de trois instruments: un thermomètre, un baromètre et un hygromètre. J’ai passé 4 jours complets sur le volcan (entre 6 heures et 20 heures) et effectué des relevés toutes les heures. Mes résultats ne font que confirmer les conclusions du HVO. En ce qui concerne le cratère de la Fossa, l’humidité de l’air et la température ambiante ont un impact certain sur les panaches de gaz et de vapeur en début de matinée, ce qui explique leur densité plus élevée avant le lever du soleil. Lorsque l’air se réchauffe et devient plus sec, les panaches deviennent de plus en plus diffus. Plus tard, je remarqué le même phénomène sur le site des geysers d’El Tatio au Chili.

* Voir le mémoire intitulé « L’Ile de Vulcano » que j’ai rédigé il y a quelques années et qui est disponible après de l’Association Volcanologique Européenne.

———————————–

drapeau anglaisThe USGS Hawaiian Volcano Observatory (HVO) has written a very interesting article about volcanic plumes that can sometimes be confusing. The Observatory indicates it sometimes receives phone calls from local residents who worry because they think the plumes from Halema’uma’u or Pu’uO’o are getting “enormous”. Actually, there is nothing to worry about, at least for the time being. The summit and rift eruptions are going along steadily, as they have been for many months
Seasoned plume watchers know that the appearance and extent of the Kilauea’s plumes depends on several factors, including the amount of gas coming out of the vents, the direction and speed of the wind, and the temperature and relative humidity of the air around the volcano. More gas discharge generally means a plume that looks bigger, but lower air temperature or higher relative humidity can produce a similar result. Besides, Hawaii’s prevailing trade winds typically press the plumes close to the ground and carry gas and particle emissions to sparsely populated areas southwest of Kilauea’s vents.
It should be noted that atmospheric conditions during the past months have conspired to make Kilauea’s summit and rift emissions disconcertingly more evident to plume watchers. Several explanations can be given.
First, since November, Hawaii’s winter has brought a seasonally characteristic disruption to the trade winds. Slow-moving southerly winds have taken their place, bringing Kilauea’s emissions into nearby East Hawaiii communities, from Volcano to Hilo and beyond.
Second, but equally important, is the coincidence of the strongest El Niño in nearly 20 years. Typically, El Niño conditions in Hawaii produce wind direction reversals which sustain very dry conditions. According to the latest forecasts, El Niño is expected to continue until early summer. If this prediction comes true, it’s likely that tall, eruption plumes will keep rising vertically above the volcano.

A few years ago, while making temperature measurements on the Sicilian island of Vulcano, I noticed that the volume of the gas plumes coming out the Fossa crater could become voluminous, especially in the early hours of the day. Besides, I had the impression their appearance was different according to weather conditions. Anyway, the steady temperature of the fumaroles proved the density of the gas and vapour plumes was not related to any volcanic activity. I then decided to make a study of the situation, using three instruments: a thermometer, a barometer and a hygrometer. I spent 4 complete days on the volcano (between 6:00 and 20:00) and made hourly measurements. The results do confirm the HVO conclusions. As far as the Fossa crater is concerned, air humidity and temperature had a definite impact on the gas and vapour plumes in the early morning, which accounted for their higher density before sunrise. When the air got warmer and drier, the plumes were becoming more diffuse. I later noticed the same phenomenon at the El Tatio geysers in Chile.

Kilauea-panache

Panache de gaz de l’Halema’uma’u à Hawaii

Vulcano3 Champ fumerollien

Champ fumerollien dans le cratère de la Fossa à Vulcano

ESA-30-bis

« Geysers » d’El Tatio (Chili)

(Photos: C. Grandpey)