Une nouvelle approche des nuages de cendre volcanique // New approach of volcanic ash clouds

Tout le monde se souvient de l’éruption de l’Eyjafjallajökull, le volcan islandais au nom imprononçable qui a paralysé le trafic aérien en 2010 suite à une éruption riche en cendre. Les compagnies aériennes européennes n’ont pas voulu prendre le moindre risque et les avions sont restés cloués au sol. Il n’était pas question de mettre en péril les milliers de passagers qui sillonnent quotidiennement l’espace aérien. Les autorités avaient en tête des incidents survenus pendant l’éruption du Galunggung (Indonésie) en 1982 et celle du Redoubt (Alaska) en 1989 pendant lesquels des réacteurs étaient tombés en panne a cause de la cendre volcanique. Sans le sang-froid des pilotes, des catastrophes se seraient produites.

Depuis 2010, aucun progrès n’a été fait en aéronautique pour éviter une nouvelle paralysie du trafic aérien lors d’une prochaine éruption. J’ai toujours affirmé haut et fort (voir ma note du 23 mars 2018) que l’on se retrouverait dans la situation de l’Eyfjallajökull à la première occasion.

Une équipe internationale menée par le Laboratoire Magmas et Volcans (LMV) de Clermont-Ferrand, et incluant le Laboratoire de Mathématiques Blaise Pascal de l’Université Clermont Auvergne et Météo France (VAAC-Toulouse), a démontré que les éruptions les plus intenses sont les moins efficaces à transporter les cendres dans l’atmosphère. Cela implique que leur concentration dans les nuages volcaniques peut être jusqu’à 50 fois inférieure aux prévisions actuelles.

Les nuages de cendres volcaniques sont composés principalement de fines particules (<100µm) qui peuvent être transportées dans l’atmosphère sur plusieurs milliers de kilomètres. Comme on vient de le voir avec l’aéronautique, ces nuages peuvent avoir des conséquences socio-économiques importantes mais représentent aussi une menace pour les populations vivant à proximité du volcan (effondrement des toitures, pollution des réseaux d’eau et d’assainissement, inhalation des particules fines). Compte tenu de l’accroissement conjoint de la population mondiale et du trafic aérien, mieux comprendre le comportement de ces nuages de cendres est désormais un enjeu majeur de la volcanologie moderne.

Pourtant, les processus de sédimentation (autrement dit la retombée des cendres) et de transport qui contrôlent la proportion de cendres fines dans ces nuages sont encore très mal compris. Jusqu’à présent, on estimait au sein de la communauté scientifique que la proportion de cendres fines dans ces nuages représentait environ 5% de la quantité totale de téphras et ne variait pas d’une éruption à l’autre. En conséquence, au cours des deux dernières décennies, les Volcanic Ash Advisory Centers (VAAC) qui contrôlent la dispersion des cendres volcaniques dans l’atmosphère ont utilisé cette valeur par défaut pour prévoir la concentration des nuages de cendre lors des crises volcaniques.

Les scientifiques clermontois ont montré, à partir d’une étude inédite combinant données de terrain et satellitaires, que la proportion de cendres fines injectée dans l’atmosphère est en fait extrêmement variable et comprise entre 0.1% et 6.9%. Cette variation n’est pas aléatoire ; elle est inversement proportionnelle au flux de masse de téphras éjectée au niveau de la bouche éruptive. En effet, il s’avère que les éruptions les plus intenses (comme les éruptions pliniennes) sont en fait les moins efficaces – avec une proportion de cendres fines de 0,1% – à transporter des dernières dans l’atmosphère. Ce résultat s’explique par l’existence d’une sédimentation dite « collective » des particules dans les nuages riches en cendres, ce qui a pour effet d’accélérer la chute des cendres fines, diminuant ainsi la charge en cendre résiduelle au sein du nuage.

Cela signifie que la quantité de cendres fines transportées dans l’atmosphère peut être jusqu’à 50 fois inférieure aux prévisions actuelles. Cela a, bien sûr, des conséquences majeures pour les décideurs en charge de la sécurité du trafic aérien. Au sol en revanche, les retombées et dépôts de cendres fines peuvent être beaucoup plus importantes que ce que prédisent actuellement les modèles. Cela peut avoir des conséquences considérables dans l’évaluation des risques associés aux populations vivant à proximités des zones volcaniques.

Source: Gouhier, M., Eychenne, J., Azzaoui, N., Guillin, A., Deslandes, M., Poret, M., Costa, A., Husson, P., (2019). Low efficiency of large volcanic eruptions in transporting very fine ash into the atmosphere. Scientific Reports, doi: 10.1038/s41598-019-38595-7

La dernière étude du LMV permettra-t-elle d’éviter une nouvelle pagaille dans le ciel lors de la prochaine éruption d’un volcan émettant de volumineux panaches de cendre ? Les compagnies aériennes feront-elles confiance aux scientifiques ? Pas si sûr !

—————————————————–

Everyone remembers the eruption of Eyjafjallajökull, the Icelandic volcano with anunpronounceable name that paralyzed air traffic in 2010, following an ash-rich eruption. European airlines did not want to take the slightest risk and planes remained grounded. There was no question of endangering the thousands of passengers who ply the airspace daily. The authorities had in mind incidents during the eruption of Galunggung (Indonesia) in 1982 and Redoubt (Alaska) in 1989 when reactors stopped due to volcanic ash. Without the competence of the pilots, disasters would have occurred.
Since 2010, no progress has been made in aeronautics to avoid a new paralysis of air traffic during a next eruption. I have always stated loud and clear (see my note of 23 March 2018) that we would end up in the situation of Eyfjallajökull.
An international team led by the Laboratory Magmas and Volcanoes (LMV) of Clermont-Ferrand, and including the Laboratory of Mathematics Blaise Pascal of Clermont Auvergne University and Météo France (VAAC-Toulouse), has demonstrated that the most intense eruptions are the least efficient at transporting ash into the atmosphere. This implies that their concentration in volcanic clouds can be up to 50 times lower than current predictions.
Volcanic ash clouds are mainly composed of fine particles (<100μm) that can be transported into the atmosphere over several thousand kilometres. As we have just seen with aeronautics, these clouds can have important socio-economic consequences but also represent a threat for the populations living near the volcano (collapse of the roofs, pollution of the networks of water and sanitation, inhalation of fine particles). Given the joint growth of the world population and air traffic, a better understanding of the behaviour of these ash clouds is now a major issue of modern volcanology.
However, the processes of sedimentation (in other words the ashfall) and of transport that control the proportion of fine ash in these clouds are still very poorly understood. Until now, it has been estimated in the scientific community that the proportion of fine ash in these clouds is about 5% of the total amount of tephras and does not vary from one eruption to another. As a result, over the past two decades, the Volcanic Ash Advisory Centers (VAACs) that control the dispersion of volcanic ash into the atmosphere have used this default value to predict the concentration of ash clouds during volcanic crises.
The scientists at Clermont have shown from a groundbreaking study combining field and satellite data that the proportion of fine ash injected into the atmosphere is in fact extremely variable, between 0.1% and 6.9%. This variation is not random; it is inversely proportional to the mass flow of tephras ejected at the eruptive vent. Indeed, it turns out that the most intense eruptions (such as Plinian eruptions) are in fact the least effective, with a proportion of fine ash of 0.1%, to carry it in the atmosphere. This result is explained by the existence of so-called « collective » sedimentation of the particles in the ash-rich clouds, which has the effect of accelerating the fall of the fine ash, thus reducing the residual ash load within the cloud.
This means that the amount of fine ash transported into the atmosphere can be up to 50 times lower than current predictions. This, of course, has major consequences for the decision-makers in charge of air traffic safety. On the ground, on the other hand, ashfall and fine ash deposits can be much larger than the models currently predict. This can have considerable consequences in assessing the risks associated with populations living near volcanic areas.

Source: Gouhier, M., Eychenne, J., Azzaoui, N., Guillin, A., Deslandes, M., Poret, M., Costa, A., Husson, P., (2019). Low efficiency of large volcanic eruptions in transporting very fine ash into the atmosphere. Scientific Reports, doi: 10.1038/s41598-019-38595-7

Will the latest LMV study prevent a new mess in the sky during the next eruption of a volcano emitting voluminous ash plumes? Will airlines trust scientists? Not so sure !

Schéma illustrant les mécanismes de sédimentation et de transport des cendres volcaniques pour différents styles éruptifs. (Source : Mathieu Gouhier / LMV)

Panache de cendre émis par le Semeru (Indonésie) [Photo: C. Grandpey]

Photo LMV

Concentrations de CO2 dans l’atmosphère : du jamais vu ! // CO2 concentrations in the atmosphere never seen before

On le savait déjà, grâce à l’analyse des carottes de glace tirées de l’Antarctique : les niveaux de CO2 actuels sont les plus importants des 800 000 dernières années.

Une nouvelle étude publiée dans Science Advances par des chercheurs allemands du Potsdam Institute for Climate Impact Research (PIK) et de l’Institut Max Planck montre que la quantité de gaz à effet de serre dépasse également toute la période du Quaternaire, autrement dit les quelque 2,6 millions d’années écoulées.

L’article publié dans Science Advances reproduit pour la première fois la variabilité climatique naturelle de l’ensemble du Quaternaire avec un modèle de complexité intermédiaire. S’appuyant sur des recherches antérieures, les chercheurs ont reproduit les principales caractéristiques de la variabilité naturelle du climat au cours des derniers millions d’années avec une simulation informatique basée sur des données astronomiques et géologiques et des algorithmes représentant la physique et la chimie de notre planète.

Les niveaux de CO2 sont l’un des principaux moteurs des cycles glaciaires, avec les variations de la rotation de la Terre autour du soleil, les cycles de Milankovitch. La simulation s’est bien sûr appuyée sur ces modifications bien connues de la position de la Terre par rapport au soleil  et sur le dégagement de CO2 des volcans. Mais l’étude s’est également penchée sur les changements dans la répartition des sédiments à la surface de la Terre. Elle a aussi pris en compte le rôle de la poussière atmosphérique qui assombrit la surface de la glace et contribue ainsi à la fonte.

Selon les chercheurs, nous poussons maintenant notre planète au-delà des conditions climatiques rencontrées pendant toute la période géologique actuelle. Les résultats de l’étude corroborent l’idée selon laquelle la concentration actuelle de CO2 – plus de 414 ppm – est sans précédent depuis au moins 3 millions d’années et que la température globale n’a pas dépassé la valeur préindustrielle de plus de 2°C au cours de tout le Quaternaire.

D’après les scientifiques allemands, le Quaternaire aurait connu le scénario suivant :

– Une diminution progressive du CO2 jusqu’à des valeurs inférieures à environ 350 ppm a entraîné le début de la croissance de la calotte glaciaire continentale au Groenland et plus généralement dans l’hémisphère nord à la fin du Pliocène et au début du Pléistocène (de 5,332 millions à 2,588 millions d’années avant notre ère).

– La fin du Pliocène fut relativement proche de nous en termes de niveaux de CO2. Les modélisations suggèrent qu’au Pliocène, il n’y avait ni cycle glaciaire ni grosses calottes glaciaires dans l’hémisphère nord. Le CO2 était trop élevé et le climat trop chaud pour le permettre. D’après le dernier rapport du GIEC, avec des niveaux de CO2 de 400 ppm à la fin du Pliocène, les températures furent 2 à 3°C plus élevées que la période préindustrielle.

– Succédant au Pliocène, le Pléistocène est la première époque du Quaternaire, période caractérisée par l’apparition de cycles glaciaires et interglaciaires, causés par la croissance et le déclin cycliques des inlandsis continentaux dans l’hémisphère nord.

La température globale actuelle, qui est désormais au moins 1°C au-dessus de la période préindustrielle, s’approche des +1,5°C.

Au Pliocène, le niveau de la mer était entre 10 et 40 mètres au-dessus du niveau actuel, en raison de la fonte du Groenland, de l’Antarctique de l’Ouest et d’une partie de l’Antarctique de l’Est. Avec un scénario d’émissions soutenues de CO2, les prévisions du GIEC sont d’environ un mètre à l’horizon 2100 mais on sait déjà que les glaciers continueront à fondre au-delà.

Source : Science Advances, global-climat.

————————————————-

It was already known, thanks to the analysis of ice cores from Antarctica that current CO2 levels were the highest in the last 800,000 years.
A new study published in Science Advances by German researchers at the Potsdam Institute for Climate Impact Research (PIK) and the Max Planck Institute shows that the amount of greenhouse gases also exceeds the whole Quaternary period, ie the last 6 million years.
The article published in Science Advances reproduces for the first time the natural climatic variability of the entire Quaternary with a model of intermediate complexity. Based on previous research, the researchers have reproduced the main features of natural climate variability over the past millions of years with a computer simulation based on astronomical and geological data and algorithms representing the physics and chemistry of our planet.
CO2 levels are one of the main drivers of glacial cycles, with variations in the Earth’s rotation around the sun, the Milankovitch cycles. The simulation was of course based on these well-known modifications of the position of the Earth with respect to the sun and on the release of CO2 from volcanoes. But the study also looked at changes in the distribution of sediments on the surface of the Earth. It also took into account the role of atmospheric dust, which darkens the surface of the ice and thus contributes to melting.
According to the researchers, we are now pushing our planet beyond the climatic conditions encountered throughout the current geological period. The results of the study corroborate the idea that the current concentration of CO2 – more than 414 ppm – has been unprecedented for at least 3 million years and that the global temperature has not exceeded the pre-industrial value by more than 2°C throughout the Quaternary.
According to the German scientists, the Quaternary went through the following scenario:
– A gradual decrease of CO2 to values ​​below about 350 ppm led to the onset of growth of the continental ice cap in Greenland and more generally in the northern hemisphere at the end of the Pliocene and early Pleistocene (from 5.332 million to 2.588 million years before our era).
– The end of the Pliocene was relatively close to us in terms of CO2 levels. Modelling suggests that at the Pliocene there was no glacial cycle or large ice caps in the northern hemisphere. The CO2 was too high and the climate too hot to allow it. According to the latest IPCC report, with CO2 levels of 400 ppm at the end of the Pliocene, temperatures were 2 to 3°C higher than the pre-industrial period.
– Following the Pliocene, the Pleistocene is the early Quaternary period, characterized by the appearance of glacial and interglacial cycles, caused by the cyclical growth and decline of the continental ice sheets in the northern hemisphere.
The current global temperature, which is now at least 1°C above the pre-industrial period, is approaching + 1.5°C.
In the Pliocene, the sea level was between 10 and 40 metres above the current level, due to the melting of Greenland, West Antarctica and part of East Antarctica . With a scenario of sustained CO2 emissions, the IPCC forecasts are about one metre by 2100 but it is already known that glaciers will continue to melt beyond that year.
Source: Science Advances, global-climat. Concentration de l’atmosphère en CO2 au cours des 800 000 dernières années, et projection pour 2100 (Source : NOAA)

Avril 2019 encore trop chaud ! // April 2019 still too hot !

On attend les statistiques de la NASA, mais les centres de prévisions NCEP-NCAR indiquent qu’avec + 0,638°C au-dessus de la moyenne 1981-2010, le mois d’avril 2019 se classe au 2ème rang depuis 1948, date du début des relevés NCEP-NCAR. L’année 2019 est également à la deuxième place derrière 2016 pour le moment.

Comme en février et en mars, la moyenne globale élevée est en partie due aux Tropiques (notamment au Vietnam et en Thaïlande), mais aussi aux régions polaires (Antarctique et Arctique). En Scandinavie, Helsinki a franchi les 12°C en moyenne sur la journée du 19 avril 2019, ce qui n’était jamais arrivé aussi tôt depuis 1882.  L’Arctique a signé un record de la plus faible extension de glace de mer pour un mois d’avril.

Source : global-climat.

————————————–

NASA statistics are still to come, but the NCEP-NCAR forecast centers indicate that with +0.638°C above the 1981-2010 average, April 2019 ranks second since 1948, the beginning of NCEP-NCAR surveys. The year 2019 is also in second place behind 2016 at the moment.
As in February and March, the high global average is partly due to the tropics (notably Vietnam and Thailand), but also to the polar regions (Antarctic and Arctic). In Scandinavia, Helsinki averaged 12°C on April 19th 2019, which had never happened so early since 1882. The Arctic has set a record for the lowest sea ice April.
Source: global-climat.

Sale temps pour la glace de mer (Photo: C. Grandpey)

L’éruption du Kilauea (Hawaii) en 2018… // The 2018 Kilauea eruption…

Le 3 mai 2019 marquait le premier anniversaire du début de l’éruption du Kilauea en 2018 dans la Lower East Rift Zone (LERZ) de la Grande Ile d’Hawaii. Au cours de l’année écoulée, les volcanologues du HVO ont analysé les très nombreuses données rassemblées pendant l’éruption et ils ont tiré quelques conclusions intéressantes. Le HVO indique que l’éruption dans la LERZ et l’effondrement sommital du volcan fournissent de nombreuses informations sur le comportement du Kilauea.
En premier lieu, l’éruption a montré dans quelle mesure la modification de la composition chimique de la lave a influé sur le risque posé par les coulées. Pendant les deux premières semaines (entre le 3 et le 18 mai), l’éruption est restée relativement modérée, avec des débits de lave relativement faibles. Les analyses chimiques ont indiqué que cette lave provenait de poches de magma plus ancien stockées sous la LERZ. Ce magma plus froid et moins fluide était probablement le reliquat d’éruptions antérieures. Les scientifiques pensent que ce magma a probablement été ‘chassé’ par la lave en provenance du Pu’uO’o. Les analyses chimiques indiquent que cette lave, sur son trajet, est probablement entrée en contact avec deux, voire trois, anciennes poches de magma.
Vers le 18 ou le 19 mai, l’éruption s’est modifiée, avec l’arrivée d’une lave plus chaude et plus fluide. Elle provenait probablement de la vidange du réservoir sommital. Le débit éruptif est devenu de 10 à 20 fois plus important, de même que les coulées de lave qui sont devenues plus rapides et, de ce fait, beaucoup plus menaçantes pour les zones habitées.
Une semblable modification chimique de la lave avait déjà été observée lors de l’éruption de 1955 dans la LERZ, mais one ne s’en est rendu compte que longtemps après la fin de cette éruption. Le suivi quotidien de la composition de la lave pendant l’éruption de 2018 était donc important. Il a permis d’identifier son évolution chimique au début du mois de mai et d’anticiper l’arrivée d’un magma plus chaud et plus fluide, avec des coulées de lave plus dangereuses dans la LERZ. .
Si l’on observe l’évolution des éruptions de 2018 et de 1955, on peut raisonnablement penser que les éruptions futures dans la zone de rift commenceront avec un débit relativement faible impliquant un magma ancien les premiers jours. Avec l’arrivée d’un magma plus jeune et plus chaud, elles donneront ensuite naissance à de grandes coulées de lave rapides et dangereuses pour les habitations.
La composition de la lave a permis d’expliquer un autre aspect de l’éruption de 2018. À la mi-mai, de brèves explosions se produisaient fréquemment au niveau de la Fracture n° 17, avec des projections de bombes à plusieurs centaines de mètres. Au début, les volcanologues ont pensé que ces explosions étaient provoquées par des infiltrations d’eaux souterraines dans les fractures, ce qui provoquait des explosions phréatiques. Cependant, des analyses chimiques ont révélé que la Fracture n° 17 émettait une lave qui avait une composition inhabituelle. La quasi-totalité de la lave émise par le Kilauea est du basalte, tandis que la Fracture n° 17 émettait de l’andésite, ce que l’on n’avait encore jamais observé dans ce secteur du volcan. L’andésite est plus riche en silice que le basalte et est donc moins fluide. La consistance plus visqueuse de la lave andésitique facilite la coalescence et l’éclatement de grosses bulles de gaz sous haute pression ; c’est probablement ce qui explique l’activité explosive sur la Fracture n° 17.
L’éruption a également mis en évidence le lien étroit qui unit l’East Rift Zone du Kilauea et le réservoir magmatique au sommet du volcan. En juin et juillet 2018, on a observé des effondrements quasi quotidiens au sommet du Kilauea, accompagnés de séismes atteignant parfois la magnitude M 5,3. Les caméras qui surveillaient le chenal de lave au départ de la Fracture n° 8 ont observé que le débit de la lave a commencé à augmenter quelques minutes après l’effondrement sommital pour atteindre son maximum entre 2 et 4 heures plus tard. Au moins une fois, l’augmentation du débit d’écoulement de la lave a provoqué des débordements du chenal, avec une menace potentielle pour les zones habitées à proximité.
Ces événements ont démontré que l’augmentation du débit éruptif était dû à une augmentation brutale de pression provoquée par l’effondrement sommital et qui s’est propagée le long du conduit magmatique de 40 km de long en direction de la LERZ, un peu comme le ferait une presse hydraulique. Le délai de 2 à 4 heures avant que le débit de la lave atteigne son apogée a permis au HVO et à la Sécurité Civile, dans au moins un cas, de prévoir et de se préparer au risque de débordement de la lave.
Ces informations obtenues pendant l’éruption du Kilauea en 2018 permettront au HVO de mieux comprendre le processus volcanique, mais aussi de mieux prévoir et se préparer aux menaces induites par les prochaines éruptions.
Source: USGS / HVO.

——————————————————–

May 3rd, 2019, marked the one-year anniversary of the start of Kilauea’s 2018 Lower East Rift Zone (LERZ) eruption. Over the past year, HVO geologists have been closely studying the vast amount of data collected during the eruption and they drew a few interesting conclusions. HVO indicates that the Lower East Rift Zone eruption, as well as the 2018 summit collapses, are providing many new insights on Kilauea.

First, the eruption showed how the changing chemical composition of the magma erupted in 2018 controlled the lava-flow hazard. The first two weeks of the eruption (between May 3rd and 18th) produced low eruption rates and relatively small flows. Chemical analyses indicated that the lava originated from pockets of older magma stored underground in the LERZ. This cooler and less fluid magma was probably residue from earlier eruptions. It is thought that this stored magma was presumably forced out by the intruding dike of magma that originated from Pu’uO’o. The chemical analyses indicate that the dike may have intersected two, or even three, separate stored magma bodies.

Around May 18th -19th, the eruption became different as hotter and more fluid magma was erupted. This magma was presumably draining from the summit magma reservoir. The eruption rate increased roughly 10-20 times, and the flows became larger, faster-moving, and much more dangerous.

A similar chemical change in the lava had occurred during the 1955 LERZ eruption, but it was not recognized until long after that eruption ended. Daily tracking of lava composition during the 2018 eruption was important because it allowed to identify the chemical change in early May, and to correctly anticipate that hotter, more fluid magma – leading to more dangerous lava flows – might arrive in the LERZ. .

Taken together, the 2018 and 1955 eruptions point to the possibility that future rift zone eruptions can start in a small way in the opening days as older magma is erupted. But once fresher, hotter magma arrives, rift zone eruptions can switch to large, fast-moving, and dangerous lava flows.

Magma composition also helped explain another hazard of the 2018 eruption. In mid-May, brief explosions occurred frequently from Fissure 17, throwing lava bombs several hundred metres. An initial explanation was that they were driven by groundwater seeping into the fissures, causing steam blasts. However, chemical analyses revealed that Fissure 17 erupted lava with an unusual composition. Nearly all lava erupted on Kilauea is basalt, but Fissure 17 erupted Kilauea’s first documented andesite. Andesite is higher in silica than basalt, and is, therefore, less fluid. The more viscous consistency of andesitic lava makes it easier for large gas bubbles to coalesce and burst with high pressure, which provides a likely explanation for the explosive activity at Fissure 17.

The eruption also highlighted the close connection between Kilauea’s East Rift Zone and the volcano’s summit magma reservoir. In June and July 2018, there were near-daily summit collapse events, each with the equivalent of an M 5.3 earthquake. Time-lapse cameras monitoring the Fissure 8 lava channel observed that the eruption rate began to increase within minutes after a summit collapse, eventually peaking 2 to 4 hours later. At least once, the increased eruption rates produced overflows from the lava channel that could have threatened adjacent residential areas.

This showed that the increase in the eruption rates was driven by a pressure pulse originating from the summit collapse and transmitted down the 40-km-long magma conduit to the lower East Rift Zone, just like a hydraulic press. The 2 to 4-hour delay in peak eruption rates allowed HVO and emergency managers, in at least one instance, to anticipate and prepare for the overflow hazard.

The new insights gained from Kilauea’s 2018 eruption will help HVO better understand the volcanic process, and, in turn, forecast and prepare for the dangers in future eruptions.

Source: USGS / HVO.

La Fracture n°8 et ses impressionnantes coulées de lave a dominé l’éruption du Kikauea dans la Lower East Rift Zone (Crédit photo: USGS / HVO)