Une meilleure prévision éruptive sur l’Etna (Sicile) ? // Better eruptive prediction on Mt Etna (Sicily) ?

Alors que l’Etna est vivement critiqué par l’UNESCO pour la mauvaise gestion de son Parc, une nouvelle méthode de surveillance des mouvements de magma sous le volcan pourrait permettre aux scientifiques de mieux prévoir une éventuelle éruption.
L’éruption la plus récente de l’Etna, le 2 juin 2025, a éjecté un énorme nuage de cendres de 6,5 kilomètres de haut et déclenché une avalanche de blocs de lave et autres matériaux.

https://www.youtube.com/shorts/T8FxmsaoqQc?feature=share

L’éruption était annoncée ; les autorités ont donc pu émettre des bulletins d’alerte le matin même, mais les prévisions sont rarement aussi fiables.
Selon une nouvelle étude publiée par des scientifiques de l’INGV le 8 octobre 2025 dans la revue Science Advances, la nouvelle méthode de surveillance pourrait faciliter la prévision des éruptions de l’Etna. Les chercheurs ont analysé un paramètre, la valeur b, qui décrit le rapport entre les séismes de faible et de forte magnitude dans une région de la croûte terrestre. Ce rapport peut changer à mesure que le magma remonte à travers la croûte jusqu’au sommet d’un volcan. Un géophysicien de l’Etna Osservatorio explique que « l’évolution de la valeur b au fil du temps reflète l’évolution des contraintes à l’intérieur du volcan. Puisque la remontée du magma induit des variations de contraintes au sein de la croûte, le suivi de la valeur b peut révéler les différentes étapes du transfert du magma des profondeurs vers la surface.»
La valeur b est un paramètre établi en volcanologie, mais les chercheurs l’ont étudiée d’une manière innovante, à l’aide d’un modèle statistique actualisé. En compilant 20 années de données sismiques sur l’Etna, ils ont constaté une forte corrélation entre la valeur b et l’activité volcanique de l’Etna.
L’Etna se situe dans la zone de collision entre les plaques tectoniques africaine et européenne. De ce fait, une fracture verticale dans la croûte terrestre sous le volcan facilite la remontée du magma à la surface. La croûte sous l’Etna atteint 30 km d’épaisseur. Le magma remonte à travers la croûte avant une éruption, mais au lieu de réalimenter une seule chambre magmatique, la roche en fusion alimente une série de zones de stockage interconnectées, logées dans la croûte à différentes profondeurs. La zone de stockage magmatique la plus profonde se situe à 11 km sous le niveau de la mer et alimente un système de stockage intermédiaire composé de différentes zones s’étendant probablement de 3 à 7 km de profondeur. À mesure que le magma remonte, il traverse un réseau complexe de fractures et atteint finalement la dernière zone de stockage, située au-dessus du niveau de la mer, à l’intérieur de l’édifice volcanique.

Modèle sismique-tectonique 3D mettant en évidence la corrélation entre les clusters sismiques et les principales structures géologiques. Source : INGV)

Les chercheurs ont analysé les schémas sismiques des 30 kilomètres de croûte sous le volcan de 2005 à 2024, en accordant une attention particulière à la variation de ces schémas selon les régions de la croûte. En général, les régions de la croûte terrestre comportant des zones de stockage magmatique actives présentent des valeurs b plus élevées que les régions plus stables, car les zones actives connaissent plutôt de petits séismes. À l’inverse, les régions plus stables de la croûte terrestre subissent généralement plus de séismes importants car la force nécessaire pour briser la roche est plus importante.
Ainsi, en suivant la valeur b au fil du temps, les chercheurs pourraient suivre le mouvement du magma à travers la croûte profonde jusqu’à la première zone de stockage, puis vers le système de stockage intermédiaire, et enfin vers la zone de stockage peu profonde. Cette méthode pourrait permettre aux scientifiques d’estimer la chronologie des éruptions de l’Etna.
Source : Live Science via Yahoo News.

——————————————–

While Mount Etna is under sharp criticism from the UNESCO for the poor management of its Park, a newly discovered way to monitor magma movements beneath the volcano could help scientists forecast when it might erupt.

Etna’s most recent eruption, in June 2025, ejected a huge 6.5-kilometer-high cloud of ash and triggered an avalanche of hot lava blocks and other debris. The eruption was expected, so officials were able to issue warnings on the morning of the event, but predictions are rarely as reliable.

According to a new study published by INGV scientists on October 8 2025 in the journal Science Advances , the novel method could make it easier to predict Mount Etna’s eruptions. The researchers analyzed a parameter called the b value, which describes the ratio of low-magnitude to high-magnitude earthquakes in a region of Earth’s crust. This ratio can change as magma rises through the crust to the summit of a volcano.

A geophysicist at INGV’s Etna Observatory explains that « changes in the b value over time reflect how the stress inside the volcano is evolving. Since magma ascent induces stress changes within the crust, tracking the b value can help reveal different stages of magma transfer from depth to the surface. »

The b value is an established parameter in volcanology, but the researchers examined it in a novel way, with an updated statistical model. By compiling 20 years’ worth of earthquake data from Mount Etna, they found a very strong correlation between the b value and Etna’s volcanic activity.

Mount Etna sits in the collision zone between the African and European tectonic plates. As a result, a vertical fracture in Earth’s crust underlies the volcano, thus facilitating the rise of magma to the surface. The crust beneath Mount Etna is up 30 km thick. Magma rises through this volume before an eruption, but instead of replenishing a single magma chamber, the molten rock feeds a series of interconnected storage zones that are embedded in the crust at different depths. The deepest magma storage zone is 11 km below sea level, and it feeds an intermediate storage system with different zones likely extending 3 to 7 km deep. As magma rises, it travels through an intricate network of fractures and eventually reaches the last storage zone, which is located above sea level inside the volcano edifice.

The researchers analyzed seismic patterns in the 30 kilometers of crust beneath the volcano from 2005 to 2024, paying particular attention to how these patterns varied between crustal regions. Generally, regions of Earth’s crust with active magma storage zones show higher b values than more stable regions do, because the active zones experience more small earthquakes than bigger ones. Conversely, regions of Earth’s crust that are more stable typically experience more big earthquakes than smaller ones, because it takes more force to break the rock.

So, by tracking the b value over time, it may be possible for researchers to follow the movement of magma through the deep crust to the first storage zone, up from there to the intermediate storage system, and up again to the shallow storage zone. This method could help experts estimate the timings of eruptions at Mount Etna.

Source : Live Science via Yahoo News.

Un lien entre Cascadia et San Andreas ? // Link between Cascadia and San Andreas ?

Quand je présente mon diaporama « La Descente des Cascades » qui montre la chaîne volcanique du même nom, j’indique que sa présence est due à la subduction de la plaque tectonique Juan de Fuca qui plonge sous la plaque nord-américaine. Je signale par ailleurs que, comme dans toutes les zones de subduction, il existe – outre le risque volcanique – un risque sismique élevé dans les Etats d’Oregon et de Washington, même si la région ne se fait pas secouer très souvent.

Source: USGS

Selon une nouvelle étude menée par des chercheurs de l’Université d’État de l’Oregon et publiée en septembre 2025 dans la revue Geosphere, un puissant séisme sur la zone de subduction de Cascadia, dans le Nord-Ouest du Pacifique, pourrait déclencher un séisme d’une intensité semblable sur la faille de San Andreas, en Californie.

Zone de subduction de Cascadia et Faille de San Andreas, avec le cap Mendicino entre les deux (Source : USGS)

Ces conclusions reposent sur l’étude de sédiments prélevés au large du cap Mendocino, en Californie, et au large de l’Oregon. C’est au niveau de ce cap que se termine la faille de San Andreas et que commence la zone de subduction de Cascadia.

Il s’agit de deux systèmes de failles très différents, mais les relevés sédimentaires montrent que, par le passé, au moins trois séismes le long de la faille de San Andreas se sont produits quelques heures à quelques jours après d’importants séismes sur celle de Cascadia. Il se pourrait que sept autres se soient produits en quelques décennies, voire quelques années, voire moins.
Si les deux systèmes de failles sont réellement synchronisés, cela pourrait poser un réel problème pour les secours en cas de catastrophe, car les ressources ne seraient pas suffisantes pour répondre à deux séismes déclenchés simultanément ou à un court intervalle.
La zone de subduction de Cascadia peut provoquer des séismes extrêmement puissants. En 1700, la région a connu un séisme de magnitude estimée entre M8,7 et M9,2, qui a provoqué des tsunamis destructeurs jusqu’au Japon. De tels séismes sont causés par le mouvement de trois plaques océaniques (l’Explorer, la Juan de Fuca et la Gorda) qui glissent sous le continent nord-américain.
La faille de San Andreas, quant à elle, est une faille en décrochement où les masses rocheuses de part et d’autre de la faille se déplacent horizontalement. Le plus important séisme causé par cette faille fut celui de San Francisco (de magnitude M7,9) en 1906. Comme la faille traverse des zones densément peuplées, elle pourrait causer des dégâts considérables, comme lors du séisme de Loma Prieta en 1989, qui a fait 63 morts.

Séisme de Loma Prieta (Crédit photo : USGS)

Les deux systèmes de failles – Cascadia et San Andreas – se rejoignent au large de Mendocino, dans une zone dite de « triple jonction ».

Cap Mendicino

La découverte de cette zone s’est faite de manière fortuite. En 1999, des scientifiques effectuaient une campagne pour prélever des carottes de sédiments au fond de l’océan à Cascadia, à la recherche de signes de séismes anciens. Lors de cette mission, un problème technique a fait dévier le navire d’environ 100 kilomètres de sa position initiale. Les scientifiques, qui tentaient de dormir entre deux séances de travail, ne se sont rendu compte de l’erreur qu’à leur réveil. Ils ont tout de même décidé de prélever une carotte de sédiments à cet endroit. Lorsqu’ils ont analysé l’échantillon plus tard, ils ont découvert qu’il contenait un mystère.

Les turbidites [NDLR : Le terme turbidite désigne à la fois une unité géologique structurée composée de roches sédimentaires mises en place à la suite d’un écoulement de sédiments le long d’une pente sous-marine ou sous-lacustre, ainsi que les roches qui composent cette unité.] de l’échantillon ne présentaient pas une couche grossière au fond et une couche plus fine au-dessus, comme c’est généralement le cas. Cette carotte de la zone de San Andreas présentait des dépôts qui semblaient à l’envers, avec le sable à la surface. Les chercheurs n’ont pu donner aucune explication à cette inversion stratigraphique. Ils n’avaient pas non plus d’explication à un autre mystère étrange concernant ces échantillons offshore : les carottes prélevées au sud de la « triple jonction », dans la zone nord de San Andreas, semblaient illustrer des séismes correspondant à la chronologie des séismes enregistrés au nord de la triple jonction en Cascadia. Au cours des 1 300 dernières années, ils ont découvert 18 turbidites probablement d’origine sismique à Cascadia et 19 au large du nord de San Andreas. Dix d’entre elles semblent s’être déposées à 50 à 100 ans d’intervalle.
Plus surprenant encore, dans trois cas, le sable grossier de la couche supérieure était mélangé au sable plus fin de la couche inférieure. Cela laissait supposer que la couche supérieure s’était tassée alors que la couche inférieure était encore en mouvement. Cela pourrait signifier que les deux couches se sont déposées à quelques heures ou quelques jours d’intervalle. Cela incluait trois événements : le séisme de Cascadia de 1700, ainsi que ceux d’il y a 1 200 et 1 500 ans.
Il a fallu de nombreuses années pour effectuer des datations supplémentaires au Carbone 14 et comprendre ce qui s’est passé. Les scientifiques sont arrivés à la conclusion que ces turbidites de San Andreas pourraient correspondre à deux séismes différents : l’un, dans la région lointaine de Cascadia, n’aurait secoué que du limon et du sable plus légers ; l’autre, dans la zone de San Andreas serait survenu peu de temps après, localement plus fort, aurait déplacé des matériaux plus grossiers.
Dans cette nouvelle étude, les chercheurs pensent que les puissants séismes de la zone de Cascadia peuvent transférer des contraintes à la région voisine de San Andreas, provoquant un séisme le long de la faille de San Andreas peu après. Cascadia et la région nord de San Andreas sont très actives sur le plan sismique, et de nombreuses autres failles pourraient également entrer en jeu. L’interprétation des dépôts sédimentaires est complexe, et la datation au radiocarbone présente des incertitudes. D’autres études seront nécessaires pour confirmer l’hypothèse avancée dans la dernière étude.
Source : Live Science via Yahoo News.

 ———————————————

According to a new study by researchers at Oregon State University,, published in September 2025 in the journal Geosphere, a « Big One » on the Cascadia subduction zone in the Pacific Northwest might trigger a similarly serious earthquake on California’s San Andreas Fault. The findings are based on sediments taken from the seabed off the coast of Cape Mendocino, California and offshore Oregon. It is at Cape Mendocino that California’s famous San Andreas fault ends and the Cascadia subduction zone begins.

These are two very different fault systems, but the sediment record suggests that in the past, at least three San Andreas earthquakes have happened within hours to a couple of days after large Cascadia quakes. Another seven or so may have occurred within decades to years or less.

If the two fault systems are really synchronized, it could be a real problem for disaster relief as there would not be enough resources to respond to two earthquakes triggered simultaneaously or a short time apart.

Cascadia can create extremely powerful earthquakes. Un 1700, the region experienced a quake thought to be between magnitude M8.7 and M9.2 that sent destructive tsunami waves all the way to Japan. These quakes are caused by movement of three oceanic plates (the Explorer, the Juan de Fuca, and the Gorda) slipping beneath the North American continent.

The San Andreas Fault, on the other hand, is a strike-slip fault where rock masses on either side of the fault move past each other horizontally.. The largest known quake on the northern San Andreas was the M7.9 1906 San Francisco earthquake. Because the fault runs through densely populated areas, it could do a great deal of damage, as in the 1989 Loma Prieta earthquake that killed 63 people.

The two fault systems meet off the coast of Mendocino in an area known as the « triple junction. » Scientists were on a research cruise in 1999 drilling core samples from the ocean floor in Cascadia, looking for signs of ancient earthquakes. On that cruise, a ptoblem led to the ship traveling about 100 kilometers from where it was supposed to be. The scientists, who were trying to sleep between working, did not realize the error until the ship arrived. They decided to take a core sample in that spot anyway. When the team later analyzed the sample, they realized it contained a mystery. The turbidites in the sample didn’t have the coarse layer on the bottom and the finer layer on top, as was typical. This original core of the San Andreas had deposits that looked like they were upside-down because the sand was at the top.

The researchers had no explanation for this flip-flopped pattern. Nor did they have an explanation for another strange mystery of these offshore samples: Cores taken south of the triple junction, in the area of the northern San Andreas, seemed to show earthquakes that matched well to the timing of earthquakes taken north of the triple junction in Cascadia. In the last 1,300 years, they found, there were 18 likely earthquake-generated turbidites in Cascadia and 19 offshore from the northern San Andreas. Ten of those appeared to be deposited within 50 to 100 years of each other.

Even more surprising, in three cases, the coarse sand of the upper layer was mixed into the finer sand of the lower layer, suggesting the upper layer had settled while the bottom layer was still in motion. That would mean that the two layers were deposited within hours to days of one another. These three events included the 1700 Cascadia quake, as well as quakes 1,200 years ago and 1,500 years ago.

It took many years to conduct additional radiocarbon dating and understand what has happened. The scientists finally thought that these San Andreas turbidites might represent two different quakes: One, from the far-off Cascadia region, which shook off only lighter silt and sand, and the second, from a soon-after San Andreas quake that was locally stronger and could move coarser material.

In the new study, the researchers think that large quakes in Cascadia can transfer stress to the neighboring San Andreas, which then leads to a San Andreas earthquake not long after. Cascadia and the northern San Andreas region are highly seismically active, and many other faults could trigger earthquakes. Sedimentary deposits are complicated to interpret, and there are uncertainties inherent in radiocarbon dating. More studies will be necessary to corroborate the hypothesis suggested in the last research. .

Source : Live Science via Yahoo News.

Ça chauffe sur l’Etna (Sicile) !

Un article paru dans le journal La Sicilia met le projecteur sur les dysfonctionnements qui accompagnent la gestion du Parc de l’Etna. L’UNESCO menace même de retirer le volcan de sa liste du patrimoine mondial. C’est pourquoi le journal a choisi un titre percutant : « Etna, « Parc bloqué » : l’UNESCO risque d’abandonner le volcan. »

Photo: C. Grandpey

L’article débute par un événement que j’ai mentionné sur ce blog le 4 octobre dernier : l’accès payant (5 euros) aux cratères Silvestri, une décision prise unilatéralement par le groupe Russo Morosoli qui gère également la Funivia dell’Etna après avoir racheté cette partie du volcan en 1997. Pour justifier sa décision, Russo Morosoli a indiqué qu’en avril 2025 il avait lancé une opération pour garantir la sécurité des touristes et informé tous les opérateurs qui les accompagnaient de la mise en place prochaine d’un accès réglementé.

Cet événement n’est qu’un exemple de l’anarchie qui règne autour de l’Etna. Beaucoup disent que Russo Morosoli « n’a pas entièrement tort.» Toutefois, la décision – sans aucune demande de permis ni notification préalables – d’imposer un droit d’entrée aux cratères Silvestri est très controversée. Néanmoins, quand Morosoli s’en prend au Parc de l’Etna, il reçoit une approbation quasi unanime, ainsi que la compréhension de ceux qui travaillent au sein du Parc. Selon eux et le journal La Sicilia, l’entité souffre d’« une lenteur pachydermique qui risque même de lui faire perdre son inscription au patrimoine mondial de l’UNESCO. »

Crédit photo: Parco dell’Etna

Il y a de nombreux dysfonctionnements au sein de l’Autorité du Parc, ainsi que des retards dans la mise en œuvre des procédures. » Actuellement, la direction du Parc est dans le flou. Le maire de Gravina di Catania devrait prendre ses fonctions prochainement, un poste pour lequel il a été nommé il y a quelques semaines. L’un des premiers problèmes à régler sera celui des employés du Parc. Le plan de recrutement prévoit 60 personnes, mais seul un tiers est en fonction. Par ailleurs, l’article de La Sicilia indique qu’il existe « des problèmes relationnels concrets et tangibles entre collègues, des conflits parfois violents, un manque de communication et même la plus élémentaire volonté de collaborer. Dans ce climat de ‘guerre des roses’, certains travaillent bien, mais ils sont contraints d’en faire plus que nécessaire pour compenser ceux qui ne font pas ce qu’ils devraient faire. »

Au vu de ces problèmes, il ressort qu’il faudrait un Parc « plus autoritaire », doté d’une « stratégie d’utilisation, notamment pour les zones sommitales, qui lui fait actuellement défaut. » En bref, le Parc de l’Etna est « un gratte-papier incapable même d’entretenir des relations avec l’UNESCO, ce qui compromet de fait sa reconnaissance. La perdre serait une honte, mais le problème, malgré mille rappels, semble avoir été sous-estimé. » La lettre de l’UNESCO, et certains des documents de gestion qui l’ont précédée, proposent des mesures correctives que la Parc aurait tout intérêt à prendre en compte..

Les guides font partie de ceux qui critiquent la gestion du Parc. « L’Etna est maltraité », a déclaré la présidente de l’Association des guides touristiques de Catane. « Au nord de l’Etna, il n’y a rien, et au sud, la désorganisation règne en maître. Les guides de randonnée écologistes sont encore plus conbatifs. Tous travaillent ensemble pour déterminer les mesures à prendre afin d’empêcher qu’une partie de l’Etna soit accessible au public en payant, comme cela est en passe d’être le cas avec les cratères Silvestri.

Source : La Sicilia.

NDLR : On peut raisonnablement penser que l’UNESCO ne va pas brutalement retirer l’Etna de sa liste du patrimoine mondial. L’organisation a surtout voulu adresser une mise en garde aux gestionnaires du Parc de l’Etna et attirer l’attention sur le grand nombre de dysfonctionnements. L’Union Européenne a utilisé une procédure identique à Pompéi il y a quelques années quand les fonds européens destinés aux fouilles et à la mise en valeur du site étaient détournés par la mafia napolitaine. Aujourd’hui, la situation s’est bien améliorée en Campanie ; on peut espérer qu’il en sera de même pour le volcan sicilien.

Un volcan s’agite en Iran // Unrest at a volcano in Iran

Un volcan du sud de l’Iran, le Taftan – dont le nom signifie « l’endroit de la chaleur ») – que l’on croyait éteint depuis environ 710 000 ans, a montré de nouveaux signes d’activité.

Crédit photo: Wikipedia

Des recherches effectuées par le Conseil national espagnol de la recherche (IPNA-CSIC), publiées le 7 octobre 2025 dans la revue Geophysical Research Letters, expliquent qu’une zone proche du sommet du volcan Taftan s’est soulevée de 9 centimètres en 10 mois, entre juillet 2023 et mai 2024. Cette élévation ne s’est pas inversée, ce qui laisse supposer une accumulation de pression des gaz sous la surface du volcan.

Déformation a) du flanc est du Taftan, b) de son sommet, c) de son flanc ouest (Source: Geophysical Research Letters

L’étude révèle la nécessité d’une surveillance plus étroite du Taftan, qui n’était jusqu’alors pas considéré comme présentant un risque pour les populations. Les volcans sont considérés comme éteints s’ils n’ont pas connu d’éruption pendant l’Holocène, qui a débuté il y a 11 700 ans. Compte tenu de son activité récente, le Taftan pourrait être qualifié de volcan« en sommeil ». Il devra montrer une réelle activité à l’avenir, soit violente, soit plus discrète, pour être considéré comme ‘actif’.. Les auteurs de l’étude affirment qu’il n’y a aucune raison de craindre une éruption imminente, mais que le volcan devra être surveillé plus attentivement.
La Smithsonian Institution nous explique que le Taftan est un stratovolcan de 3 940 mètres d’altitude situé dans le sud-est de l’Iran, au cœur d’un ensemble de montagnes et de volcans formé par la subduction de la plaque océanique arabique sous le continent eurasien. Aujourd’hui, le volcan abrite un système hydrothermal actif avec des bouches émettant du H₂S, mais aucune éruption n’a été signalée dans l’histoire de l’humanité.
C’est en 2023 que des personnes ont commencé à signaler des émissions gazeuses du volcan sur les réseaux sociaux. Ces émissions nauséabondes étaient perceptibles depuis la ville de Khash, à environ 50 kilomètres de là. Les images satellite de la mission Sentinel-1 de l’Agence spatiale européenne permettent de visualiser la surface de la Terre 24 heures sur 24. Ces images sont précieuses pour obtenir des informations sur le Taftan qui est isolé et ne dispose pas de système de surveillance GPS comme on en trouve sur des volcans comme le mont Saint Helens. La zone est également dangereuse en raison de l’activité des groupes insurgés et des conflits frontaliers entre l’Iran et le Pakistan.
Source : Live Science.

—————————————————–

A volcano in southern Iran thought to have been extinct for some 710,000 years has shown renewed signs of activity.

New research by the Spanish National Research Council (IPNA-CSIC), published on October 7th, 2025 in the journal Geophysical Research Letters explains that an area of ground near the Taftan volcano’s summit rose 9 centimeters over 10 months between July 2023 and May 2024. The uplift has not yet receded, suggesting a buildup of gas pressure below the volcano’s surface.

The study reveals the need for closer monitoring of the volcano, which hasn’t been considered a risk to people before. Volcanoes are considered extinct if they haven’t erupted in the Holocone era, which started 11,700 years ago. Given its recent activity, Taftan might be more accurately described as ‘dormant’. It will have to show some real activity in the future, either violently or more quietly, to prove it is getting active again. The authors of the study say that there is no reason to fear an imminent eruption, but the volcano should be more closely monitored.

The Smithsonian Institution informs us that theTaftan volcano is a 3,940 meters stratovolcano in southeastern Iran, situated among a group of mountains and volcanoes that was formed by the subduction of the Arabian ocean crust under the Eurasian continent. Today, the volcano hosts an active hydrothermal system and smelly H2S-emitting vents, but it is not known to have erupted in human history.

It was in 2023 that people started reporting gaseous emissions from the volcano on social media. The emissions could be smelled from the city of Khash about 50 kilometers away. The satellite imagery from the European Space Agency’s Sentinel-1 mission allows to have round-the-clock imagery of Earth’s surface. This is precious to get information about Taftan which is remote and does not have a GPS monitoring system such as those found on volcanoes like Mount St. Helens; The area is also dangerous due to the activity of insurgent groups and border conflicts between Iran and Pakistan.

Source : Live Science.