Réchauffement climatique : cratères d’explosion dans la toundra // Global warming : explosion craters in the tundra

Un chapitre de ma conférence « Glaciers en péril » est consacré au dégel du permafrost dans l’Arctique. J’explique que cette situation peut conduire à des phénomènes étranges comme les cratères découverts il y a une dizaine d’années en Sibérie. Au début, les gens se demandaient ce qui avait pu les provoquer. Toutes sortes d’hypothèses ont été émises, y compris des théories sur les extraterrestres. Certains cratères sont impressionnants et assez profonds pour contenir un immeuble de 15 étages. Les scientifiques ont observé le premier cratère en 2014 et en ont découvert une vingtaine d’autres dans les années qui ont suivi.
Il était évident, dès le début, que ces cratères étaient causés par des explosions dans le sous-sol. Leur cause est vite devenue un sujet de débat, mais tout le monde était d’accord pour dire que ce type de cratères d’explosion était rare et ne se formait que dans des conditions géologiques spécifiques. Il était également clair que ces puissantes explosions étaient liées au réchauffement climatique. Donc, comme la planète continue de se réchauffer, d’autres cratères allaient probablement apparaître. Lorsque les explosions se produisent, elles libèrent dans l’atmosphère du méthane, un gaz à effet de serre extrêmement puissant, qui contribue à son tour au réchauffement climatique.
On rencontre ces cratères dans des régions du monde recouvertes de pergélisol, comme la Sibérie et le nord du Canada, là où le sol est gelé en permanence depuis des millénaires. À mesure que la température de la planète augmente, des poches de pergélisol dégèlent partout dans le monde. Cela a permis la découvertes de mammouths et d’autres animaux préhistoriques.
Des concentrations de méthane sont piégées profondément sous terre dans le pergélisol dans des hydrates de méthane, c’est à dire des composés solides, résultat de la cristallisation d’un mélange d’eau et de méthane sous certaines conditions de température et de pression. Les chercheurs s’accordent largement à dire que lorsque ces hydrates sont endommagés, ils libèrent du méthane. C’est ce qui, très probablement, a déclenché les explosions en Sibérie.
Les scientifiques ne savent pas comment les hydrates peuvent être endommagés. Au début, ils pensaient que le réchauffement du pergélisol, résultant du réchauffement de l’Arctique, pouvait à terme déstabiliser la couche d’hydrates et libérer ainsi du méthane explosif, mais aucun modèle physique n’a été présenté pour expliquer cette hypothèse. De plus, les scientifiques ont découvert qu’il faudrait des siècles pour que ce processus déclenche une explosion, alors que l’Arctique ne s’est considérablement réchauffé que depuis quelques décennies.
Cela signifie que quelque chose d’autre s’est produit. Les scientifiques ont trouvé la pièce manquante de leur puzzle en passant au peigne fin les études géologiques du passé. Elles avaient identifié des cryopegs, juste au-dessus des hydrates de méthane en Sibérie. Un ‘cryopeg‘ est une couche de sol non gelé, mais faisant partie du pergélisol, dans laquelle la congélation est empêchée par une dépression du point de congélation due à la teneur en solides dissous de l’eau interstitielle. Normalement, les cryopegs sont stables, mais les chercheurs ont réalisé que la chaleur de l’été était susceptible de menacer cette stabilité. En été, le sol dégèle et, selon les scientifiques, cette eau de fonte serait ensuite attirée vers les cryopegs par osmose, autrement dit en suivant le même processus qui permet à l’eau de grimper, en faisant fi de la gravité, dans les plantes hautes.
Toujours selon les chercheurs, l’eau de fonte augmente la pression à l’intérieur des cryopegs. Cette pression fissure le sol vers la surface, ce qui déclenche une inversion drastique de pression. C’est ce changement de pression qui endommagerait les hydrates de méthane et déclencherait une explosion.
La Sibérie aura probablement davantage de cratères d’explosion dans les années à venir avec la hausse des températures dans le monde. C’est un problème car le méthane libéré par ces explosions est un gaz à effet de serre extrêmement puissant.
On ne sait pas exactement quelle quantité de méthane est libérée par ces explosions, mais si l’on se place dans le contexte global du réchauffement climatique, cette quantité est minime. Le dégel du pergélisol est un problème beaucoup plus important car il contient des concentrations non seulement de méthane mais aussi de dioxyde de carbone qui sont libérées dans l’atmosphère lorsqu’il dégèle.
Source : Business Insider via Yahoo News.

Cratères d’explosion en Sibérie (Crédit photo: The Siberian Times)

——————————————————

A chapter of my conference « Glaciers at risk » is dedicated to the thawing of the permafrost in the Arctic. I explain that this situation may lead to strange phenomena like the craters that were discivered about ten years ago in Siberia. At the beginning, people wondred what could have caused them to happen. All sorts of hypotheses were released, including theories about aliens. Some of them are are giant craters, deep enough to fit a 15-story building. Scientists observed the first crater in 2014 and have found about 20 more in the years since.

It was clear from the beginning that the craters were caused by some type of explosion deep underground. What’s triggering the explosions became a topic of debate but it became obvious thzt these types of exploding craters were rare and only formed under specific geologic conditions. It was also clear that these massive eruptions were linked to global warming, and as the planet continues to warm, more craters will likely erupt. When the explosions happen, they release methane, a highly potent greenhouse gas into the atmosphere, which in turn contributes to global warming.

The craters are found in regions of the world covered with permafrost, like Siberia and northern Canada where the soil has been permanently frozen for millennia. As global temperatures climb, pockets of permafrost are thawing worldwide. This has led to some spectacular discoveries of mammoths and other prehistoric animals.

Concentrated amounts of the highly explosive greenhouse gas methane are trapped deep underground in the permafrost in ice-like solids called methane hydrates. Researchers widely agree that when these hydrates are damaged, they release methane gas, which is what is triggering the explosions in Siberia.

How the hydrates are damaged, though, is less clear. Initial theories suggested that warming permafrost, as a result of the warming Arctic, could ultimately destabilize the hydrate layer, releasing explosive methane gas. But no physical model was presented to explain this hypothesis. Scientists found that it would take centuries for the process to trigger an explosion, whereas the Arctic had only been significantly warming over decades.

This means something else was happening or magnifying this effect. Scientists found the missing piece to their puzzle when they scrutinized past geological surveys that had identified pools of liquid water, called cryopegs, just above the methane hydrates in Siberia. A cryopeg is a layer of unfrozen ground that is perennially cryotic (forming part of the permafrost), in which freezing is prevented by freezing-point depression due to the dissolved-solids content of the pore water. Normally, the cryopegs are stable, but the researchers realized that the summer would threaten this stability. In summer, frozen soil at the surface thaws. That meltwater is then pulled down toward the cryopegs via osmosis, the same process that helps water climb against gravity through tall plants.

The meltwater increases the pressure inside the cryopegs. That pressure cracks the soil leading to the surface, which triggers a drastic reverse in pressure. And that pressure change is what damages the methane hydrates, triggering an explosion.

Siberia will likely have more explosive craters in the coming years as global temperatures continue to warm. This a problem because the methane these explosions release is a highly potent greenhouse gas.

It’s unclear exactly how much methane these explosions release, but in the global climate change, they are a small matter. Thawing permafrost is a larger concern because it contains concentrations of not only methane but also carbon dioxide that is released into the atmosphere when it thaws.

Source : Business Insider via Yahoo News.

Les refuges de haute montagne en danger // High altitude refuges in danger

Dans une note publiée le 10 août 2021, j’expliquais que la fonte des glaciers et le dégel du permafrost de roche dans nos Alpes ont commencé à poser de gros problèmes, avec des effondrements spectaculaires de parois et une menace grandissante pour certaines infrastructures. J’ai expliqué comment, en Suisse, plusieurs supports de téléphériques ont dû être modifiés pour assurer une meilleure stabilité car le sol dégelé se dérobait sous les assises des pylônes. Je donnais l’exemple du refuge de la Pilatte, dans le massif des Ecrins (Alpes françaises) qui a été déstabilisé par la fonte d’un glacier. Il s’est fissuré au point de ne plus pouvoir recevoir randonneurs et alpinistes. Ce refuge n’est pas une exception et d’autres camps de base connaissent le même sort.

Vue du refuge de la Pilatte (Crédit photo: Oisans Tourisme)

Ce fut le cas du refuge des Cosmiques en 1998 quand une dalle de 600 mètres cubes a lâché prise, déstabilisant le bâtiment et nécessitant d’importants travaux de consolidation.

Vue du refuge des Cosmiques (Crédit photo : Wikipedia)

Même punition pour le bivouac des Périades dans le massif du Mont-Blanc. Il a bien failli basculer dans le vide, lui aussi, pour la même raison. Il s’est mis à pencher dangereusement quand quelques dizaines de mètres cubes de blocs ont bougé en aval en raison du réchauffement du permafrost. Pour ne pas le voir disparaître, un élan de solidarité a permis d’édifier un nouveau bivouac, identique mais mieux aménagé, à une quinzaine de mètres de là, sur une terrasse stable. Certains montagnards se demandent s’il faut accuser le réchauffement climatique. La réponse ne fait guère de doute lorsque l’on observe ce qui se passe ailleurs dans les Alpes dans des conditions identiques.

Aujourd’hui, c’est l’Autriche qui s’inquiète pour ses refuges de haute altitude. Le pays compte 272 refuges de ce type. Ils se retrouvent aujourd’hui en difficulté à cause du manque de personnel et, surtout, du réchauffement climatique. Les clubs alpins autrichiens, qui gèrent ces refuges, appellent les autorités à l’aide. Le refuge Seethaler est un bon exemple des difficultés des refuges face au réchauffement climatique. Il a en effet dû être entièrement reconstruit il y a cinq ans. Il y avait une gigantesque doline qui était gelée au moment de sa construction. Le réchauffement climatique a fait dégeler le pergélisol qui maintenait la structure en place. Le refuge s’est affaissé tout d’un coup de plusieurs mètres, il a donc fallu immédiatement y remédier.

Vue de la Seethalerhütte (Crédit photo : PREFA)

En Autriche comme ailleurs dans les Alpes, la hausse des températures va inciter les gens à grimper plus haut, dans l’espoir de trouver un peu de fraîcheur. Il faudra donc trouver des candidats pour les missions liées aux refuges. Ce sont des contraintes bien particulières et aujourd’hui, de moins en moins de jeunes veulent s’y confronter.

Ayant pu me rendre compte, au cours de mes pérégrinations, du drame qui se prépare, je lance régulièrement des alertes à mon petit niveau, bien conscient qu’elle tombent dans un océan de j’menfoutisme….

—————————————————–

In a post published on August 10th, 2021, I explained that the melting of glaciers and the thawing of rock permafrost in our Alps have started to pose major problems, with spectacular collapses of walls and a growing threat to certain infrastructures. I explained how, in Switzerland, several cable car supports had to be modified to ensure better stability because the thawed ground was giving way under the bases of the pylons. I gave the example of the Pilatte refuge, in the Ecrins massif (French Alps) which was destabilized by the melting of a glacier. It cracked to the point of no longer being able to accommodate hikers and mountaineers. This refuge is not an exception and other base camps are suffering the same fate. This was the case for the Cosmiques refuge in 1998 when a 600 cubic meter slab gave way, destabilizing the building and requiring major consolidation work. The same punishment was meted out to the Périades bivouac in the Mont Blanc massif. It almost fell into the void, too, for the same reason. It began to lean dangerously when a few dozen cubic meters of blocks moved downslope due to the warming of the permafrost. To prevent it from disappearing, a wave of solidarity made it possible to build a new bivouac, identical but better equipped, about fifteen meters away, on a stable terrace. Some mountaineers wonder whether global warming should be blamed. The answer is hardly in doubt when we look at what is happening elsewhere in the Alps under identical conditions.
Today, Austria is worrying about its high-altitude refuges. There are 272 such shelters in the country. They are now in difficulty due to a lack of staff and, above all, global warming. The Austrian Alpine Clubs, which manage these shelters, are calling on the authorities for help. The Seethaler shelter is a good example of the difficulties shelters are confronted with in the face of global warming. It had to be completely rebuilt five years ago. There was a gigantic sinkhole that was frozen when it was built. Global warming thawed the permafrost that held the structure in place. The shelter suddenly subsided by several meters ; this had to be remedied immediately.
In Austria, as elsewhere in the Alps, rising temperatures will encourage people to climb higher, in the hope of finding a bit of coolness. It will therefore be necessary to find candidates for the missions linked to the shelters. These are very specific constraints and today, fewer and fewer young people want to confront them.

Having been able to see, during my travels, the drama that is brewing, I regularly launch alerts at my own small level, well aware that they fall into an ocean of indifference…

Réchauffement climatique : des rivières virent à l’orange en Alaska // Global warming : some rivers are turning orange in Alaska

Voici une autre conséquence inattendue du réchauffement climatique et du dégel du pergélisol dans l’Arctique. Une étude publiée dans la revue Communications: Earth & Environment explique que les rivières et les ruisseaux de l’Alaska changent de couleur, passant d’un beau bleu à un orange rouille, en raison des métaux toxiques libérés par le dégel du pergélisol.
La situation a surpris les chercheurs du National Park Service, de l’Université de Californie à Davis et de l’US Geological Survey (USGS), qui ont effectué des analyses dans 75 sites le long de cours d’eau de la chaîne de montagnes Brooks (Brooks Range) en Alaska. Au cours des cinq à dix dernières années, les rivières et ruisseaux de la région ont pris la couleur de la rouille, avec une eau devenue trouble.
À mesure que le pergélisol dégèle, la décoloration et la nébulosité de l’eau sont dues à des métaux tels que le fer, le zinc, le cuivre, le nickel et le plomb, dont certains sont toxiques pour les écosystèmes fluviaux. Le phénomène a déjà été observé dans certaines parties de la Californie et dans des secteurs des Appalaches qui ont un passé minier. Il s’agit d’un processus classique qui se produit dans les rivières qui connaissent des activités minières depuis les années 1850, mais il est très surprenant de le voir dans des régions sauvages éloignées de tout, sans activités minières à proximité.
Les chercheurs ont utilisé l’imagerie satellite pour déterminer à quel moment le changement de couleur s’est produit dans les rivières et les ruisseaux. À plusieurs endroits, la décoloration la plus significative a eu lieu entre 2017 et 2018 et a coïncidé avec les années les plus chaudes jamais enregistrées. Cette décoloration a provoqué un déclin spectaculaire de la vie aquatique, suscitant des inquiétudes quant à la façon dont le dégel continu du pergélisol affectera les localités qui dépendent de ces cours d’eau pour boire et pêcher.
L’Alaska n’est pas le seul État à connaître ce phénomène. Une étude publiée un mois avant celle concernant cet État, détaille comment les montagnes Rocheuses du Colorado subissent des effets identiques du réchauffement climatique. L’étude, publiée par Water Resources Research, note une augmentation des concentrations de métaux comme le sulfate, le zinc et le cuivre dans 22 ruisseaux de montagne du Colorado au cours des 30 dernières années. Les chercheurs ont découvert que la réduction du débit des cours d’eau représentait la moitié de cette augmentation, tandis que l’autre moitié provenait du dégel du sol, ce qui permet aux minéraux de s’échapper du substrat rocheux.
Des études similaires ont été réalisées par le passé en dehors des États-Unis. Des recherches sur l’augmentation des concentrations de métaux et d’éléments rares dans les rivières et ruisseaux de montagne ont été menées dans les Andes chiliennes, les Alpes européennes et les Pyrénées du nord de l’Espagne. Bien que certaines de ces zones aient été exposées à des sites miniers, avec des concentrations de métaux dans les rivières et les ruisseaux au fil des années, les augmentations constatées soulèvent des questions sur la manière dont le réchauffement climatique continuera à avoir un impact sur les sources d’eau des montagnes.
Source : CNN, Yahoo Actualités.

Vue aérienne de la Kutuk, dans le nord de l’Alaska, où la belle couleur bleue de la rivière doit cohabiter avec l’eau orange due au dégel du pergélisol (Crédit photo : National Park Service)

———————————————-

Here is another unexpected consequence of global warming ansd the ensuing thawing of the permafrost in the Arctic. A study published in the journal Communications: Earth & Environment explains that rivers and streams in Alaska are changing color, from a clean, clear blue to a rusty orange, because of the toxic metals released by thawing permafrost.

The situation comes as a surprise for researchers from the National Park Service, the University of California at Davis and the US Geological Survey, who conducted tests at 75 locations in the waterways of Alaska’s Brooks Range. The rivers and streams in the range appeared to rust and became cloudy and orange over the past five to 10 years.

As permafrost thaws, the discoloration and cloudiness are being caused by metals such as iron, zinc, copper, nickel and lead, some of which are toxic to the river and stream ecosystems. The phenomenon was observed in parts of California, parts of Appalachia which have a mining history. This is a classic process that happens in rivers that have been impacted for over 100 years since some of the mining rushes in the 1850s, but it is very startling to see it on some of the most remote wilderness, far from a mine source.

Researchers used satellite imagery to determine when the change in color happened at different rivers and streams. At several locations, the most drastic increases were between 2017 and 2018 and they coincided with the warmest years on record at that point. This discoloration has caused dramatic declines in aquatic life, raising concerns about how the continued thawing of permafrost will affect communities that rely on those waterways for drinking and fishing.

Alaska is not the only state experiencing this phenomenon. Another study, published just a month before researchers in Alaska made their findings public, details how Colorado’s Rocky Mountains are seeing similar effects a warming climate.The study, published by Water Resources Research, notes an increase of metal concentrations – namely sulfate, zinc and copper – across 22 of Colorado’s mountain streams in the past 30 years. Researchers found that a reduced streamflow accounted for half of the increase, while the other half is from the thawing of frozen ground that allows for minerals to leach out of the bedrock.

Similar studies have been made beyond the US in the past. Research on increases in metal and rare earth element concentrations in mountain rivers and streams has been done in the Chilean Andes, the European Alps and the Pyrenees in northern Spain. Although some of these areas have been exposed to mining sites and thus have seen metal concentrations in rivers and streams over the years, the noted increases raise questions about how global warming will continue to impact mountain water sources.

Source : CNN, Yahoo News.

Quand la montagne s’effondre … // When the mountain collapses…

Un gros effondrement s’est produit dimanche 14 avril 2024 vers 7 heures dans le massif de la Bernina, près de la frontière avec l’Italie. Selon les premières informations, il n’a pas fait de victime ou de blessé. Il est vrai qu’à cette heure matinale, il n’y avait encore pas grand monde sur la montagne.

L’éboulement a eu lieu au Piz Scerscen qui culmine à 3970 mètres d’altitude. Il a mobilisé un volume de matériaux estimé à plus d’un million de mètres cubes. Ce volume est de l’ordre de grandeur d’un événement semblable qui s’était produit à Bondo. L’effondrement a été détecté par les sismomètres de la région. La roche qui s’est détachée de la montagne a dévalé le Val Roseg où elle s’est accumulée sur une longueur de plus de cinq kilomètres. Des vols ont été effectués pour rechercher d’éventuelles personnes en détresse, mais personne ne manque à l’appel. Les autorités déconseillent de se rendre dans le Val Roseg et dans la zone de l’éboulement.

L’effondrement au Piz Scerscen (Crédit photo : SAC Bernina)

Un effondrement d’une telle ampleur est très rare. Une analyse de la situation est en cours en collaboration avec l’Office cantonal des forêts et des risques naturels qui prendra d’éventuelles mesures. Le risque de formation d’un lac dans la vallée en raison de l’éboulement sera aussi examiné.

La zone à l’origine de ce glissement de terrain avait subi une rupture importante en janvier 2023 et montrait une fragilité, de sorte qu’il était conseillé aux alpinistes d’éviter cette partie de la montagne.
À première vue, il semble que l’effondrement se soit déclenché à partir d’une paroi rocheuse fortement inclinée qui aurait subi une fragmentation au pied de la pente initiale, avec formation d’une longue avalanche de matériaux.
De tels effondrements se produisent en général au printemps et au début de l’été. Cette année, ils sont bien sûr favorisés par les hautes températures qui règnent sur le massif alpin et en Europe en général depuis plusieurs semaines. Elles provoquent aussi le dégel du permafrost de roche qui assure la stabilité des montagnes. Sans ce ciment naturel, les flancs des montagnes s’effondrent de plus en plus souvent.

En relation avec cet événement, je vous invite à lire une note que j’ai rédigée le 8 juillet 2019 à propos de glissements de terrain similaires en milieu glaciaire en Alaska :

https://claudegrandpeyvolcansetglaciers.com/2019/07/08/nouvel-effondrement-glaciaire-en-alaska-new-glacial-landslide-in-alaska/

Effondrement sur le glacier Lamplugh (Alaska) le 28 juin 2016 (Crédit photo: Paul Swanstrom)

Glissement de terrain sur le volcan Iliamna le 21 juin 2019 (Crédit photo: USGS)

—————————————————

A major landslide occurred on Sunday April 14th, 2024 around 7 a.m. in the Bernina massif, close to the border with Italy. According to initial information, there were no casualties or injuries. At this early hour, there were not many people on the mountain.
The landslide occurred at Piz Scerscen, which peaks at an altitude of 3,970 meters. it mobilized a volume of materials estimated at more than a million cubic meters. This volume is of the order of magnitude of a similar event which occurred in Bondo. It was detected by seismic networks in the region. The rock that broke away from the mountain accumulated in Val Roseg over a length of more than five kilometers. Search flights were carried out to look for possible people in distress, but no one was missing. The authorities advise against going to Val Roseg and the landslide area.
A landslide of this magnitude is very rare. An analysis of the situation is underway in collaboration with the Cantonal Office of Forests and Natural Hazards which will take possible measures. The risk of possible lake formation in the valley due to the landslide will also be examined.
The area where this landslide originated had suffered a significant rupture in January 2023 and was showing fragility, so climbers were advised to avoid this part of the mountain.
At first glance, it appears that the collapse was triggered by a steeply inclined rock wall which probably suffered fragmentation at the foot of the initial slope, with the formation of a long avalanche of material.
Such collapses usually occur in spring and early summer. They are of course favored by the high temperatures in the Alpine massif and in Europe in general for several weeks. They also cause the thawing of rock permafrost which ensures the stability of the mountains. Without this natural cement, mountain sides collapse more and more often.
In connection with this event, I invite you to read a post I wrote on July 8th , 2019 about similar landslides in glacial environments in Alaska:
https://claudegrandpeyvolcansetglaciers.com/2019/07/08/nouvel-collapse-glaciaire-en-alaska-new-glacial-landslide-in-alaska/