Des hauts et des bas, mais la hausse des températures continue // Highs and lows but temperatures keeps increasing

Parmi les climatologues, il existe encore des climato-sceptiques qui recherchent des exemples prouvant que des températures froides existent toujours à travers le monde. Ces chasseurs de records ont détecté dans l’hémisphère Nord: une température de -69,6°C enregistrée le 22 décembre 1991 dans la station météorologique automatique de Klinck, non loin du point le plus élevé de l’inlandsis groenlandais.
Cette température fait mieux que les -67,8°C enregistrés à deux reprises à Oimekon  et Verkhoyanksk (Sibérie), respectivement en 1933 et 1892. Ce dernier site russe a fait la une de la presse ces derniers mois après avoir enregistré un record de température (37,7°C)au nord du cercle polaire arctique pendant une vague de chaleur dans la région.
La température la plus froide jamais enregistrée sur Terre a été -89,2°C en 1983 à la station météorologique de Vostok en Antarctique.

Soyons bien clairs; les records de chaleur et de froid existent et existeront toujours. Ce qu’il faut prendre en compte, ce ne sont pas ces extrêmes, mais la tendance générale. Lorsque l’on observe les courbes et graphiques, il est indéniable que les températures globales de notre planète sont à la hausse, malgré les hauts et les bas enregistrés ponctuellement. Tous les observateurs sur le terrain s’accordent aujourd’hui pour dire que les calottes glaciaires et les glaciers fondent à une vitesse incroyable. Le plus inquiétant, c’est que cette hausse des températures est parallèle à la hausse des concentrations de CO2 dans l’atmosphère.

Source : Presse américaine.

———————————————-

Among climatologists, there are still global warming skeptics who look for examples proving that cold temperature records still exist. The climate historians hunting for past temperature extremes have unearthed a record low in the Northern Hemisphere: -69.6 Celsius recorded on December 22nd, 1991 at an automatic weather station in Klinck, not far from the highest point on the Greenland Ice Sheet.

This temperature surpasses the -67.8°C recorded twice at Siberian sites of Oimekon in 1933 and Verkhoyanksk in 1892. The latter Russian site made headlines in recent months for recording a new record-high temperature (37.7°C) north of the Arctic Circle during a heatwave in the region.

The coldest temperature ever recorded on Earth was the -89.2 Celsius recorded in 1983 at the Vostok weather station in Antarctica.

Let’s make it very clear; record high and record low temperatures will always exist. What is to be taken into account is not these extremes, but the general tendency. Looking at the graphs, it is undeniable that global temperatures are on the rise, despite the recod highs and lows that are punctually recorded. All observers on the field agree to day that ice sheets and glaciers are melting at an incredible speed. What worries me is that the increase in temperatures goes parallel with the increase in CO2 concentrations in the atmosphere.

Source: US news media.

Source : NASA

Découverte d’un ours des cavernes en Sibérie // Discovery of a cave bear in Siberia

Avec le dégel du pergélisol en Sibérie, les découvertes d’animaux préhistoriques comme les mammouths laineux et les rhinocéros laineux se produisent régulièrement. Ces derniers temps, les éleveurs de rennes de l’une des îles Lyakhovsky ont mis au jour la carcasse parfaitement préservée d’un ours des cavernes de la période glaciaire. Ses dents et même son nez sont intacts. Dans le passé, les scientifiques découvert que les os d’ours des cavernes disparus il y a 15 000 ans.
L’ours des cavernes (Ursus spelaeus) est une espèce ou sous-espèce préhistorique qui vivait en Eurasie au Pléistocène moyen et tardif et a disparu il y a environ 15000 ans.
Les premiers résultats des analyses révèlent que l’ours a pu vivre dans l’Interglaciaire de Karginsky (une entre 22 000 et 39 500 ans). Il sera toutefois nécessaire de réaliser une analyse au radiocarbone pour déterminer l’âge précis de l’animal.
Les scientifiques de l’Université Fédérale du Nord-Est (NEFU) à Iakoutsk – le premier centre de recherche sur les mammouths laineux et d’autres espèces préhistoriques – ont souligné que «c’est la première et la seule découverte de ce genre; une carcasse d’ours entière avec des tissus bien conservés. » L’ours est intact, avec tous les organes internes en place.
Vous trouverez une galerie de photos de la découverte dans le Siberian Times:
https://siberiantimes.com/other/others/news/first-ever-preserved-grown-up-cave-bear-even-its-nose-is-intact-unearthed-on-the-arctic-island/

—————————————-

With the thawing of permafrost in Siberia, discoveries of prehistoric animals like woolly mammoths and wooly rhinos are regularly made. This time, reindeer herders on one of the Lyakhovsky Islands have found a perfectly preserved carcass of an Ice Age cave bear, with its teeth and even its nose intact. Previously scientists only had been able to discover the bones of cave bears that became extinct 15,000 years ago.

The cave bear (Ursus spelaeus) is a prehistoric species or subspecies that lived in Eurasia in the Middle and Late Pleistocene period and became extinct about 15,000 years ago.

According to the rough preliminary suggestions, the bear could live in Karginsky interglacial (this was the period between 22,000 and 39,500 years). It will be necessary to carry out radiocarbon analysis to determine the precise age of the bear.

Scientists of the North-Eastern Federal University (NEFU) in Yakutsk, the premier center for research into woolly mammoths and other prehistoric species, emphasized that “this is the first and only find of its kind ; a whole bear carcass with soft tissues.” The bear is completely preserved, with all internal organs in place, including even its nose.

A photo gallery of the discovery can be found in The Siberian Times:

https://siberiantimes.com/other/others/news/first-ever-preserved-grown-up-cave-bear-even-its-nose-is-intact-unearthed-on-the-arctic-island/

Une des premières photos de l’ours des cavernes mises en ligne par la NEFU

Le dégel du pergélisol de la Sibérie à l’Alaska // Permafrost thawing from Siberia to Alaska

L’écroulement d’un  réservoir de mazout à Norilsk (Sibérie) à la fin du mois de mai 2020, et la pollution que l’accident a occasionnée, ont quelque peu réveillé les médias qui ont daigné consacrer quelques reportages à cette catastrophe environnementale. Il est à noter que les autorités russes ont été assez longues à admettre que l’écroulement de la citerne de carburant était dû au dégel du pergélisol. A cause du réchauffement climatique, le sol normalement gelé s’est affaissé sous le poids de la citerne, envoyant quelque 21 000 tonnes de mazout dans la nature. Par comparaison, le naufrage de l’Exxon Valdez avait libéré 37 000 tonnes de pétrole en Alaska en 1989.

Norilsk n’est pas un cas isolé et ce genre d’accident est appelé à se multiplier. On estime que la limite du pergélisol s’est déplacée de 130 km vers le nord au Québec entre 1960 et 2010. J’ai expliqué comment les installations gazières devaient être contrôlées et réajustées régulièrement dans la Péninsule de Yamal en Sibérie. Les fondations de l’usine Yamal LNG font appel à une ingénierie unique expliquée à cette adresse : https://www.ep.total.com/fr/domaines/gaz-naturel-liquefie/yamal-lng-decouvrir-notre-projet-en-russie/fondations-sur-permafrost

Le pergélisol recouvre la plus grande partie de l’Arctique, mais les infrastructures pétrolières ou gazières ne sont pas présentes partout. En Alaska, c’est le terminal pétrolier de Prudhoe Bay qui est le plus menacé. En 1978, le pergélisol à 20 mètres de profondeur à Prudhoe Bay avait une température de -8,7°C. En 2018, le température était montée à -5,2°C.
Les entreprises alaskiennes ont mis en place des stratégies pour faire face aux variations des températures saisonnières avec des unités de réfrigération souterraines pour maintenir la stabilité du sol. Mais l’impact du réchauffement se fera aussi sur les infrastructures environnantes, y compris la Dalton Highway, route non goudronnée (NDLR : aux multiples ornières ! Prudence si vous l’empruntez !) reliant les champs pétrolifères à l’intérieur de l’Alaska.

Les géologues expliquent que les risques de déversements d’hydrocarbures au Canada ne sont pas liés au dégel du pergélisol car il n’y a pas d’énormes réservoirs comme à Norilsk. En revanche, on parle de problèmes liés au trafic maritime qui va forcément augmenter dans l’Arctique avec la fonte de la glace de mer prévue pendant l’été à partir de 2040.

Quand on avance le risque de marée noire qui ne manquera pas d’apparaître avec l’intensification du trafic maritime dans l’Océan Arctique, certains font remarquer que les microbes ont une capacité étonnante de dégradation des hydrocarbures, malgré le froid. La grande inconnue sera toutefois la glace car on ne sait pas si les microbes seront aussi efficaces pour dégrader les couches d’hydrocarbures sur la glace.

Pour essayer de contrer le réchauffement climatique et le dégel du pergélisol, différentes techniques sont déjà mises en œuvre dans les villes avec la construction d’immeubles sur pilotis pour permettre la circulation de l’air. Une solution souvent envisagée est de pomper de l’air froid dans le sol durant l’hiver, pour accélérer le refroidissement saisonnier sous les infrastructures menacées.

L’un des points peu étudiés à propos du dégel du pergélisol est la formation de nappes d’eau souterraine, un phénomène inquiétant car la circulation souterraine de l’eau pourrait accélérer le dégel du pergélisol et créer des affaissements importants. On a vu apparaître brutalement des thermokarsts, affaissements de sols localisés, très spectaculaires, faisant souvent des dizaines de mètres de large et plusieurs mètres de profondeur, au milieu des terres arctiques.

Source : Presse canadienne.

——————————————-

The collapse of an oil tank in Norilsk (Siberia) at the end of May 2020, and the pollution the accident caused, have somewhat woken up the media, that have accepted to devote a few reports to this environmental disaster. It should be noted that the Russian authorities took quite a while to admit that the collapse of the fuel tank was due to the thawing of permafrost. Due to global warming, the normally frozen ground sank under the weight of the tank, sending some 21,000 tonnes of fuel oil into the wild. By comparison, the sinking of  Exxon Valdez released 37,000 tonnes of oil in Alaska in 1989.
Norilsk is not an isolated case and such accidents are set to multiply. It is estimated that the permafrost limit shifted 130 km northward in Quebec between 1960 and 2010. I explained how gas installations have to be checked and readjusted regularly in the Yamal Peninsula in Siberia. The foundations of the Yamal LNG factory use unique engineering explained at this address: https://www.ep.total.com/fr/domaines/gaz-naturel-liquefie/yamal-lng-decouvrir-notre-projet-en-russie/fondations-sur-permafrost

Permafrost covers most of the Arctic, but oil and gas infrastructure is not everywhere. In Alaska, the Prudhoe Bay oil terminal is the most threatened. In 1978, the permafrost 20 meters deep at Prudhoe Bay had a temperature of -8.7°C. In 2018, the temperature rose to -5.2°C.
Alaskan companies have strategies in place to deal with seasonal temperature variations with underground refrigeration units to maintain soil stability. But the impact of global warming will also be on the surrounding infrastructures, including the Dalton Highway, a gravel road (Editor’s note: with multiple potholes! Be careful if you drive on it!) connecting the oil fields to the interior of Alaska .
Geologists explain that the risk of oil spills in Canada is unrelated to thawing permafrost because there are no huge tanks like in Norilsk. The problems will rather be related to maritime traffic which will inevitably increase in the Arctic with the melting of sea ice expected during the summer from 2040.
When one puts forward the risk of an oil spill which will inevitably appear with the intensification of maritime traffic in the Arctic Ocean, some point out that microbes have an astonishing capacity for degrading oil, despite the cold. The big unknown, however, will be the ice because it is not known whether the microbes will be as effective in breaking down the oil layers on the ice.
To try to face global warming and the thawing of permafrost, different techniques are already implemented in cities with the construction of buildings on stilts to allow air circulation. A solution often considered is to pump cold air into the ground during winter, to speed up seasonal cooling under threatened infrastructure.
One of the little-studied points about thawing permafrost is the formation of underground water pockets, a disturbing phenomenon because the underground circulation of water could accelerate the thawing of permafrost and create significant subsidence. We have seen the sudden appearance of thermokarsts, localized, dut very spectacular subsidence of soil, often tens of meters wide and several meters deep, in the middle of the Arctic tundra.
Source: Canadian Press.

Hausse de température du pergélisol à 20 m de profondeur à Prudhoe Bay (Alaska) entre 1979 et 2019 (Source : Université de Fairbanks)

Oléoduc transalaskien entre Prudhoe Bay au nord et Valdez au sud (Photo : C. Grandpey)

Thermokarst en Sibérie (Crédit photo : Wikipedia)

Le diesel de Norilsk (Sibérie) : une pollution à très long terme // Norilsk’s diesel (Siberia) : a long term pollution

Fin mai 2020, un réservoir de stockage de diesel s’est renversé à Norilsk (Sibérie) en raison du dégel du pergélisol. L’accident a répandu dans la nature 20 000 tonnes de mazout. Les vents violents qui soufflaient à ce moment-là ont favorisé sa propagation jusqu’à plus de 20 kilomètres de la source, contaminant au passage les rivières, les lacs et le sol à proximité. Il s’agit d’une catastrophe environnementale majeure aux conséquences graves et difficiles à évaluer.
Les biologistes qui étudient les écosystèmes arctiques s’inquiètent de l’impact à long terme de tout ce mazout sur un environnement où la vie a du mal à s’installer. Alors que les bactéries sont bien connues pour leur capacité à nettoyer les nappes d’hydrocarbures ailleurs dans le monde, dans l’Arctique c’est différent ; elles sont beaucoup moins nombreuses et leur activité est beaucoup plus lente, ce qui signifie que le diesel qui s’est répandu à Norilsk restera présent pendant des années, voire des décennies.
Le problème, c’est que le diesel de Norilsk est différent des autres, par exemple celui qui s’est échappé de l’Exxon Valdez à Valdez (Alaska) en 1989. A Valdez, il s’agissait de pétrole brut épais qui reste à la surface de l’eau de mer. Pour ce type de marée noire, les solutions de nettoyage sont bien connues. En revanche, à Norilsk, on a affaire à du gasoil plus fin et moins visqueux dans l’eau douce, ce qui rend le nettoyage plus difficile.
Le diesel contient entre 2 000 et 4 000 types d’hydrocarbures qui se décomposent de façon différente dans l’environnement. En règle générale, la moitié ou un peu plus peut s’évaporer en quelques heures ou quelques jours, ce qui peut causer des problèmes respiratoires à la population que se trouve à proximité.
D’autres éléments chimiques plus résistants peuvent adhérer aux algues et aux micro-organismes dans l’eau et couler en créant une boue toxique qui se dépose sur le lit d’une rivière ou d’un lac. On a l’impression que la contamination a disparu et qu’elle n’est plus une menace, mais ces boues peuvent persister pendant des mois ou des années.
Au bas de la chaîne alimentaire dans les rivières et les lacs, il y a des plantes microscopiques et des algues qui ont besoin de la lumière du soleil pour créer de l’énergie par la photosynthèse. Lorsque le pétrole pénètre dans l’eau pendant un accident comme celui de Norilsk, il reste à la surface et forme un écran qui bloque les rayons du soleil, de sorte que ces organismes diminuent rapidement en nombre. Le zooplancton qui s’en nourrit finit également par mourir.
Au départ, le pétrole recouvre les particules du sol, réduisant leur capacité à absorber l’eau et les nutriments ; cela affecte négativement les organismes dans le sol car ils sont incapables d’accéder à la nourriture et à l’eau essentielles à leur survie. Cette couverture huileuse peut rester des années car il est très difficile de s’en débarrasser. La seule solution est souvent de l’évacuer physiquement à l’aide de pelleteuses et bulldozers.
Dans les premiers jours de juillet, Nornickel, la société minière propriétaire du réservoir de diesel, a déclaré avoir retiré 185 000 tonnes de sol pollué qui ont été stockées sur place pour être décontaminées début septembre. Une fois « nettoyé », ce sol retrouvera probablement son emplacement d’origine. L’équivalent de 13 piscines olympiques d’eau contaminée par le diesel a été pompé de la rivière et acheminé vers un site industriel voisin où les produits chimiques nocifs seront mis à l’écart. L’eau «propre» sera probablement déversée dans la rivière.
De telles mesures ont le mérite d’avoir été prises, même si des toxines resteront probablement dans l’eau et le sol. Au fil des mois et des années, ces toxines s’accumuleront dans la chaîne alimentaire, à commencer par les organismes microscopiques, et finiront par causer des problèmes de santé à des organismes plus gros comme les poissons et les oiseaux.
Normalement, les conditions froides de l’Arctique font obstacle à l’activité microbienne et à la biodégradation. Cependant, la vague de chaleur récemment observée dans la région pourrait accélérer ce processus. Cela permettrait aux micro-organismes qui attaquent le pétrole de se développer, de se reproduire et de consommer ces contaminants plus rapidement qu’habituellement.

Le réservoir de stockage de diesel de Norilsk s’est renversé en raison du dégel rapide du pergélisol. Comme le pergélisol constitue la majeure partie du sol de cette partie de la Russie, la région est très sensible au réchauffement climatique. Comme je l’ai déjà écrit, la plupart des gisements de pétrole et de gaz dans l’Arctique russe sont menacés par l’instabilité des infrastructures. Sans réglementation plus stricte pour améliorer les infrastructures existantes, de nouveaux accidents sont susceptibles de se produire, avec d’importants phénomènes de pollution..
Source: The Conversation.

————————————————

In late May 2020, a diesel storage tank in Norilsk, Siberia, collapsed because of the thawing of permafrost and released 20,000 tonnes of diesel fuel into the environment. Strong winds caused the oil to spread more than 20 kilometres from the source, contaminating nearby rivers, lakes and the surrounding soil. This spill was a major disaster with serious implications.

Biologists who study Arctic ecosystems are worried about the long-term impacts of this diesel spill in an environment where life is limited. While bacteria are known to help clean up oil spills elsewhere in the world, in the Arctic, their numbers are low and their rate of activity is slow, which means that the Norilsk diesel will linger for years, if not decades.

The problem is that the Norilsk diesel is different from others like the one that came out of the Exxon Valdez in Valdez (Alaska) in 1989. The Valdez diesel involved thick crude oil that sits on the surface of seawater. For this sort of spills, clean-up practices are well known. On the contrary, the recent Norilsk spill involved thinner, less gloopy diesel oil in freshwater, making clean-up more difficult.

Diesel oil contains between 2,000 and 4,000 types of hydrocarbon which break down differently in the environment. Typically, 50% or more can evaporate within hours and days, possibly causing respiratory problems for people nearby.

Other, more resistant chemicals can bind with algae and microorganisms in the water and sink, creating a toxic sludge on the bed of the river or lake. This gives the impression that the contamination has been removed and is no longer a threat. However, this sludge can persist for months or years.

At the bottom of the food chain in rivers and lakes, there are microscopic plants and algae that need sunlight to create energy through photosynthesis. When oil enters the water during a spill, it sits on the surface and forms a screen that blocks the sunrays, so that these organisms rapidly decrease in number. Zooplankton  that feeds on them also eventually dies off.

Initially, oil coats soil particles, reducing their ability to absorb water and nutrients, negatively affecting soil organisms as they are unable to access food and water essential for survival. This oily coat can last for years as it is very hard to wash off, so often the soil has to be physically removed.

In the first days of July, Nornickel, the mining company that owned the storage tank, said it had removed 185,000 tonnes of contaminated soil. The polluted soil is being stored on site to be treated by early September. The “cleaned” soil will then likely be returned to its original site. The equivalent of 13 Olympic swimming pools of fuel-contaminated water has been pumped from the river to a nearby industrial site where harmful chemicals will be separated and the “clean” water will likely by returned to the river.

This is better than nothing, although toxins will likely remain in both the water and soil. Over months and years, these toxins will build up within the food chain, starting with the microscopic organisms and eventually causing health problems in larger organisms such as fish and birds.

Normally, cold Arctic conditions are an obstacle to microbial activity and biodegradation. However, the recently observed Arctic heatwave might speed up this process, enabling oil-degrading microorganisms to grow, reproduce and consume these contaminants more rapidly than normal.

The fuel tank in Norilsk collapsed due to rapidly thawing permafrost. With permafrost underlying most of Russia, the region is highly vulnerable to climate warming. As I put it before, most oil and gas extraction fields in the Russian Arctic are at risk of infrastructure instability. Without more stringent regulations to improve existing infrastructure, more spills are likely to occur, with more pollution.

Source : The Conversation.

Sur cette image satellite, on peut voir le mazout (en rouge foncé) se répandre dans la rivière Ambarnaya près de Norilsk (Source: European Space Agency)

Gigantesques incendies en Sibérie // Huge wildfires in Siberia

Ce n’est pas une surprise: les incendies de forêt en Sibérie ont été multipliés par cinq au cours de la semaine dernière alors que se poursuit  la vague de chaleur sans précédent que j’ai mentionnée dans une note  précédente. Une température de 38°C a été enregistrée dans la ville de Verkhoyansk. C’est la température la plus chaude jamais enregistrée au-dessus du Cercle polaire arctique.

Selon les chiffres communiqués par Avialesookhrana, le service russe des incendies de forêts, environ 1,2 million d’hectares brûlaient en Sibérie le 27 juin 2020, dans des zones inaccessibles aux pompiers, de sorte qu’il est actuellement impossible de contenir les incendies.
Source: The Siberian Times.

La situation est la même que l’an dernier. Il ne faudrait pas oublier que les incendies arctiques sans précédent observés au cours de l’été 2019 ont survécu à l’hiver sous la forme de « feux zombies ». Les feux se sont rallumés au mois de mai, alors que la neige est encore en train de fondre.

Les incendies dans l’Arctique contribuent au dégel du permafrost et envoient dans l’atmosphère d’importantes quantités carbone, exacerbant de ce fait le réchauffement climatique, lui-même responsable de ces incendies.

Maintenant que les températures augmentent dans la région et que la neige fond, l’analyse des images satellitaires montrant les brûlis de l’année dernière et des incendies qui ont éclaté en mai 2020 confirment que de nombreux incendies survenant en Sibérie en ce moment sont en réalité des « incendies zombies », autrement des résurgences d’incendies de l’année passée qui ont conservé un vestige d’activité sous terre. En effet, ces incendies peuvent continuer de couver dans le sous-sol sans montrer de signes visibles d’activité au-dessus du sol.

L’analyse d’images satellitaires Sentinel-2 de l’Agence Spatiale Européenne a imontré des empreintes d’incendies actifs en 2019 et des points chauds en 2020 laissant supposer que les incendies avaient repris sur les mêmes zones  immédiatement après la fonte des neiges cette année. Il faut savoir que le sous-sol de la toundra est très riche en tourbe,ce qui favorise la reprise des incendies.

—————————————————

The piece of news comes as no surprise: wildfires in Siberia have grown five-fold over the past week amid the unprecedented heatwave I mentioned in a previous post. A temperature of 38°C was recorded in the town of Verkhoyansk, marking the hottest-ever temperature recorded above the Arctic Circle. The heatwave in the region continues to date

According to figures reported by Russian aerial forest fire management Avialesookhrana, about 1.2 million hectares were burning in Siberia on June 27th, 2020, in areas unaccessible to firefighters. Containing the fires is impossible at the moment.

Source: The Siberian Times.

The situation is the same as last year. It should be noted that the unprecedented Arctic fires observed in the summer of 2019 survived the winter in the form of « zombie fires ». The fires started again in May, while the snow was still melting. (see my post of May 21st, 2020)
More important, Arctic fires are contributing to the thawing of permafrost and sending large amounts of carbon into the atmosphere, thereby exacerbating global warming, which is itself responsible for these fires.
Now that temperatures are increasing in the region and the snow is melting, analysis of satellite images showing last year’s burns and fires that started in May 2020 confirm that many fires occurring in Siberia at the moment are in reality « zombie fires », the resurgence of fires of the past year which have preserved some underground activity. Indeed, these fires can continue to smolder in the subsoil without showing visible signs of activity above the ground.
Analysis of Sentinel-2 satellite images from the European Space Agency showed traces of active fires in 2019 and hot spots in 2020, suggesting that fires had resumed in the same areas immediately after the snow melted this year. One should keep in mind that the subsoil of the tundra is very rich in peat, which favours the resumption of fires.

Les incendies en Sibérie vus depuis l’espace le 30 juin 2020 (Satellite Copernicus Sentinel -2)

Avalanche de records de chaleur en Sibérie // Avalanche of heat records in Siberia

Une chaleur inquiétante s’est abattue sur la Sibérie le 20 juin 2020. Une température de 37,7°C a été enregistrée dans la petite ville de Verkhoyansk (67,5° de latitude N), 17 degrés au-dessus de la normale à cette époque de l’année. C’est probablement la température la plus chaude jamais enregistrée en Sibérie et aussi la température la plus chaude jamais enregistrée au nord du cercle polaire arctique (66,5° N). Par comparaison, la ville de Miami, en Floride, n’a atteint 37,7°C qu’une seule fois depuis le début des relevés de température dans cette ville en 1896. Ce qui se passe en Sibérie cette année est le type de temps qui était prévu en 2100, mais qui arrive 80 ans plus tôt.
Une température de  37°C est du jamais vu dans l’Arctique ou le proche Arctique. Il se dit, mais ce n’est pas sûr, qu’en 1915 la ville de Prospect Creek en Alaska, à une latitude plus basse que Verkhoyansk, a presque atteint cette température. En 2010, une ville à quelques kilomètres au sud du cercle polaire arctique en Russie a atteint, elle aussi, 37,7°C. En raison des conditions chaudes et sèches, de nombreux incendies se sont déclarés en Sibérie et leur fumée est visible sur des milliers de kilomètres sur les images satellite.
Verkhoyansk n’est pas un événement isolé. Certaines parties de la Sibérie connaissent des températures supérieures à la normale depuis le mois de janvier. En mai, certaines températures en Sibérie occidentale étaient supérieures de 10 degrés Celsius à la normale, pas seulement pour une journée, mais pour l’ensemble du mois. Dans son ensemble, la Sibérie occidentale s’est située en moyenne à plus de cinq degrés Celsius au-dessus de la normale en mai, effaçant ainsi tous les records précédents.
Les événements extrêmes de ces dernières années dans l’Arctique sont dus à la fois à des modèles météorologiques naturels et des changements climatiques d’origine humaine. Le modèle météorologique à l’origine de cette vague de chaleur est une dorsale de hautes pressions remarquablement immobile, un mur de chaleur qui se dresse verticalement dans l’atmosphère. La chaleur étouffante observée actuellement devrait persister pendant au moins la semaine prochaine, avec des températures atteignant facilement les 30°C dans l’est de la Sibérie.
Cette vague de chaleur n’est pas un phénomène météorologique isolé. L’été dernier, la ville de Markusvinsa au nord de la Suède, juste au sud du cercle polaire, a enregistré une température de 34,4°C.

Comme je l’ai expliqué précédemment, au cours des quatre dernières décennies, le volume de glace de mer dans l’Arctique a diminué de 50%. L’absence de blancheur de la glace et l’augmentation de surface sombre des océans et des terres signifie que moins de lumière est réfléchie, ce qui crée la une boucle de rétroaction que j’ai expliquées dans mes notes précédentes. Tandis que le climat global de la planète continue de se réchauffer, des extrêmes comme la vague de chaleur actuelle deviendront plus fréquents et s’intensifieront.
Source: Yahoo News.

——————————————–

Alarming heat scorched Siberia on June 20th, 2020. A temperature of 37.7°C was recorded in the small town of Verkhoyansk (67.5°N latitude), 17 degrees above the normal high temperature. It might be the hottest temperature ever recorded in Siberia and also the hottest temperature ever recorded north of the Arctic Circle (66.5°N). To put this into perspective, the city of Miami, Florida, has only reached 37.7°C one time since the city began keeping temperature records in 1896. What is happening in Siberia this year is the kind of weather that is expected by 2100, 80 years early.

Reaching 37°C in or near the Arctic is almost unheard of. It is said, but not sure, that in 1915 the town of Prospect Creek, Alaska, not quite as far north as Verkhoyansk nearly reached this temperature. And in 2010 a town a few kilometres south of the Arctic Circle in Russia reached 37.7°C. As a result of the hot-dry conditions, numerous fires are raging in Siberia, and smoke is visible for thousands of kilometres on satellite images.

Verkhoyansk  is not an isolated occurrence. Parts of Siberia have had temperatures above normal since January. In May some temperatures in western Siberia were 10 degrees Celsius above normal, not just for a day, but for the month. As a whole, western Siberia averaged more than five degrees above normal for May, obliterating anything previously experienced.

The extreme events of recent years are due to a combination of natural weather patterns and human-caused climate change. The weather pattern giving rise to this heat wave is an incredibly persistent ridge of high pressure, a dome of heat which extends vertically upward through the atmosphere. The sweltering heat is forecast to remain in place for at least the next week, catapulting temperatures easily about 30°C in eastern Siberia.

This heat wave can not be viewed as an isolated weather pattern. Last summer, the town of Markusvinsa, a village in northern Sweden on the southern edge of the Arctic Circle, hit 34.4°C.

As I have explained before, over the past four decades, sea ice volume has decreased by 50%. The lack of white ice, and corresponding increase in dark ocean and land areas, means less light is reflected and more is absorbed, creating a feedback loop. As the average climate continues to heat up, extremes like the current heat wave will become more frequent and intensify.

Source: Yahoo News.

Vous voulez bronzer? Allez en Sibérie!

La fonte du permafrost et ses conséquences // Permafrost thawing and its consequences

Suite à la pollution majeure provoquée par le déversement d’une cuve de mazout dans une rivière de Sibérie, la Russie a ordonné une vérification complète des infrastructures à risque bâties sur le permafrost qui est en train de fondre sous l’effet du réchauffement climatique. Les piliers qui soutenaient le réservoir de stockage du mazout se sont enfoncés dans le sol qui a perdu de sa rigidité avec la fonte du pergélisol.

Comme je l’ai indiqué à plusieurs reprises, la fonte du permafrost est prise très au sérieux par les autorités russes car elle fragilise les villes et les infrastructures, notamment minières, gazières et pétrolières. Le gouvernement russe considère ce dégel dans l’Arctique, où l’exploitation des ressources naturelles est une priorité stratégique du Kremlin, comme un risque majeur aux conséquences imprévisibles.

Les autorités russes disent avoir enfin stoppé la progression des hydrocarbures qui se sont déversés en particulier dans la rivière Ambarnaïa. Un barrage de confinement flottant a rapidement été mis en place et les polluants ont commencé à être pompés de cette rivière qui alimente le lac et le fleuve Piassino, très importants pour l’écosystème et les populations locales. Il est prévu de pomper les hydrocarbures et de les stocker sur place dans des conteneurs en attendant l’hiver, lorsque le gel aura rendu le terrain plus praticable.

Source : The Siberian Times.

Un point positif de cette pollution en Sibérie pourrait être une prise de conscience de la fonte du permafrost et de ses conséquences pour la planète. Comme je l’ai indiqué à plusieurs reprises, la fonte du sol gelé est une bombe à retardement sanitaire et écologique qui menace d’accélérer le réchauffement climatique.

An fondant, le permafrost se réchauffe et libère progressivement les gaz qu’il neutralisait jusque-là. Le phénomène devrait s’accélérer et les scientifiques décrivent un cercle vicieux : les gaz émis par le permafrost accélèrent le réchauffement, qui accélère la fonte du permafrost.

Selon un rapport du GIEC paru en septembre 2019, une fonte majeure du permafrost pourrait se produire d’ici 2100 si les émissions de CO2 ne sont pas réduites. Cela provoquerait l’émission de dizaines voire de centaines de milliards de tonnes de gaz à effet de serre.

Outre ses effets climatiques, la fonte du permafrost représente aussi une menace sanitaire car le sol gelé abrite des bactéries et virus parfois oubliés. Il est bon de rappeler que, pendant l’été 2016, un enfant est mort en Sibérie de la maladie du charbon (anthrax), pourtant disparue depuis 75 ans dans cette région. Les scientifiques ont alors expliqué que l’origine remontait très probablement au dégel d’un cadavre de renne mort de l’anthrax il y a plusieurs dizaines d’années. Libérée, la bactérie mortelle, qui se conserve dans le permafrost pendant plus d’un siècle, a réinfecté des troupeaux. La menace ne se limite pas à l’anthrax. Des chercheurs ont découvert ces dernières années deux types de virus géants, dont l’un vieux de 30 000 ans, conservés dans le permafrost.

Source : La Voix du Nord.

——————————————-

Following major pollution caused by the spilling of an oil tank into a Siberian river, Russia has ordered a full monitoring of the infrastructure built on permafrost which is melting under the effect of global warming. The pillars that supported the diesel storage tank sank into the ground which had lost its rigidity with the thawing of permafrost.
As I have put it several occasions, the melting of permafrost is taken very seriously by the Russian authorities because it weakens cities as well as mining, gas and oil infrastructure. The Russian government considers permafrost melting in the Arctic, where the exploitation of natural resources is a strategic priority of the Kremlin, as a major risk with unforeseeable consequences.
Russian authorities say they have finally stopped the progression oil spill, in particular in the Ambarnaïa river. A floating containment dam was quickly put in place and pollutants began to be pumped from this river which feeds the lake and the Piassino river, which are very important for the ecosystem and local populations. It is planned to pump the hydrocarbons and store them on site in containers until winter, when the frost makes the ground more solid and practical.
Source: The Siberian Times.

A positive point of this pollution in Siberia could be an awareness of the melting of permafrost and its consequences for the planet. As I have said many times, the melting of frozen ground is a health and environmental time bomb that threatens to accelerate global warming.
As it melts, permafrost heats up and gradually releases the gases it previously neutralized. The phenomenon is expected to accelerate and scientists describe a vicious circle: the gases emitted by permafrost accelerate warming, which accelerates the melting of permafrost.
According to an IPCC report published in September 2019, a major melting of permafrost could occur by 2100 if the CO2 emissions are not reduced. This would cause the emission of tens or even hundreds of billions of tonnes of greenhouse gases.
In addition to its climatic effects, the melting of permafrost also represents a health threat because the frozen soil contains bacteria and viruses that are sometimes forgotten. It is worth recalling that, during the summer of 2016, a child died in Siberia from anthrax, which had disappeared in the region for 75 years. Scientists then explained that the origin most likely dates back to the thawing of a reindeer corpse that had died of anthrax several decades ago. Released, the deadly bacteria, which has been stored in permafrost for more than a century, reinfected herds. The threat is not limited to anthrax. Researchers have discovered in recent years two types of giant viruses; one of them is 30,000 years old and was stored in permafrost.
Source: La Voix du Nord.

Source: Woods Hole Research Center

Effets de la fonte du permafrost sur le réseau routier en Alaska (Photo : C. Grandpey)