Séismes lents en Nouvelle Zélande // Slow-motion earthquakes in New Zealand

J’ai appris à me méfier de Wikipedia qui diffuse parfois des informations inexactes, mais la définition d’un séisme lent qui est proposée me semble intéressante. Selon l’encyclopédie collective, « un séisme lent (SSE, pour slow slip event) est un déplacement discontinu semblable à celui d’un séisme classique, mais qui libère l’énergie élastique en plusieurs heures ou plusieurs jours au lieu de quelques minutes pour un séisme ordinaire. Les séismes lents ont d’abord été détectés par la mesure des déplacements et déformations. »

On peut lire aussi : « Les séismes lents correspondent à des phases transitoires de glissement lent et asismique le long des failles de subduction, à des profondeurs généralement plus importantes que les grands séismes. Les séismes lents peuvent atteindre une magnitude supérieure à M 7 et se déclenchent assez régulièrement. Grâce au déploiement de réseaux denses d’observation par GPS, des séismes lents ont pu être observés le long de nombreuses zones de subduction, notamment en Nouvelle-Zélande, au Japon, aux Cascades, au Mexique et en Équateur. »

En lisant la presse néo-zélandaise, on apprend que les stations GNSS de GeoNet le long de la côte sud de la région de Hawkes Bay et au nord de Gisborne se sont déplacées vers l’est de 1 à 2 cm depuis le début de 2023. Cela montre qu’un séisme lent est en cours au niveau de la zone de subduction de Hikurangi au large de la côte est de l’île du Nord. La quantité de mouvement de glissement lent au cours des 30 derniers jours a libéré une énergie équivalente à un tremblement de terre de M 7,0. Les scientifiques estiment que le déplacement sur la zone de subduction pendant l’événement a atteint 7 ou 8 cm au cours des deux dernières semaines.
Un autre épisode de séisme lent au large de Hawkes Bay a déjà été observé en 2022. En plus de l’événement de séisme lent, deux petits essaims sismiques ont été enregistrés dans la région, avec des magnitudes allant de M 1,0 à M 3,5. Ils sont probablement liés au séisme lent et sont vraisemblablement causés par des variations de contraintes dans la croûte terrestre.
Un autre séisme lent sous la région de Manawatu a commencé au début de 2022. Il n’a surpris personne car ces événements se produisent environ tous les cinq ans.
Les scientifiques de GeoNet ont récemment déployé de vastes réseaux temporaires de capteurs pour détecter ces séismes lents et toute activité sismique associée. Un géophysicien de GNS Science explique que les séismes lents sont un excellent rappel que la Nouvelle-Zélande se trouve à la frontière de plaques tectoniques très actives.
Source : New Zealand Herald, GeoNet.

————————————

I have always been wary of Wikipedia, which sometimes disseminates inaccurate information, but the definition of a slow-motion earthquake, or slow slip event (SSE), that is suggested seems interesting to me. According to the collective encyclopedia, « a slow slip event is a discontinuous movement similar to that of a conventional earthquake, but which releases the elastic energy in several hours or several days instead of a few minutes for an ordinary earthquake. Slow earthquakes were first detected by measuring displacements and deformations. »
We can also read: « Slow earthquakes correspond to transient phases of slow and aseismic sliding along subduction faults, at depths generally greater than large earthquakes. Slow earthquakes can reach a magnitude greater than M 7.0 and occur quite regularly. Thanks to the deployment of dense GPS observation networks, slow earthquakes have been observed along many subduction zones, including New Zealand, Japan, the Cascades, Mexico and Ecuador. »

Reading the New Zealand newspapers, we learn that GeoNet’s GNSS stations along the southern coast of the Hawkes Bay area and north of Gisborne have shifted eastward by 1 – 2 cm since the start of 2023, This indicates that a slow-motion earthquake is underway on the Hikurangi subduction plate boundary offshore the North Island’s east coast. The amount of slow slip movement during the last 30 days has released energy equivalent to an M 7.0 earthquake. Scientists estimate that the amount of movement on the subduction zone during the current event now amounts to 7 or 8 cm over the last couple of weeks.

Another large slow slip event offshore Hawkes Bay had already been observed in 2022. In addition to the slow slip event, two small seismic swarms have been recorded in the region, with magnitudes ranging from M 1.0 to M 3.5. These earthquakes are likely related to the slow slip event,and are probbly caused by changes in stress in the Earth’s crust.

Another slow-motion earthquake beneath the Manawatu region started up at the beginning of 2022. It was expectedas these events occur approximately every five years.

GeoNet scientists have recently deployed large, temporary networks of sensors to detect these slow slip events, and any related seismic activity. A GNS Science geophysicist explaines that slow-slip events are a great reminder that New Zealand is located on a very active tectonic plate boundary.

Source : New Zealand Herald, GeoNet.

 

Schéma montrant le mouvement sur la zone de subduction Hikurangi (code couleur en centimètres) au cours des séismes lents depuis la mi-décembre 2022. Les flèches blanches montrent le déplacement horizontal des stations GNSS au cours de la même période. (Source : GeoNet)

Un système automatique d’alerte éruptive sur l’Etna (Sicile) // An automatic eruptive alert system on Mt Etna (Sicily)

Selon la presse sicilienne, un système automatique destiné à alerter la population en cas d’éruption a été testé avec succès sur l’Etna  pendant 8 ans, de 2008 à 2016. Il a pu détecter 57 des 59 épisodes éruptifs une heure à l’avance. Basé sur un réseau de capteurs acoustiques, le système a été mis au point par un groupe de scientifiques de l’Université de Florence. Les résultats des tests ont été publiés dans le Journal of Geophysical Research.
Les scientifiques ont placé des capteurs sonores à environ 6 kilomètres du plus haut volcan actif d’Europe. Ces capteurs sont capables d’envoyer des signaux d’avertissement par le biais de messages et de courriers électroniques. À l’aide de ce système, le gouvernement italien a pu mettre au point en 2015 un plan d’alerte prêt à être déclenché une heure avant une éventuelle éruption.

Les chercheurs expliquent que les volcans génèrent des ondes sonores de basse fréquence qui ne peuvent pas être entendues par l’oreille humaine avant une éruption. Ces infrasons peuvent parcourir des milliers de kilomètres à l’intérieur du volcan et sont plus étroitement liés à une éruption que les ondes sismiques.
L’un des scientifiques a fait remarquer que la plupart des 1 500 volcans actifs dans le monde ne sont pas surveillés en temps réel. L’étude des ondes sismiques liées aux mouvements du magma est souvent insuffisante ; elle devrait être accompagnée d’une alerte automatique capable d’accélérer les procédures et réduire les risques. Après les premiers tests positifs sur l’Etna, les capteurs seront également testés sur d’autres volcans. L’objectif est de créer un réseau mondial de surveillance.

Source : Presse sicilienne.

—————————————————

According to the Sicilian press, an automatic system intended to alert the population in the event of an eruption has been successfully tested for 8 years on Mount Etna, from 2008 to 2016. It was able to detect 57 of the 59 eruptive episodes one hour in advance. Based on a network of acoustic sensors, the system was developed by a group of scientists from the University of Florence. The test results were published in the Journal of Geophysical Research.
Scientists set up sound sensors about 6 kilometres from the highest active volcano in Europe. These sensors are capable of sending warning signals through messages and emails. Using this system, the Italian government could develop in 2015 an alert plan ready to be triggered one hour before an eruption.
The researchers explain that volcanoes generate low frequency sound waves that can not be heard by the human ear before an eruption. These infrasounds can travel thousands of kilometres inside the volcano and are more closely related to an eruption than the seismic waves.
One of the scientists pointed out that most of the 1,500 active volcanoes in the world are not monitored in real time. The study of seismic waves related to the movements of magma is often insufficient; it should be accompanied by an automatic alert capable of speeding up procedures and reducing risks. After the first positive tests on Mt Etna, the sensors will also be tested on other volcanoes. The goal is to create a global surveillance network.
Source: Sicilian newspapers.

Photo: C. Grandpey

Yellowstone : Le Steamboat Geyser déconcerte les scientifiques // Steamboat Geyser puzzles the scientists

Le Steamboat Geyser dans le Parc National de Yellowstone inquiète les scientifiques qui se posent beaucoup de questions après sa huitième éruption depuis le mois de mars. Elle s’est produite à 9h04 le 4 juin 2018 et a propulsé de l’eau bouillante à plusieurs dizaines de mètres de hauteur. Le geyser a ensuite laissé échapper de volumineux panaches de vapeur.
Le Steamboat Geyser se manifeste très rarement, contrairement au Vieux Fidèle qui est très régulier. Sa dernière grosse éruption remonte à 2014. Les scientifiques ne savent pas pourquoi le geyser connaît subitement ce regain d’activité. Il se peut qu’un petit séisme ait ouvert un nouveau passage à la vapeur suchauffée qui fait jaillir l’eau à la surface. Il se peut aussi que la source magmatique ait subi une modification à la verticale du Steamboat. Les scientifiques prévoient de le surveiller plus activement et de mieux l’étudier pour comprendre ce qui a provoqué le changement soudain de son comportement. Ainsi, les géologues de l’Université de l’Utah ont mis en place une série de capteurs sismiques autour du geyser pour enregistrer les vibrations pendant les éruptions. Ils espèrent obtenir un modèle du réseau d’alimentation du geyser en mesurant les ondes sonores qui le traversent.
Les éruptions d’un geyser sont en surface les expressions de la libération de la pression dans le sous-sol. Au fur et à mesure que l’eau s’écoule dans le sol, elle se rapproche de la roche chauffée par le magma et se transforme en vapeur. Ce processus crée de l’eau surchauffée et sous pression qui se trouve piégée sous la surface de la Terre. Finalement, cette eau bouillante et cette vapeur rassemblent assez de pression pour surmonter la pression de l’eau qui les surmonte. Elles sont brusquement expulsées et donnent naissance à une éruption spectaculaire.
Les autorités du Parc conseillent aux personnes qui ont l’intention de se rendre à Yellowstone de prévoir la visite du Steamboat Geyser vers le 11 ou 12 juin, soit sept à huit jours après la dernière éruption.

Source: Yellowstone Volcano Observatory, Yellowstone National Park.

————————————————–

The Steamboat Geyser in Yellowstone National Park is puzzling scientists after it erupted for the eighth time since March. The most recent eruption occurred at 9:04 a.m. on June 4th, 2018 and spewed boiling water several tens of metres into the air, followed by hours of steam plumes coming out of the geyser basin.

Steamboat Geyser, unlike the regular Old Faithful Geyser, erupts very infrequently. The last time it came to life was in 2014. Scientists are unsure why all of a sudden the geyser is experiencing a string of eruptions. Perhaps a small earthquake caused a more open flow path from the heated steam and water to the surface. Perhaps there is an increased magma source under Steamboat. Experts are unsure of the reason and plan to actively monitor and study the geyser to better understand what prompted the sudden change in its behaviour. Geologists with the University of Utah set up an array of seismic sensors across the geyser to capture the rumbling during eruptions. Their hope is to reconstruct the plumbing of the geyser by measuring the sound waves as they travel through the geyser up to the sensors.

Geyser eruptions are surface expressions of pressure release from the subsurface. As water trickles down into the soil and rocks in the ground, it continues to travel closer to heated rock and magma and becomes heated and turned to vapour. This process creates superheated and pressurized water to be trapped far below Earth’s surface. Eventually, there is enough boiling water and steam to overcome the overburden pressure of rock and water above. When this happens, the contained boiling water and steam is suddenly released in a dramatic eruption.

The park authorities say that if you plan to visit Yellowstone National Park, it is advisable to plan a visit to Steamboat around June 11th or 12th, seven to eight days after the latest eruption.

Source: Yellowstone Volcano Observatory, Yellowstone National Park.

Photo: C. Grandpey

Des capteurs sismiques pour prévoir les explosions de pingos // Seismic sensors to predict the explosions of pingos

Un premier capteur sismique a été installé près du village de Sabetta, sur la Péninsule de Yamal, qui abrite le port le plus moderne de Russie. D’autres capteurs sont prévus à proximité des gisements de gaz de Bovanenkovskoye et Kharasavay.
L’objectif est de détecter l’activité sismique qui pourrait précéder la formation soudaine de nouveaux cratères susceptibles d’endommager les infrastructures industrielles dont la stabilité est déjà menacée par la fonte du permafrost. On pense que les cratères se forment lorsque le méthane, libéré en raison du réchauffement climatique dans cette région de l’Arctique, explose à l’intérieur des pingos. Un pingo est un monticule de glace recouverte de terre dans les régions arctique et subarctique; il peut atteindre jusqu’à 70 mètres de hauteur et 600 mètres de diamètre.
Les scientifiques indiquent que plusieurs milliers de pingos pourraient «exploser» et former de nouveaux cratères géants dans cette région. Au moins dix sont connus pour avoir explosé en Sibérie ces dernières années. Le plus grand cratère, de 35 mètres de profondeur et de 40 mètres de diamètre, se trouve à proximité du gisement gazier de Bovanenkovskoye. Un seul capteur est capable d’analyser en permanence les processus sismiques à 200 km à la ronde.

Le port de Sabetta est en cours de construction sur l’estuaire de l’Ob dans le cadre d’un projet de 27 milliards de dollars de la compagnie Yamal LNG. Il permettra d’exporter 16,5 millions de tonnes de gaz naturel liquéfié en provenance du gisement de Yuzhno-Tambeyskoye.

Les futurs capteurs enregistreront les mouvements du sol et transféreront les informations au Centre d’expédition interrégional de l’Arctique et au Département de géophysique de l’Académie des Sciences de Russie pour un traitement et une interprétation supplémentaires. Un puits de 4 mètres de profondeur a été foré dans le pergélisol pour y installer le capteur sismique et un enregistreur capable de fonctionner en parfaite autonomie a été posé à la surface du sol. Il est prévu d’installer deux autres capteurs sur la péninsule au niveau des gisements gaziers de Bovanenkovskoye et à Kharasavay. L’agence Tass a indiqué qu’un réseau de capteurs sera installé dans le district autonome de  Iamalo-Nénètsie pour prévoir l’apparition de nouveaux cratères. Les scientifiques utilisent également la surveillance satellitaire pour prévoir les éruptions des pingos  en Arctique.

Plus d’images à cette adresse:
http://siberiantimes.com/other/others/news/first-seismic-sensor-installed-togiving-early-warning-on-new-exploding-pingos/

Source: The Siberian Times.

————————————-

The first seismic sensor has been put in the ground in close to the village of Sabetta in Yamalo-Nenets, home to Russia’s most modern port. Others are planned close to the Bovanenkovskoye and Kharasavay gas deposits.

The aim is to give warnings over seismic activity that could lead to the sudden formation of new craters, which could potentially damage key industrial infrastructure. The craters are believed to form when underground methane gas, released due to the warming climate in this Arctic region, erupts inside pingos, A pingo is a mound of earth-covered ice found in the Arctic and subarctic regions; it can reach up to 70 metres in height and up to 600 metres in diameter.

Scientists say several thousand pingos, many filled with gas, could ‘explode’ forming giant craters in this region. At least ten are known to have exploded in Siberia in recent years. The largest crater, 35 metres deep and 40 metres in diameter, is close to Bovanenkovskoye deposit. One sensor can analyse seismic processes non-stop in 200 km distance around it.

Sabetta port is being built as part of a $27 billion project by Yamal LNG on the Ob River estuary to export 16.5 million tons of liquefied gas from the Yuzhno-Tambeyskoye field. There are fears that the melting of the permafrost might affect the stability of the industrial infrastructures in the area.

Sensors will register oscillation of the ground and will transfer information about it to the Arctic Interregional Expedition Centre and United Geophysical Service of Russian Academy of Sciences for further processing and interpretation. A 4 metre-deep well was drilled in the permafrost. A sensor was installed in the permafrost and an event recorder, equipped with everything necessary for autonomous work, was left on the surface. There are plans to install two more sensors on the peninsula at Bovanenkovskoye deposit and at Kharasavay. TASS earlier reported that a network of sensors would be installed across the Yamalo-Nenets autonomous region to forecast appearance of new craters. Scientists are also using space monitoring to predict eruptions of Arctic pingos.

More pictures at this address :

http://siberiantimes.com/other/others/news/first-seismic-sensor-installed-to-give-early-warning-on-new-exploding-pingos/

Source: The Siberian Times.

Exemple de cratère façonné par les explosions de méthane en Sibérie (Crédit photo: The Siberian Times)